
SPATIAL INTERACTION PATTERNS *

WALDO TOBLER
Professor
Department of Geography
University of Michigan

ABSTRACT
An algebraic examination of spatial models leads to the conclusion that a convenient
description of the pattern of flows implicit in a geographical interaction table is obtained by
displaying a field of vectors computed from the relative net exchanges. The vector field
approximates the gradient of a scalar potential, and this may be invoked to explain the
flows. The method can be applied to asymmetrical tables of a non-geographical nature.

Introduction

Empirical measurements of the interaction between geographical areas are often and
conveniently represented by “from-to” tables, usually with asymmetric entries. Many
mathematical models offered as descriptors of these geographical interaction patterns do not treat
this situation adequately. Specifically, they quite frequently can predict only symmetrical
interaction tables, a glaring contrast to the empirical observations. In the present essay an attempt
is made to overcome this difficulty through the introduction of a flow field, which one may wish
to think of as a “wind.” This wind is interpreted as facilitating interaction in particular directions.
The algebra allows one to estimate the components of this hypothetical flow field from the
empirical interaction tables. Plotting the flow field provides a simple, convenient, and dramatic
cartographic representation of the asymmetry of the exchanges, even for extremely large tables of
interaction data. A table of county-to-county interactions in the United States, for example,
would yield nearly 107 numbers, an incomprehensible amount. A flow field, on the other hand,
showing these data as a set of vectors might be more tractable. Going one step further, it should
be possible to infer an estimate of the forcing function, the “pressure,” which might be said to
have given rise to the interaction asymmetry. Data collected for several time periods may allow
one to infer the dynamics of the relation of the forcing function and the flows.

Background

The foregoing objectives were motivated by previous papers in which geographical locations
were predicted from empirical interaction data by inverting models which contained spatial
separations as one of the explanatory variables [1,2]. The resulting spatial separations were then
converted to latitude and longitude positions by a procedure analogous to trilateration, as
practiced in geodesy. The empirical data in each instance were indicators of the amount of
interaction between the locations in question. These interactions were given in the form of
matrices, Mij, in which the rows are the “from” places and the columns the destination places.
For example, if Mij is the amount of migration from place i to place j, then the social gravity



model predicts that Mij = kPiPjf(dij), where the P’s denote the populations, d stands for distance,
and k is a scale factor. Then the inversion is

From the adjustment procedures used in surveying one learns how to calculate the latitude and
longitude coordinates of positions when their separations have been measured [3]. A similar pro-
cedure has recently been used in psychology [4]. The social gravity model of course is
symmetrical in the sense that if dij = dji then Mij must equal Mji, and the converse. In practice,
however, interaction matrices are asymmetrical, and Mij≠ Mji. This would imply, if the model is
inverted as was done above, that dij ≠  dji , with the consequence that the trilateration solutions
can result in more than one geometrical configuration or that the standard errors of the position
determination are increased [5]. In order to overcome this difficulty it is natural to introduce a
wind, or current of some type, which facilitates interaction in particular directions. This vector
field is to be estimated from the empirical data, and of course reflects their influence. At the
moment the wind need not be given any interpretation other than that of a mathematical artifact
which allows the problem to be solved. Later we can look for independent evidence which might
confirm (or deny) its existence.

Algebraic Development

As a simple example, postulate that a travel effort (time, cost, etc.) tij is aided by a flow cij in
the direction of movement from place i to place j. Then we can write that tij = dij / (r + cij) where r
is a rate of travel, independent of position and of direction, and is in the same units as c. An
interpretation might be that tij is travel time for someone rowing on a lake, r is the rowing speed
in meters per second, and c is a current in the water; or that j is uphill from i, and that this results
in a difference in travel speed; or that there exists a grain, as when skins are placed underneath
skis, and movement is rendered easier in one direction. Whatever the interpretation, solving for c
one obtains

Here use has been made of the relation cij = - cji which must hold for currents, and of tji = dji / (r
+ cji ).

The same argument can be applied to the gravity model. Substitute t for d in that model, with
f(t) = t-1ij for simplicity,



and

Solving for cij, recalling that dij = dji, one finds

A convenient choice of units will make r≡ 1 and then

It is encouraging that this quantity has already been found useful in studies of migration, albeit
without the present derivation [6, 7]. The original objective, inversion of the model, follows
immediately:

Reversing i and j does not change this quantity. Algebraically



which is the same result as would have been obtained if

had been assumed initially. A solution to the original problem has thus been achieved, in the
sense that any asymmetric interaction table can be made to yield a unique distance estimate to be
used in further computations involving locations.

