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Abstract: The classical approach to map projections is to obtain an explicit pair of equations 
relating places on the earth to locations on a map. Modern computational facilities render 
feasible an alternate approach using numerical analysis techniques. Surveying adjustment 
procedures such as triangulation and trilateration constitute examples familiar throughout 
the cartographic community. In this instance the principle of least squares can be used to 
define map projections with useful properties. To take advantage of these approaches one 
employs further numerical methods, including bivariate interpolation and splining, and 
finite difference approximations to the derivatives of transformations. The point of view 
described is especially valuable when presented with a map whose projection equations 
are not known explicitly. 

 
 
 LAMBERT (1) demonstrated that an appropriate derivation of a map projection 
begins with a definition of the properties to be preserved. This definition typically takes the form 
of a partial differential equation that covers the class of map projections in question. Particular 
solutions are then obtained by specifying additional conditions. To take a simple case, a conical 
equal area projection of a sphere is usually derived in the following manner. The equal area 
condition, in geographical and plane polar coordinates, is r (∂r/∂ϕ  ∂θ/∂λ -  ∂r/∂λ  ∂θ/∂ϕ ) = R2 
cos ϕ and conical projections, by definition, are given by equations of the form r = f(ϕ), θ = nλ, 
where 0 < n < 1 is known as the constant of the cone. Clearly ∂r/∂λ = 0, ∂θ/∂ϕ = 0, ∂θ/∂λ = n, so 
that r ∂r/∂ϕ n = R2cos ϕ. Solving for r yields r2 = 2 R2/n sin ϕ + C which contains two arbitrary 
constants; the constant of the cone, n, and a constant of integration, C. The usual boundary 
condition is to make the length of two parallels on the map equal to their length on the sphere, or 
minor variants of this condition. This completely determines the constants n and C. For example, 
let ϕ1 and ϕ2 be the two standard parallels. The length of any parallel on the sphere is R cos ϕ dλ. 
The length of the parallel on the map is r n dλ. Set these equal to each other and solve for n. In 
the present instance there are two standard parallels whose images are arcs of circles of radius r1 
and r2. Each yields an equation for n, but n is a constant so that these equations must equal each 
other Some simple algebra now yields 2n = sin ϕ1 + sin ϕ2. With this value of n, C is determined 
by C = R2 (1 + sin ϕ1 sin ϕ2)/n2. For example if ϕ1 =  30° and ϕ2 = 45°, then n = 0.604 and C = 
3.72. This is ALBERS’ equal area conic projection with two standard parallels. 
  Least squares methods might also be used to determine the constants This particular 
choice - the method of least squares - combines several advantages, of which historical 
continuity, wide familiarity throughout the scientific community and the relation to Gaussian 
probability statistics weigh heavily. Other criteria are easily formulated but yield results that 
differ only in detail not in overall strategy. The CHEBYSCHEV criterion as used in the example 
below is not further discussed here. The application of least squares methods to cartography is of 
course not new. For example, a suggestion in 1861 by G. AIRY (2) was to balance departures 
from conformality against departures from equivalence. If a is the maximum, and b the 
minimum, value of the linear exaggeration, then the “balance of errors” criterion can be stated as 
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minimization of ∫∫ (a/b – 1)2  + (ab-1)2 dA, where the integration is over the entire region. The 
expressions for a and b for an arbitrary map projection are complicated, and no general solution 
has been found to this difficult problem. YOUNG (3) made an intensive study of the subject, and 
relevant literature has recently been summarized by MESCHERYAKOV (4) and by 
BIERNACKI (5). For an equal area conical projection ab = 1 and a/b = cos2 φ/(n2C – 2n sin φ) so 
that AIRY’S integral is considerably simplified. The proposed solution would then appear to 
minimize departure from conformality. 

