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Abstract

The relationship of the Stochastic Median Problem of Mirchandani to
the deterministic p-Median Problem is described. It is shown that under
certain conditions the size of the Stochastié Median Probiem can be reduced.

Implications of this relationship on solution procedures are discussed.



INTRODUCT ION

Mirchandani [5] and Mirchandani and Odoni [6] have presented an
interesting and.impbrtant generalization of the median problem called the
Stochastic Median Problem. The Stochastic Median Problem (SMP) is an
extended pQMedian Probtem (PMP) where multiple travel time states are used.
Essentially, weighted distance is minimized by the location of p facilities
where the weighted distance fs the sum of the weighted distances of fhé var-
jous states multiplied by the fraction of the time each travel time (distance)
‘state exists. The weighted distance for each travel time state is calculated
by assigning each demand to its closest facility using the travel times for
that state._‘One state differs from another by a difference in a travel
attribute value (e.g., time) of at léast one Tink [5].

Under assumptions of homogeneity, Mirchandani [5] has proved that an
optimal solution to such a problem exists at the nodes of a network. There-
fore, under homogeneity conditions, an optimal soiutfon to the SMP can be
determined by finding the best p-nodal solution. In addition to the proof,
Mirchandani presented an integér-]inear programming formulation for identi-
fying the best p-nodal solution. 1In terms of this generaTized network model,
Mirchandani [5] noted that some of the approaches to the PMP (notabiy dual
based and decomposition) cannot be readily applied to the more generalized
SMP, because one cannot bfeak up the problem into p relaxed linear programming
subproblems.

One purpose of this paper is to show two important properties associated
with the SMP. First, we will show that the SMP can be reformulated as a
p-Median problem with additional demands. This means that all p-Median

solution techniques, including dual based and decomposition methods can be



used to solve the SMP. In fact the application of any of the p-Median
solution techniques can be accomplished with Tittle or no modification to
existing computer programs. Second, we will show that in special circum-
stances, the Stochastic Median Problem is equivalent to a classical median
problem without additional démand nodes. Then we will compare the computa-
tional performance of two dual-based p-Median solution procedures for

Tocation problems on particu]ar stochastic networks.

MODEL REFORMULATION
Mirchandani formulated the Stochastic Median Problem with the following

notation:

n = The number of demand nodes (assume w1tﬁout loss
of generality that the demand nodes are potential
facility sites as well).

s = The number of travel time states.

gk(j) = The incident generation rate of demand node j
in state k where j=1, 2, ..., n and k=1, 2, ..., s.

Pk = The probability of occurrence of state k
where k=1, 2, ..., s.
c(wk(i,J)) = The cost of travel (e.g., time) associated with

the best route between node i and node j during
state k.

X;5, = |\ 1 1f demand node j is serviced by a facility

at node i during travel state k.
0 otherwise.

p = The number of facilities to be located.

=
1

Y 1 if node i is selected to house a facility.
0 otherwise.

The problem can then be formulated as:

' S n n ( )
Min Z = ¥ I g, (3) clw, (i,3))x
k=1 i=1 j= 1 k k k
i#]
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Subject to:
n
DRSS T 1 for each demand j=1, 2, ..., n (2)
j=1 and each state k=1, 2, ..., s
i#]
for each 1, j, k where k=1, 2, ..., s;
Xijk <Y i=1, 2, ....on; and 3=1, 2, ..., n (3)
and i#j.
n
LY; =P (4)
i=1
- for each i, j, k where k=1, 2, ..., s;
Xig = 0s1 i=1, 2, ..., n; and §=1, 2, ..., ns (5)
and i#j.
y; = a,1 | for each i=1, 2, ..., n (6)