Two difficulties remain. First, only one interaction model has been examined. Secondly, can a
reasonable interpretation be provided for the cij when the interaction consists of, say, telephone
calls between exchanges?

In the first instance, a more general gravity model might be written using

the development of which is straightforward. In a similar vein, an exponential model

yields

and this is a much more complicated result. One could continue further by, for example,
considering the entropy model elaborated by, Wilson, or the migration model published by
Lowry [8, 9] . These models are in fact already more general in that they do yield asymmetrical
interaction tables, but they also require supplementary information before one can solve for the
distances. The Lowry model is



where U is related to unemployment and W to wages. This can be rewritten as

and implies, if dij = dji that (using ai = Ui/Wi, aj = Uj/Wj )

and also (solve for aj and substitute) that

Mji = (kPiPjd-αij)2M-1
ij or (Uj/Ui)(Wi/Wj) =k Pi Pj f(dij)

Thus the second half of the interaction table carries no information. Furthermore, if the distances
are known, one can infer the wage and unemployment ratios from the empirical migration data.
Such a result has recently also been achieved for another model by Cordey-Hayes [10-12]. In the
present instance there are n(n - 1)/2 equations of the form

k-1 P-1
i P-1

j d-α
ij Mij = ai/aj,

and n unknowns, the ai’s. The system is overdetermined unless some of the equations can be
shown to be dependent.

In a comparable manner, given only an empirical interaction table, then the row sums
Oi= ΣMij and column sums Dj= Σ Mij can all be computed. The simplest sort of model is then
that Mij = k Oi Dj f (dij), and Mji = k Oj Di f(dji) where the origin and destination sums now take
the place of the populations. In order to obtain a consistent value for dij = dji it is necessary that
Mij/Mji = OiDj/OjDi, and this is a hypothesis that can be tested.

Another interesting model has been proposed by Somermeijer [13]. This is

Here Qij is the difference in attractiveness between areas i and j, Qij = Aj– Ai. Clearly Qij = - Qji,
solving for this quantity using



and adding, then subtracting, the equations for Mij and Mji, one finds

This is a very interesting relation because, although there is much speculation in the literature, no
one really knows by how much areas differ in attractivity. The model allows an estimate to be
made of this quantity. One notices that Qii = 0, although usually Mii≠ 0, and a desirable property
would be that Qij = Qiik+ Qkj for all i, j, k. In this case the attractivity of area j, call it Aj would
simply be Aj = Ai + Qij for some base level Ai. If this relation does not hold for all i and j then an
approximate estimator must be devised, which does not appear difficult. One may then wish to
draw contour maps of the scalar field A(x,y), on the assumption that attractivity is a continuous
variable. Solving for distances in this model leads to

where r = a/b. This is remarkably similar to the equations obtained earlier.
A few interaction models have now been examined, and manipulated algebraically under

varying assumptions. The reader will hopefully find it fruitful to extend, and improve, these
results. The class of hierarchical models which also might be used to approach interaction tables
has been completely neglected here [14-16].

From a mathematical point of view it is an elementary theorem of matrix algebra that every
asymmetric matrix can be written as the sum of a skew-symmetric matrix and a symmetric
matrix. This unique decomposition is given by

M+
ij = (Mij + Mji)/2 = M+

ji

and
M-

ij= (Mij - Mji)/2 = -M-
ij

where M+ denotes the symmetrical, and M- the skew-symmetrical, portion of the table. If the
usual social gravity model is written as Mij = Mji = k Pi Pj / dαij , then this implies that dαij =
2kPiPj/M+

ij, taking the symmetry literally. If this is set equal to the comparable value

obtained from the Somermeijer model, then one finds that r = 2 is required for the two results to
be consistent. The similarity of the answers obtained under differing assumptions encourages one
to believe in the robustness of the results. The recurrent appearance of the difference of the
interactions in the two directions divided by their sum, M-/M+ the relative net interaction, is
particularly striking. This quantity first appeared as being proportional to the c‘s introduced as
currents.



Cij was assumed to be the component of a current (or wind) flowing from i to j and which
made interaction easier in that direction. If the locations, in geographical two-space, of the
positions of i and j are known (or estimated using the trilateration procedure from dij, as defined
by one of the above equations), then we can draw a small vector at i towards j of length ½cij.The
direction at i away from j is used when cij is negative. Since cij = -cji, one half of the vector
magnitude is assigned to each of the points i and j. This happens also to make r = 2. It may be
appropriate to weight the vectors by a quantity proportional to exp(-dij) but this is a side issue.
Analytically the calculation of the vector components is a simple trigonometric computation if
the latitude and longitude coordinates of i and j are known. Doing this for all directions that
interact with each point, i.e., for each i performing the computation for all j, one obtains a cluster
of vectors at each point. The resultant vector sum gives an estimate of the wind field at that point.
After the summation has been performed for all points, a vector field c(x,y) can be assumed to
have been defined for all x,y in the region of observations.