 The modern high speed digital computer also permits one to approach the problem using 
numerical calculations and finite measures in place of differentials of distortion. A tedious, but 
direct, calculation over the region of interest, varying n and C, now appears feasible. For 
example Figure 1 shows a graph of the difference between spherical distances and distances on 

 
Table I. Errors as a function of the two available constants 

         c = 3.50      C     c = 4.00 
n = 0.575 2383 2106  1837  1578  1327  1082  0843  0611  0400  0255 0224 
   2151 1876  1611  1354  1104  0861  0624  0405  0251  0220 0408 
   1921 1650  1388  1133  0884  0642  0413  0250  0214  0406 0624 
   1696 1428  1167  0913  0666  0430  0252  0206  0399  0621 0839 
   1474 1207  0948  0696  0452  0259  0198  0387  0612  0834 1054 
n   1255 0990  0732  0482  0273  0189  0369  0600  0825  1048 1268 
   1037 0774  0518  0296  0133  0346  0580  0811  1037  1261 1481 
   0822 0561  0325  0182 0318  0556  0791  1022  1249  1473 1693 
   0610 0363  0192  0284  0527  0766  1000  1232  1461  1686 1908 
   0409 0208  0245  0492  0735  0945  1210  1442  1671  1898 2121 
n = 0.625     0239 0208  0451  0698  0943 1183  1419  1652 1882  2110 2334  
 
ALBERS’ equal area conical projection with two standard parallels. The absolute value of the 
difference is plotted as a function of the two available constants n and C. The numerical values 
on which the graph is based are given in Table I. Each computation compares 595 spherical 
distances with 595 map distances using the points defined by latitude = 22.5 (7.5) 52.5 degrees; 
longitude = -125 (10) -65 degrees. The constant of the cone takes on the values 0.575 (0.05) 
0.625 and C ranges over 3.50 (0.05) 4.00. The minimum of the function ε = f (n, C), based on the 
4,283,702 distance comparisons, occurs at n = 0.610, C = 3.65, and this specifies these values for 
an equal area conical projection of the United States on which distance errors are as small as 
possible. It should be emphasized that this solution uses finite measures, not differentials of 
distortion, and numerical calculations quickly and easily performed on a digital computer. The 
resulting constants do not differ appreciably from those obtained by more traditional methods, 
but this example was only for expository purposes. The topography of the error space is clearly 
exhibited here as a shallow valley between n and C, and which appears as though it might well 
be approximated by a hyperbolic parabaloid, and in which a gradient-following mathematical 
mountaineer could easily find the minimum. Any projection that contains arbitrary constants 
invites exploration by numerical expeditions of this kind. 

 Minimization of distance errors, when it is known that isometric mappings of a sphere 
onto a plane are not possible, has numerous applications. As a particular example, consider a 
case in which one has available only information obtained from a travel itinerary (distances 
between points, but not the latitudes and longitudes of the points) and one still wishes to 
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construct a map. One may imagine that the ancients might have used such information for the 
construction of medieval maps. Ruler and compass approximations can be devised with relative 
ease but it is more useful to formulate a general mathematical solution, as described in the 
following paragraphs. 

 To begin it is assumed that one knows the distance between all pairs of points. If there are 
n points this requires n (n - 1) / 2 distances. The problem is now to determine the coordinates of 
the n points. The answer can be checked by comparing the original distances with distances 
calculated from the coordinates obtained through the analysis. The first step is to array the 
distances in an n by n matrix so that any entry, Dij, is the distance from the ith point to the jth 
point, as in a road atlas distance table. This matrix will be symmetric since the original distances 
are symmetric. Then form a new n by n matrix with elements obtained from the distances as 
follows. The components of the eigenvectors corresponding to the two largest eigenvalues of this 
d*ij matrix are the desired map coordinates, with origin at the centroid of the distribution of 
points and with axes corresponding to the principal axes of the distribution of points. A computer 

program to perform these calculations has been published (6). 
 The foregoing result is based on theorems described in the psychometrical literature (7): 
a) If a matrix d*ij is positive semi-definite (i. e., has non-negative latent roots), then the 

distances can be considered to relate points lying in a real Euclidean space. 
b) The number of positive latent roots is equal to the dimensionality of the set of points. 
c) If the rank of an n by n positive semi-definite matrix is r < n, then the matrix can be 

decomposed into the product of an n by r rectangular matrix of r characteristic vectors and 
its r by n transpose. The n elements of the characteristic vectors can be considered the 
projections of the points on r orthogonal axes in the r-dimensional real Euclidean space. 

 
The application in psychology is to locate stimuli relative to each other when given only their 

dissimilarities (distances). In the present instance the objective is to produce a geographical map 
and both the Euclidean metric and a restriction to two dimensions are appropriate. Thus only the 
first two eigenvectors are considered. Since the original distances may not have come from a two 
dimensional Euclidean space, or may contain measurement errors, the method cannot always 
give a perfect fit. A measure of the adequacy of the fit is of course available by comparison of 
the original and resulting distances, and this is also a measure of the adequacy of Euclidean geo-
metry as a description of the space. 