Mirchandani did not include variables Xiik in the above formulation becausg
when a unit is located at i, then the demand at i will be serviced at i
regardless of the state of the network. The first constraint maintains that
demand at j is assigned to a facility in each time state or that it is served
by a facility at j in all time states. Essentia]]y, the facility that j
assigns to in state k can be different from the facility that j assigns to in
state k'. The second constraint prevents demand j from being served by node i
in state k un]ésé a facility has been allocated to node i. The third con-
straint insures that exactly p facilities will be located. The last two
constraints deal with integer restrictions of the decision variables e and
Xijk' The Stochastic Median Problem has been solved by a Lagrangian
relaxation-subgradient optimization procedure by Weaver and Church [11].
Although Weaver and Church did make a slight change in notation in approaching
the SMP, the change was made to simplify the presentation of the solution pro-
cedure. On the other hand, we will present here a general formulation which

can be solved by any of the p-Median solution approaches.



In order to reformulate the Mirchandani problem, let us consider the
following notation:

2 = the index associated with a specific pair (i,k). That is,
the combinations of all pairs of demand and time states
will be indexed. There are no such pairs where n is the
number of demand nodes and s is the number of travel time
states.

R, = {i,k}, the pair of i,k values that are labeled as the &P

pair.

U, = {&]|such that ieRyl},the set of pairs £ such that pair 2 is
a state of demand 1.

1 if node i assigns to a unit at node j in frave] state k,
L] where ieRy and keRy.

0 otherwise.

a, =-Pkgk(i) where 1€R£ and keRR.

dgj = C(wk(i,j)) where ieRE and keRi.

Using the above notation, we can make an equivalent formulation of the SMP

as follows:
Min Z =x3ra,d, . X,.
3 £ 783783
S.T. '
; ng =] for each &=1, 2, ..., L
J .
Xps < ¥ for each £ and j
2] J =1, 2, ..., L and
j=1, 2, , N.
LYs =p
3 J
Xpi = 0,1 for each £ and j
J =1, 2, ..., L and
j=1, 2, ..., n,
y, = 0,1 for éach j=1, 2, ..., n

(7)

(8)

(10)

(11)

(12)



This formulation is essentially that of a classical p-Median problem
modified to allow for demand nodes that are not at potential facility sites
(see ReVelle and Swain [9], and Cornuejols et. al. [2] as examples). The
first constraint insures that for each £ (state k of demand i), an assignment
must be made to a facility. Since the objective is to minimize weighted dis-
tance of all assignments, the assighment of a given demand in a given state
will be to the c]bsest facility (calculated on the basis of the travel times
in that state). The second constraint insures that an assignment for 2 (node
1ER£ and state keRg) cannot be made to a facility at j unless a facility has
been located at j. The third constraint insures that exactly p facilities
will be located. The remaining conditions represent the integer restrictions
on the decision variables.

The difference between the two formulations of the SMP is that the second
formulation represents each demand and state k combination by an index £
whereas the first formulation keeps the subscripts i and k separate. Essen-
tially, the second formulation represents each state of a given demand i by a
node. That is, there is a démand node in the new formulation for each state
of each demand node in the original formulation. Since the states are repre-
sented by additional demand nodes, the explicit use of the state subscript has
been eliminated in the new formulation.

Since the new formulation of the SMP is a classical p-Median problem
(where there are more demand nodes than potential facility sites) the SMP can
be solved by any of the wide variety of programming methods that have been
developed for the PMP. This includes as well the dual based and decomposition
procedures, contrary to Mirchandani's first appraisal. It should be a simple

task to apply most p-Median computer routines in solving the SMP, In essence,



the demand node data set needs to be expanded along with the travel times dgj.
Since this change is to the data set and not the program routines, it should
be a straightforward task. For example, the ALLOC IV, V, and VI routines of
Hillsman can be applied without any modifications, since the system easily

handles such a structure [4].