From Vectors to Potentials

Every scalar field a(x,y) has associated with it a vector field, grad a. The converse, however, is
not true. Nevertheless every vector field can be written as the sum of the gradient of a scalar field
plus an additional vector field. These two parts are referred to as the scalar potential and the
vector potential, respectively. If the second field is everywhere zero, then, and only then, the
original vector field is the gradient of some scalar field. In the latter case one should be able to
recover this scalar potential by reversing the gradient operation, i.e., by integration. In the present
instance it is necessary to decide whether the finite set of numbers, making up the vector field
and obtained from the empirical interaction table, can be considered an exact differential [17].
The idea here is that a wind implies a potential function (the attractiveness), and we would like to
infer this potential from the wind.

The observed vector field must be decomposed into divergence- and curl-free parts, and the
scalar and vector, potentials can then be calculated as follows [18, 19]. Recall that, for any vector
field c(x,y), the vector identities curl grad = 0 and div curl = 0 both hold. Write c = grad a + curl
v or c = a curl free part plus a divergence free part, and then apply the divergence operator, to
obtain div c = div grad a + 0. But div grad = 2 = ∂c/∂x + ∂c/∂y. Thus, by calculating the
divergence of our vector field we observe that the scalar field a can be obtained from Poisson’s
equation 2a = ∂c/∂x + ∂c/∂y which is solvable by known methods to obtain an estimate of the
scalar potential [20].

The first part of the problem is thus resolved. Now apply the curl operator to the original
equation, obtaining curl c = 0. + curl curl v. If curl v is a vector in the x,y plane then v and curl
curl v are perpendicular to it, and thus c has no components, nor any variation, normal to the x,y
plane. Therefore, curl c = k (∂c/∂x - ∂c/∂y), and analogously for curl curl v. Thus 2v = ∂c/∂x -
∂c/∂y, i.e., Poisson’s equation is again to be solved, this time for v = kv. It is necessary to solve
these equations by finite difference methods at an irregular scatter of points in two dimensions.

Assuming for the moment that this can be done, there remains the problem of interpretation.
The scalar field a is readily viewed as a “pressure” which induces the flow. I would expect this to
be the larger of the two components of the observed field. The most reasonable interpretation that
I can see for the vector potential is that of a spatial impedance. In other words, there is a
mismatch or inconsistency between the flow field and the forcing function. This can perhaps be



thought of as a viscosity, or as an unexplained component in the statistical sense of a residual. It
is easy, too easy, to invent explanations for the mismatch indicated by the vector potential. But
suppose that one has observations (i.e., interaction tables) for two, or more, time periods. In this
dynamic situation one would like to consider the existence of lagged potentials. One would in
fact like to calculate these from the data [21]. Ultimately one would like to consider policy
changes which could be used to modify the flow field. One foresees a spatially continuous,
temporally dynamic input-output scheme [22]

Other questions come to mind readily. If there is a flow of interactions in one direction, for
example, must these be balanced by a counterflow of some other quantity in order to close the
system: money when products flow, or decongestion (negative population density) when people
move? The interpretation of interaction asymmetries as being induced by a “wind” may also be
reversed. Recall that in Hägerstrand-type Monte Carlo diffusion studies [23] the mean
information field is usually symmetrical. But diffusion may also take place in a field of winds,
and this is a natural way of obtaining asymmetrical information fields [24]. Thus explicitly
introducing these “winds” may improve the accuracy of predictions obtained from spatial
interaction models. Included here are models of the gravity type as modified in this presentation
arid widely used in practice, as well as others not treated here.

Examples

Several sets of data have been examined in order to clarify the foregoing concepts. The
primary illustration uses a 48 by 48 table of state to state college attendance [25]. The
accompanying map, Figure 1, indicates by a plus sign those states which are sources (net
exporters) of students; a minus sign indicates student importers, with the area of the symbol
proportional to the volume of import or export. Exportation here means that college-age residents
of a state go to another state for their college education. One could have reversed the
interpretation to say that some states export education to non-residents; but the students actually
move, and this has been labeled an exportation. New Jersey was, in 1968, by far the largest
exporting state by this criterion, with 90,000 students studying in other states. This state,
compared to its educational facilities, had a surplus of educationally motivated residents1. The
computed vector field is shown in the next illustration, Figure 2. The vectors have been
positioned at the approximate center of gravity of their resolution elements (states), which
introduces an error of less than one half of the resolution element. The components of the vector
are computed as

where

The vector c is plotted at the map location (Xi , Yi), after an arbitrary scaling appropriate to the



particular map, using plane coordinates on a local map projection [26]. The foregoing formula is
derived by simple trigonometry from the interpretation of ci as the components of a vector bound
at i, directed from i to j.