The procedure has been tested by computing 2,080 spherical distances between a set of 65 
regularly spaced latitude and longitude intersections covering the United States. From these 
distances the 65 by 65 scalar product matrix d*ij was formed and the eigenvectors corresponding 
to the two largest eigenvalues were obtained. The map distances between the points were 
computed by considering the components of the eigenvectors to correspond to plane map 
projection coordinates. The mean scale ratio of the resulting distances to the original distances 
was then used to obtain a multipler (0.99502) to be applied to the coordinates for a final scale 
adjustment. A small selection of the original and resulting distances are given for comparison in 
Table II. 
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 Table II. Original and resulting distances  
  1                 2       3 4 5   6 7          8        9 
 1       00.000     27.669  55.025 15.000 29.804 53.120  30.000   37.751  54.210 
 2       27.844 00.000 27.669 29.804 15.000 29.S04 37.751 30.000 37.751 
 3        55.081 27.844 00.000 53.170 29.804 15.000 54.210 37.751 30.000 
 4        15.350 29.947 52.910 00.000 23.698  46.741 15.000 25.681 43.577 
 5        29.608 14~970 29.608 23.594 00.000  23.698 25.681 15.000 25.681 
 6       52.910 29.947 15.350 46.54823.594  00.000 43.577 25.681 15.000 
 7        30.594 37.704 53.982 15.26525.555  43.642 00.000 18.130 35.442 
 8       37.710 29.860 37.710 25.74914.890  25.749 18.256 00.000 18.130 
 9        53.982 37.704 30.594 43.64225.555  15.265 35.912 18.256 00.000 
Values in degrees. Original distances above the diagonal. The selection of points is (1) 22.5N, 125W; (2) 22.5N, 
95W (3) 22.5N, 65W (4) 37.5N, 125W (5) 37.5N, 95W (6) 37.5N, 65W;  (7) 52.5N, 125W; (8) 52.SN, 95W; (9) 
52.5N, 65W. The regression is: Resulting Distance = 0.29 + 0.99 * Original Distance. R2 =1.00, N= 36 
 

 To see the relation to least squares methods the problem can be reformulated to find a 
solution which minimizes the sum of the squares of the differences between the original 
distances and the resulting map distances, i. e., minimize 

ε = ∑k (Dij – dij)2 , where dij = [(xi - xj)2 + (yi -yj)2]½. 
Readers with a geodetic background will recognize this as the method used to adjust 
measurements obtained in a trilateration survey (8). The function d is linearized using the 
TAYLOR series  
 

 
where the superscript denotes an initial (arbitrary) guess at the solution. Substitution of this 
equation into ∑k (Dij – dij)2  allows for the small corrections dx, dy by least squares methods. This 
leads to an improved guess at the coordinates. The improved guess is then used to repeat the 
process. Iteration ceases when the coordinates no longer change. This formulation makes clear 
the procedure to be used when some of the n (n - 1) / 2 observations are lacking, or when they 
are of unequal accuracy. In the latter case one uses a weighted least squares procedure, with 
inverse variances as weights. But one could also weight distances in some, presumably 
important, part of the map more heavily than others, or could choose weights to be some function 
of the distances themselves; a negative exponential for example would lay the stress on the 
preservation of local distances. Also suggested is how the same method might be employed to 
minimize angular distortions. 

 To obtain map projections which are “nearly conformal in the large” the problem is posed 
as follows: Given m angles iθjk measured from j to k at the ith point, find positions identified by 
coordinates such that the angles iαjk calculated from these coordinates are as nearly as possible 
the same as the given angles. The condition to be minimized, with angles in radian measure, is 
∑m (iθjk - iαjk)2, where 
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This is linearized using TAYLOR series and an initial guess for xi, xj, xk, and yi, yj, yk as 

 
The result is of course comparable to the solution of geodetic triangles by the method of 
variation of coordinates. Iteration of the least squares corrections to the coordinates converges 
rapidly in these cases. In the present context it is suggested for the derivation of map projections, 
so that iθjk might be angles on a sphere or ellipsoid. 