SPECIAL CASES OF THE SMP

It was shown in the previous section that an s-state n-node SMP could be
reformulated as a simple PMP with sn nodes and n potential facility sites
(7)-(12). We will now prove that for an important special case of the SMP,
(1)-(6) can be reformulated as a simple PMP with n demand nodes. The special
condition for which this can be shown is when the order of closest facility
sites 1 to a given demand node j is the same over all travel states k. This
does not mean that the travel times are the same over all states k for demand
J being served by the various facility sites 1. vIt means that the relative

closeness of the facility sites remains the same over all states.

Proposition., When the relative closeness of all facilities is the same for
all travel states of each demand node then the SMP can be reformulated as an

n-node PMP.

Proof. For the SMP formulation (1)-(6), when the relative closeness of
facilities to a given demand i is the same in all travel states k, a demand
node i will assign to the same facility j in all states k at the optimum (if
it does not, then the relative clioseness of facilities to demand node i is not
the same in all states). Now the s variables xijk'can be replaced by one

variable Qﬁj in (1)-(6). The objective function becomes:



S n on
MIN Z =% » 5% Pg.(J) clw, (i,3))X,.- (13)
k=1 i=1 j=1 KK k iJ
173
As the outer summation does not involve decision variables it can be moved
inward and (13) becomes:
LS g ) et (L) (14)
MIN Z = = % % Pog.(3) clw, (1,3))x.. 14
i=1 §=1 k=1 KK K 13
i#d
. 'A S |
If we define S5 = kil P9y (3) clw (1,3)), (15)
then we can rewrite the objective function as:
n.on
MIN Z = 151 jE] €585 (16)
i7]

When the variables Xijk are replaced in the constraints by ﬁij the assignment

constraints (2) become:

n
X Qi' vy 1 for k=1, 2, ..., s (17)
i=1 M i=1, 2, ..., n
i#d

the variable upper bounding constraints (3) become:
Xij Y for k=1, 2, ..., s (18)

i, J=1, 2, ..., n, i#]
and the zero-one requirements (5) become:

Qi. = 0,] for k=1, 2, ..., s . (19)
J i, 3=1, 2, ..., N, i#j

Now for all constraints (17), (18) and (19) the constraints for k > 2 are
dupTicates and can be deleted. After simplification the formulation for the

SMP for this case is as follows:



n n A A
MIN Z = % § C,.X.. (20)
=1 g=1 N
7]
n ~
151 xij ty, o= ] for j=1, 2, ..., n (21)
1]
Qij <Y for i, §=1, 2, ..., n, (22)
i#3
n
I y;=p - (23)
i=1
X.. = 0,1 for 1, j=1, 2, ..., n, (24)
iJ A
1#£J
i = 0,1 for i=1, 2, ..., n (25)

This is a formulation of the classical PMP with n demand nodes which are the
potential facility sites. Thus, if relative closeness is the same for all
states of each demand node, then each original demand i can be represented by
one demand node in the new SMP formulation. For this case, the SMP can be
formulated as a classical p-Median problem without additional demand nodes.
Basically, the size of the SMP collapses to a éimp1e median problem.

It is unlikely in many cases that the SMP can be represented as a
p-Median problem with no additional demand nodes. In fact, it may be common
that the relative closeness of facility sites over all states for a given
demand may not be the same. As an example, let's assume we are dealing with
a five state problem. In analyzing a particular demand node i over all travel
states, we notice that in three of the states relative closeness of the facil-
ity sites is the same and that relative closeness is fhe same for the

remaining two states (but different from the other three states). Although




we cannot represent this demand i by one node in the new formulation we can
represent it by two nodes 2'and £'" (instead of 5 nodes) where:

. 7
agdg iy 2, 24y (26)

d ad . ’ (27)

d, n = L
v gee, et

and where C1 is a set of zeui where relative closeness is the same and C2 is a
set of geui (C]HCZ = § and C1UC2 = Ui) where relative c?oseness is the same.
In general, we can decrease problem size whenever the relative closeness of
facility sites is the same for two or more travel states of a given demand 1.
Although most problems will not collapse down to a PMP with no additional
demand nodes, it is now c1eaf that additional nodes are needed only when rel-
ative closeness of facility sites differs over travel states of a given demand
i. Further, any two or more states of a demand i can be represented by a node
in the new formulation whenever the relative closeness of facility sites is the
same over those states. The impact of thfs observation is that the new problem
formulation can be much smaller in practice than that given in the previous

section.