The next figure, Figure 3, shows a spatially weighted version of the same data, computed as

with

The motivation here is that local influences should carry more weight than distant ones. But the
difference between the figures is comparatively minor, and this seems to be the case for other
examples which have been computed. As a contrast it is additionally useful to display a map,
Figure 4, constructed from a 48 by 48 table of non-negative random numbers. The pattern
computed from this random table lacks structure, the degree of spatial auto-correlation within the
vector field being small. This does not appear to be the case with maps computed from real
interaction data.

Using the forty-eight vectors located at state centroids one can estimate values at a regular
spatial lattice to obtain a somewhat more legible picture of the vector field, Figure 5. In the
present instance this spatial interpolation captures better than 85 per cent of the pattern of the
irregular field. The positioning of the lattice is rather crude, with several vectors falling outside
the United States; this is of course not meaningful since there are no observations in that region.
But the main purpose of the assignment of values to the lattice positions is to facilitate the
solution of Poisson’s equation by finite difference methods. While this could in principle be done
for data arrayed at state centroids, the additional computer programming effort did not seem
warranted at this stage. A program that iterates by finite differences for data at a regular array of
points seemed adequate as an initial attempt. Both the scalar and vector potential functions have
been calculated by such a program, which also plots contour maps of these functions. The
boundary conditions are that no movement can cross the border of the region, since the system of
student flows is closed as far as these data are concerned. Alternate specifications for the
boundary yield different solutions to the Dirichlet problem. Considering the field of vectors as a
velocity field suggests an alternate boundary specification.

One might argue that the potentials should have been computed from a field based on net
flows, rather than on relative net flows. But if one examines the relation obtained from the
Somermeijer model



and postulates the existence of a scalar function A(x,y), then a finite approximation to the
directional derivative based on observations at i and j would be
But the directional derivative in any direction is the component of the gradient in that direction,

and thus the gradient is a linear combination of directional derivatives. The formula used to
compute the components of the vector field is just such a linear combination.2 Thus the
Somermeijer model suggests that the relative net interaction is the more appropriate expression.

Superimposition of the map of the vector field on that of the scalar potential, Figure 6, shows
the degree to which the field corresponds to the gradient of the scalar function. Perfect agreement
would hold if the vectors were everywhere orthogonal to the contours. This of course would
imply that curl v = 0, as previously noted. Beckmann [27, 28], several years ago, asserted that
flows would be proportional to gradients of some scalar function, and a crude test of this
assertion is now provided. The map of the vector potential calculated as a residuum is also
shown, Figure 7.

The most natural hypothesis for the movement of students is to postulate that the computed
scalar potential, Figure 6, is related to the departure, by state, from the national educational
expenditure, per capita. This hypothesis can be approached in several ways. The tack used here is
to compute an expected student-flow field. An estimate of the 1968 per capita expenditure for
higher educational plant, by state, is readily available [29]. On this basis, letting Ai represent the
educational expenditure in state i and dij, the distance (km) of state i from state j, the quantity

was formed at eachi as a vector in the direction θ, towards j. The resultant of the several vectors
at each point was then used to obtain a “continuous” vector field, Figure 8. This field, if our
hypothesis has any merit, should agree with the one calculated independently from the student
flow table. But the map which is offered in evidence only modestly resembles the field of student
migrations. The correlation (R2) between a numerical estimate of the attractivity (scalar potential)
and this variable (educational expenditure) is only 70 per cent. Thus, on two counts, one is forced
to conjecture additional relationships. The point is that the map of the scalar potential may of
itself suggest likely relationships, particularly in situations more obscure than student flows. A
flow field computed from empirical data might also be compared to a flow field obtained from an
interaction table generated by some model; the differences in the fields may then again lead to
insights.



The next two maps, Figures 9 and 10, are of related cohorts, and are based on tables [30]
showing the number of persons receiving a Bachelor’s degree in state i who received a Ph.D.
degree in state j, and the number of persons receiving their Ph.D. degree in state i who took their
first post-Ph.D.-degree employment in state j.The latter might be considered as a type of “brain
drain.” All three sets of data are best considered together, even though they do not trace the paths
of specific individuals. A number of interesting investigations are suggested by these tables,
including of course the structure of the transition probability matrices. A somewhat comparable
effect is obtained by comparing the three vector fields.