 In the case of distances, with n points, there are n (n - 1) / 2 possible symmetric distances 
(n things taken two at a time) and 2n coordinates to be found. Three coordinates are arbitrary, so 
that a least squares solution is possible only if the number of distances exceeds 2n - 3. For 
directions, n things taken three at a time yields n(n - 1)(n - 2)/6 angles, and three coordinates can 
again be chosen arbitrarily, so that at least n (n - 1)(n - 2)/6 > 2n - 3 angles must be known for a 
least squares solution to exist. The analogy to classical surveying also suggests use of the 
classical error measures; standard error ellipses at each point (not to be confused with Tissot’s 
indicatrix), and the root mean square error as an overall measure of the goodness of fit. Since the 
surveyor’s mean square error is essentially equivalent to the statistician’s variance, it becomes 
obvious that one can treat a map projection as an hypothesis relating to the geometry of the earth, 
and that one can compute the percentage of the total variance accounted for by the model. Thus 
the reader may use Table II as an example from which to compute an estimated correlation 
coefficient (R2) from which he can decide whether or not to accept the procedure proposed. All 
of these new suggestions for the construction of map projections are quite general. There is no 
requirement, for example, that the distances be symmetrical, and with appropriate modifications 
(9), the methods can be applied to information measured on an ordinal, rather than ratio, scale. 
Thus “far, farther, farthest” may contain enough information to compute coordinates for a map 
(10). The initial distances could also be travel costs, travel times, or road distances (11), instead 
of spherical distances, or the number of employment opportunities between places i and j.  
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Table III. Empirical map projection coordinates for a map of the United States 
Longitude               95W      90W      85W    80W      75W      70W  65W 
Latitude 
52.5 N.      x =          0.0      3.063    6.115 9.142 12.133 15.075 27.956 
     y =        13.440          13.531   13.806 14.264 14.905 15.728 16.734 
45.0N     x =          0.0   3.527 7.043 10.535 13.991 17.398 20.745 
     y=           6.006 6.107 6.409 6.912 7.618 8.526   9.637 
37.5N     x =          0.0    3.946 7.880 11.792 15.670 19.501 23.274 
     y =        -1.450 -1.343 -1.021 -0.485 0.268 1.237   2.425 
30.0N     x =          0.0     4.318 8.626 12.913 17.169 21.382 25.541 
     y =        -8.926 -8.815 -8.481 -7.924 -7.142 -6.134  -4.896 
22.5 N     x =          0.0 4.645 9.280 13.897 18.487 23.038 27.540 
     y =       -16.420       -16.308    15.969 -15.403   -14.608    -13.582 12.320 
Values in degrees. Western half to be obtained by symmetry. 

 
 As finite procedures the foregoing methods do not result in formulae of the form x = f (φ, 

λ), y = g (φ, λ) as one would obtain from the more classical approach. Instead, the definition of 
the map projection now consists of a table of coordinates, and not a pair of equations. Table III 
gives the result for the 65 latitude, longitude points cited earlier. Of course this table specifies a 
rule associating places on the sphere with places on the map, just as would a pair of equations. 
And the table can be expanded to arbitrary density by interpolation. Thus the x, y coordinates 
corresponding to a point at 82° W, 35° N would be x = 10.479, y = -3.182 by linear interpolation, 
and would be x = 10.567, y = -3.204 by bivariate splining (12), which gives a slightly smoother 
result. Neither method of interpolation is very complicated. In order to obtain a complete map 
the interpolation procedure is applied to all of the geographical data of interest, which might, for 
example, be stored on magnetic tape. Figure II demonstrates such results. In this instance third 
order bivariate interpolation was applied, using table III, to each of 10,408 latitude/longitude 
points used to define an outline map of the United States. The computation and plotting take 
about one minute in today’s computer environment. 

 Figure III shows a map of the Mediterranean prepared as was the map of the United 
States with the difference that the distances have been computed along spherical loxodromes and 
not along great circles. The hypothesis is that this is a reasonable analogy to the construction of 
Portolan Charts in the 13th century, but the literature is controversial. 

 Table IV defines another map projection, an equal area pseudo-cylindrical known as the 
hyperelliptical projection (13). In this case the equations are known, 

where α, k, and γ are constant parameters. Inspection of the equations reveals that the y 
coordinate is defined implicitly, and thus that it is necessary to use an iterative numerical 
technique to obtain the value at any point. In this instance it may be preferable to perform the 
exact computations once and then to let Table IV define the projection thereafter, using 
interpolation from this table for further (arbitrary) points, rather than the more complicated 
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iterative solution. MOLLWEIDE’s projection, a special case of the hyperelliptical, provides an 
example which has been in the textbooks in this form for many years. 
 