DUAL-BASED MEDIAN SOLUTION PROCEDURES

Dual-based mathematical programming procedures have been widely used to
solve the p-Median problem. We-wi11 briefly review two such procedures and
solve median location problems on two related stochastic networks to determine
if the reformulated p-Median problems are more difficult to solve than
standard (square) p-Median problems.

A Lagrangian dual of (7)-{12) can be formed by multiplying each

assignment'(S) constraint by a nonnegative multiplier and appending it to the
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objective function. The resulting dual can be maximized by subgradient
optimization. This has been done with very good results for the p-Median
problem by Cornuejols et al [2], Narula et al [8] and Mu]vey and Crowder [7].
Weaver and Church [11] have extended the subgradient method (SOLD) to the SMP.
In all the referenced articles [2], [7], [8] and [11] optimal solutions to the
great majority of problems attempted were obtained in reasonable computer exe-
cution tfme without branch-and-bound coding. This may be surprising to some
.as the p-Median problem is NP-complete (see Cornuejols et al [2] for a dis-
cussion of the computational complexity of the p-Medjan problem). In spite
of the fact that there is no known polynomial bound on the algorithm the
subgradient procedure has been quite successful for median problems on a
humber of different networks. However, as will be seen below, there are data
sets where the subgradient procedure does not perform so well.

Each presentation of the subgradient procedure while quite similar in
spirit differs in detail. In the computational results reported below the
a]gorithm will be executed under the conditions reported in Weaver and Church
[11] with the following exceptﬁons: (a) the target initial solution used was
the p nodes with the greatest averége weights; (b) the procedure was performed
up to a maximum of 400 iterations; and (c) optimality was assumed verified if
the dual was within 0.01 percent of the lowest primal-objective value
identified.

Another dual-based mathematical programming procedurée, DUALOC, was
developed by Erlenkotter [3] for the solution of the related fixed cHarge
plant location problem. Erlenkotter suggested that median problems could be
solved as fixed charge problems by letting each facility have the same fixed

charge f and varying the fixed charge until a p-facility solution was
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obtained. Weighted distance in this case is just the fixed charge plant
location problem objective value less pf. A major drawback to this approach
is that for some values of p there may not be appropriate fixed charge. The
stochastic median problem (7)-{12) can be so]ved in a similar fashion. If the
sum of T times the facility variables is added to (7) then the objective
function becomes

MIN Z =35 ad x fy,

c Xo. F (28)
. 2 ,
% L] J j 1

A1l that remains to convert (7)-{12) into a fixed charge plant Tocation forh— |
ulation is to delete the p-facility constraint (10) theh {28) subject to (8),
(9), (11}, and (12) is a ffxed charge plant location problem with n potential
facility sites and sn demand sites. The resulting fixed charge plant Tocation
problem can be solved for various values of f to obtain (hopefully) the
desired p-facility solution. Several fixed charges may be required to obtain
one stochastic p-Median solution. DUALOC is a very efficient procedure and
does have branch-and-bound coding so that the several fixed charges required
are not generally that a great computational burden. The situation where
DUALOC is computationally expensive is when no fixed charge exists for the p-
facility solution; then a large number of fixed charge piant location problems
must be solved to establish this fact. DUALOC requires that all cost (azdgj
and f in (28)) be integer valued. For further details on DUALOC the reader

is referred to [3]. Van Roy and Erlenkotter [10] have made computational
improvements to DUALOC which would Tikely result in somewhat shorter execution
‘times than reported below. Both the subgradient procedure and DUALOC can
identify and verify optimal solutions to median problems in a great many
cases. However as median problems on general networks are NP-complete, it

should come as no surprise that there are stochastic p-Median problems below



12

where one or the other of these procedures does not perform as well as it did

for other data sets in previously published results.