It should be clear that the technique described can be applied to a variety of data. Interregional
commodity flow tables collected for input/output analyses constitute one accessible source [31,
32]. Migration tables are also of interest [33]. Here it becomes obvious that, since people move
for different reasons, a potential function calculated from an asymmetric migration table must be
the sum of individual potential functions. Thus it would be advisable to disaggregate such tables
by age, by occupational group, and perhaps by other categories. As related examples, Figure 11
shows the 1939 commuting pattern (journey-to-work) for the city of Munich, and another, Figure
12, shows the December 1970 commuting field in Belgium [34]. The pattern of commuting in
Munich is very clear, and is as one expects. Belgium, due to the larger areal coverage, has several
centers of employment and presents a much more mixed pattern. Figure 13 represents tourist
travel within that portion of Europe for which there are data and this again shows a rather
coherent pattern [35].

The next two maps, Figures 14 and 15, show the flow of information. In the one case the field
is computed from a 17 by 17 table of the maximum number of telephone calls from one exchange
to another in the city of Zürich in 1970 [36]. One is tempted to place a vortex just west of Parade
Platz, where important banks are located. The second figure shows business contacts in Sweden,
estimated as an origin-destination table obtained from a sample of airline passengers [37]. The
major Swedish cities stand out clearly.

As a final, non-geographical application, the asymmetry between psychological journal
citations has been analyzed. The first step is to position the journals spatially. This could be done
using one of the formulae derived earlier, or by treating the elements of M+

ij as similarities. In the
present instance the data have already been located in a two-space by a multidimensional scaling
algorithm and it only remains to use the asymmetries to assign vectors to these data points [38].
Interestingly the flow, Figure 16, is from the experimental journal to the clinical journal, but the
vector field does not match the gradient of the scalar potential very well. The further task of
interpreting this description of the psychological literature is best left to that profession, and the
sample size is small. But the procedure can be applied to any asymmetrical table.

Caveats

One of the reasons for including so many examples in this paper is because the technique
works with any set of data. One can take any asymmetrical table and from it compute a vector
map. The procedure cannot fail, which immediately makes it somewhat suspect. Furthermore, the
potentials can never actually be observed, but can only be deduced from their consequences.
Thus one can ask whether the potentials should be computed from the relative net flows (as has
been done here), or directly from the net flows (which intuitively seems more reasonable), or
from a table adjusted so that the rows sum to unity (as in a probability transition table), or in



some other manner. The results will in each case differ, albeit only slightly. The plausibility of
the several example fields, the relation to the Somermeijer model, and the lack of pattern in a
vector field computed from a random table, all combine to suggest (perhaps more fortuitously
than algebraically) that the technique has some merit. Thus, several vector field patterns,
computed from a number of empirical interaction tables3 have been examined. In each case these
patterns have seemed plausible. This means that one could reasonably expect the observed
patterns on the basis of a priori knowledge of the phenomena analyzed. The conclusion is
therefore that the method is valid. But the existence of a potential function is already contained in
the assumption of gravity model, and the domain of validity of such models is restricted to
macroscopic effects. It has furthermore been convenient to consider space, fields, and potentials
as continuous entities. The proximate nature of these assumptions should be kept in mind in any
applications. On the other hand the method appears to be insensitive to alternate regionalizations
of the data, and yields more detailed results the finer the geographical resolution of the initial
interaction table.

*Journal of Environmental Systems, 6, 4 (1976-77): 271-301.
Reprinted by permission, W. Tobler, Spatial Interaction Patterns, International Institute for
Applied Systems Analysis Research Reports, July 1975.
This work was initiated in 1972 under National Science Foundation Grant GS 34070X,
“Geographical Patterns of Interaction,” at the Department of Geography, The University of
Michigan, Ann Arbor.

1If one separates the 48 by 48 college attendance table into symmetrical and skew-
symmetrical parts, then the latter portion contains 24 per cent of the total variance.

2In principle the gradient can be computed from the basis formed by two independent
directional derivatives. But which two? It is easily possible that. one can derive a better
approximation to the gradient than the averaged value used here. The problem is one of finding
the tangent plane to a surface from finite measurements. The essential argument of this essay is
not dependent on the particular approximating equation used, although the point requires further
clarification.

3Whose accuracy, incidentally, is not known
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Some additional results
USSR Migration between Republics, circa 1970





West Germany, Migration Winds. Maps by Wolf Rase



Migration in the Western United States, 1935-1940. Based on State Economic Area data.



Migration in the Western United States 1965-1970. Based on Sate Economic Area data.