Table IV. Table for the construction of a 10 by 20 world map on the  
HYPERELLIPTICAL EQUAL AREA PROJECTION 

  
 Latitude   Y Coordinate            X Factor* 
 0           0.000000               0.055555 
 5           0.367979               0.055429 
 10           0.734807               0.055242 
 15           1.096182               0.054973 
 20           1.454780               0.054595 
 25           1.802264               0.054091 
 30            2.144195              0.053442 
 35            2.475016              0.052627 
 40            2.794726              0.051625 
 45            3.103326              0.050406 
 50            3.398039              0.048940 
 55            3.678861              0.047181 
 60            3.940243              0.045070 
 65            4.184957              0.042524 
 70            4.410173              0.039413 
 75            4.610387              0.035519 
 80            4.782840              0.030411 
 85            4.921966              0.022944 
 90            5.000000              0.000000 

*Multiply longitude by this amount to obtain the X coordinate. The table is 
computed from the equations given by TOBLER, 1973, using  
alpha = 0, K = 2.5, gamma = 1.1831. 
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Table V. Tissot’s Measures of Distortion.   
Calculated for an Empirical Map Projection of the USA 

               Lat.      Lon.        A            B           S          2W          K           H          Ω 
  30.00 -70.00    1.02404 .99235  1.01620 1.8013  1.00090   1.01568  91.5932 
  30.00 -75.00    1.01609 .99268  1.00865 1.3352    .99952   1.00936  91.2115 
  30.00 -80.00    1.00962 .99321  1.00277   .9386    .99850   1.00439  90.8762 
  30.00 -85.00    1.00452 .99414    .99863   .5952    .99778   1.00089  90.5678 
  30.00 -90.00    1.00058 .99553    .99612   .2900    .99737     .99875  90.2789 
  30.00 -95.00      .99800 .99720    .99521   .0459    .99720     .99800  90.0000 
  37.50 -70.00    1.01446 .99457  1.00895  1.1344   .99628   1.01278  90.6333 
  37.50 -75.00    1.00777 .99442  1.00214    .7640   .99565   1.00655  90.4408 
  37.50 -80.00    1.00256 .99439    .99693    .4689    .99526   1.00169  90.2893 
  37.50 -85.00      .99883 .99430    .99313    .2604    .99486     .99826  90.1723 
  37.50 -90.00      .99648 .99444    .99094    .1178    .99472     .99620  90.0818 
  37.50 -95.00      .99547 .99477    .99026    .0403    .99477     .99547  90.0000 
  45.00 -70.00    1.01076 .99628  1.00700    .8271    .99693   1.01012  89.6589 
  45.00 -75.00    1.00505 .99588  1.00091    .5256    .99706   1.00389  89.6490 
  45.00 -80.00    1.00105 .99532    .99636    .3287    .99736     .99901  89.6852 
  45.00 -85.00      .99884 .99420    .99305    .2663    .99760     .99545  89.7643 
  45.00 -90.00      .99791 .99310    .99102    .2770    .99766     .99335  89.8775 
  45.00 -95.00      .99759 .99267    .99027    .2834    .99759     .99267  90.0000 

 Values for the western portion of the map can be obtained by symmetry. 
 

The two tables, III and IV, thus illustrate two alternate numerical approaches to the study 
of map projections. The projection given by table IV was derived in the conventional fashion, 
whereas that of Table III was derived from finite calculations. One assertion would be that the 
map illustrated in Figure II is prima facie evidence for the reasonableness of the empirical 
derivation used to obtain this projection. But it is not necessary to rely on such visual evidence. It 
is a simple matter to approximate partial derivatives, by standard numerical techniques, from 
such tables of coordinates. One needs these to describe the distortion on a map using the 
theorems of Tissot (14). The results of such a computation are shown in Table V. One sees that 
the distortions are generally less than two percent, and thus that this empirical map projection 
compares favorably with ALBERS’ or LAMBERT’s conical projections with two standard 
parallels. But the empirical projection is not a true conic, since there is a slight curvature to the 
meridians.  