RESULTS OF COMPUTATIONAL EXPERIMENTS

To gain further computation experience solving median location problems
on stochastic networks two 5-state test data sets were generated from a
25-node 42-arc data set of Berman [1]. For the first 5-state network only dis-
tance is stochastic. The state probabilities were set at 0.3, 0.25, 0.2,
0.15, 0.10 for states 1, 2, 3, 4 and 5 respectively. Distance arcs in each
state were obtained by multiplying the Berman arc distance by a pseudo-random
number uniformly distributed between zero and ten times the state probability
and then rounding to the next greatest integer. The resulting stochastic arcs
are displayed in Table 1. The distance matrices required in the mathematical
programming formulations can be obtained by any shortest path algorithm for
each state separately. The first test data set generated consisted of the
stochastic arc distance in Table 1 and the original Berman population weights
shown in Table 2. Another 5-state test data set was generated utilizing the
stochastic arcs in Table 1 and stochastic node weights. Stochastic node
weights were determined by multiplying the Berman node weight by a pseudo-
random number uniformly distributed between zero and ten times the state
probability then normalizing the node weights to sum to one in each state.
The resulting node weights are reported in Table 2. The state probabilities
have a maximum of two nonzero‘digits passed the decimal point and the node
weights have a maximum of three nonzero digits passed the decimal. The
multiplication required to obtain integer cost results in an integer weighted

distance which is 105 times the weighted distance of the data sets.
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TABLE 1
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TABLE 2

25-NODE NETWORK
NODE WEIGHTS

Node Berman State 1 State 2 State 3 State 4 ‘State 5
1 .050 .058 .068 .016 .077 .022
2 .082 .046 .084 .058 . .068 L0111

-3 .023 .020 .038 .007 .009 .022
4 .032 .025 .033 .010 .007 L001
5 .023 .013 .036 L011 .025 .038
6 .003 .004 .004 .001 .007 . 005
7 .007 .002 .004 .000 ,016 004
8 061 .109 .067 .0586 .072 .076
9 .013 L0111 .013 .016 .022 020

10 .052 .059 .044 .090 .043 .019

11 .013 .014 .005 L014 ,005 008

12 L0582 054 .055 .036 .041 067

13 .005 L003 .005 .008 L0007 .001

14 .059 .061 .055 .006 063 079

15 .017 .008 016 .023 L017 012

16 .022 L011 .037 .029 .051 .025

17 .038 .070 .039 .008 .088 .032

18 .104 .165 .101 171 .129 160

19 .070 .0860 .086 .073 .012 .028

20 .036 .007 .064 .054 .084 .039

21 .018 . 015 027 .023 .031 .015

22 .073 .072 .089 .031 .006 L1115

23 L0011 L0211 017 .0le L012 .010

24 .134 .092 .009 .238 .105 .190

25 .002 .000 .004 .005 .003 .001
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.The one through ten median SOLD solutions for the 25-node 5-state
network with the Berman node weights are reported in Table 3. For each SMP
the execution time, the number of iterations required, weighted distance and
the location configuration are noted. For the 5-median and 6-median prob]ems‘
where solutions were not verified as optimal by the subgradient procedure the
Lagrangian bound is noted. The SOLD procedure identified and verified an
optimal solution for eight out of the ten cases and determined a bound which
shows that the other 2 solutions are within one percent of optimality.

The computational result for DUALOC solution of the 25-node b-state
median data set with Berman node weights are reported in Table 4. DUALOC
obtained and verified an optimal solution to all facility problems between
.one and ten. For five of the ten SMPs more than one fixed charge was
required; but even so the total time required for each number of facilities
was generally less than that required by the subgradient procedure. Branch-
ing was required for several of the fixed charge problems. DUALOC verified
as optimal the 5-median and 6-median solution identified by the subgradient
procedure. Both procedures performed reasonably well on this data set.