 Table VI presents an even more interesting empirical situation. The x and y coordinates 
represent physical measurements made on an old map. The latitudes and longitudes are the 
modern spherical coordinates for a sample of identified locations on the so-called Gough map, 
dating from the fourteenth century (13). Now this table is exactly the same as the previous tables, 
except for two circumstances. The first difference, of minor import, is that the table is not given 
at equal increments of latitude and longitude, nor equal increments of x and y. If one wished to 
draw a map from the projection defined by Table VI then the interpolation procedure is more 
complicated because of this irregular arrangement of the observations. The computation of the 
partial derivatives, which must be used to analyze the distortion of any projection (16), after the 
manner of Tissot, is also more complicated. But both can be done (17). The major difference 
between Table VI and Tables III and IV, however, is in its manner of derivation.  
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 Table VI. Spherical and Plane Coordinates for a selection of Points on the Gough Map 
 Latitude* Longitude* X Coordinate** Y Coordinate** 
 58.43 —3.12 6.7  35.1 
 57.87 —4.08 7.7                     37.7 
 57.45 —4.28 9.0  31.7 
 57.17 —2.03 8.9  32.5 
 56.47 —3.03 8.8  25.5 
 56.47 —3.33 7.2  25.2 
 55.88 —4.17 5.1  26.0 
 56.43 —3.50 5.2  25.3 
 55.88 —3.00 7.7  24.1 
 55.37 —4.55 4.5  23.5 
 55.28 —1.72 9.9  21.3 
 55.42 —2.77 7.0  21.2 
 54.83 —2.12 9.5  19.5 
 54.70 —2.43 9.0  18.7 
 54.53 —3.53 5.9  15.9 
 53.41 —3.00 7.7  13.6 
 53.18 —4.53 4.2  14.4 
 52.83 —4.30 3.0  11.5 
 52.40 —0.87 12.8  9.8 
 51.68 —1.03 13.6  7.1 
 52.08 —2.22 10.2  7.9 
 51.45 —2.57 10.1  4.7 
 51.68 0.37 17.2  7.3 
 51.10 1.22 19.9  5.7 
 50.78 0.30 16.5  3.4 
 50.63 —1.30 14.1  2.1 
 50.62 —3.50 7.5  1.3 
 51.37 —3.13 8.3  4.9 
 50.28 —4.13 5.5  0.5 
 50.05 —5.45 0.9  0.5 
 51.82 —4.83 3.1  4.3 
 52.60 1.08 18.3  12.0 
 52.92 0.05 14.6  12.6 
 53.38 —1.45 11.0  12.9 
 52.27 —2.68 8.2  8.5 
 53.62 0.03 14.4  15.5 
 53.83 —1.55 10.9  14.4 

  *In decimal degrees; ** in inches. 
 

  Table VI defines a projection after the fact. The problem is not to find a method 
of moving from the sphere (or earth) to a map, as is the usual case in the study of map 
projections, rather we have here a fait accompli. Although largely neglected in the literature 
this situation occurs frequently in practice. For example a satellite image is a representation of 
the surface of the earth on a flat surface. Frequently this transformation cannot be specified 
analytically in advance but can only be defined a posteriori by a table such as is given here for 
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the Gough map. The objective in such a case may be to find the inverse table, i. e., given the 
plane coordinates of a place find its spherical coordinates. The theory is that if x = f (φ, λ) and 
y = g (φ, λ) then the inverse functions are related to these through the Jacobian determinant, 
assumed non-zero (18). Thus we again should know the partial derivatives. In practice a 
smooth inverse interpolation is used. An inverse of this type is also useful when solving 
problems using cartograms (19).  
 Frequently one does not know the projection of a map with which one must work. In such 
an instance a local projection may be invoked (20), or one must resort to a least squares fit to 
some assumed projection, or one uses a non-parametric interpolation procedure with a table 
such as Table VI. An exactly comparable situation exists in studies of the perception of the 
environment when people are required to draw, or otherwise specify, maps of their 
surroundings (21). The data can frequently be given in the form of a table associating true 
locations with estimated locations. These tables can then be treated as are conventional map 
projections, searching for properties preserved, for distortions, etc. (22). But since these 
transformations are not defined by explicit equations a numerical approach is more 
appropriate. Modern computing facilities render such an approach feasible. 

 
 +Pages 51-64 of  E., Kretschmer, ed., Studies in Theoretical cartography, Deuticke, Vienna, 1977. 
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Figure I: Errors as a function of the available constants. 
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Figure II: An Empirical Map Projection of the United States, preserving spherical distances. 
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Figure III: Mediterranean map preserving loxodromic distances 
 