The performance for the SOLD procedure noted in Table 3 is in general
accordance with that reported in Weaver and Church [11] for another data set
with stochastic distances and static population weights. The computational
effort required to solve a stochastic median problem with DUALOC is somewhat
dependent upon the fixed charge estimate used, as can be seen for the 4-median
and 7-median results in Table 4 where different fixed charges result in sig-
nificantly different execution times and branching requirements.

The subgradient procedure and DUALOC were Tess successful in solving

-median location on the 25-node 5-state network with stochastic distances and



16

TABLE 3

25-NODE NETWORK WITH
STOCHASTIC DISTANCE
SUBGRADIENT SOLUTIONS

Execution Numbers of Weighted Facilities
P Time {(a) Iterations Distance(b) (¢) Located at Nodes
1 ' 0.85 27 1081583 13 L0
2 2.50 108 778600 13,24
3 0.66 28 504583 4,19,24
4 2.47 107 379880 ~ 2,13,18,24
5 9.06 400 301802 2,8,14,17,24
(299572)
6 9.57 400 . ' 245238 2,10,12,18,22,24
(242814)
7 1.74 68 191193 2,10,12,18,19,22,
' 24
8 1.75 | 63 ' 146364 2,8,12,14,18,19,
22,24
9 3.60 127 114772 2,5,10,12,14,18,
19,22,24
10 2.66 89 91681 2,5,8,10,12,14,18,
19,22,24

(a)} Execution time in seconds on a UNIVAC 1100/61 computer.

(b} Weighted distance is multiplied by 105 to facilitate comparison
with DUALOC sclutions.

(c) If optimality is not verified w1th1n 0.01 percent, the Lagranglan bound
is noted under the lowest weighted distance identified in parenthesis.
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TABLE 4

25-NODE NETWORK WITH
STOCHASTIC DISTANCE
DUALOC SOLUTIONS

I'ixed Execution Number of Branching Objective Weighted

P Charge Time (a) Iterations Reguired? Value Distance (b}
1 800000 0.69 1 No 1881583 1081583
2 300000 1.12 7 No 1378600 778600
3 250000 1.04 5 No 1254583 504583
150000 0.96 3 No ‘954583 504583
4 100000 1.01 5 No 779880 379880
80600 3.20 65 Yes 699880 379880
5 70000 3.02 54 Yes 651802 301802
60000 3.09 55 Yes 601802 301802
6 55000 2.46 45 Yes 575238 245238
7 50000 1.87 21 No 541193 151193
' 45000 - 2.33 20 ' Yes 506193 191193
8 40000 1.17 10 _ No 466364 146364
9 30000 0.86 12 Yes 384772 114772
25000 0.84 11 Yes 339772 114772
10 20000 0.58 3 No 291681 91681

{(a) Execution time in seconds on a UNIVAC 1100/61 computer.

r
(b) Weighted distance is multiplied by 10° because DUALOC requires
integer cost.
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stochastic population weights. In particular, the subaradient meﬁhod did not
verify 0ptfma1 solution to seven of the ten median Tocation problems attempted.
Table 5 records the resuits when SMPs on this 25-node 5-state network were
solving using SOLD. However the subgradient procedure did identify nine of
the ten optimal solutions (as verified by other methods). 1In all cases the
Lagrangian bound was within 4 percent oflthe best primal solution identified.
As a heuristic the subgradient procedure without branch-and-bound coding per-
formed reasonably well on this data set, however if verified optimal solutions
are required the results displayed in Table 5 indicate that such a procedure

is not always a reliable method of obtaining them.

Partial results of DUALOC solutions of stochastic median problems on the
5-state 25-node network with random distance and random weight are shown in
Table 6. The results are partial because well over twenty fixed charges were
attempted to obtain a 2-median solution. The solutions which resulted from
most of these futile attempts are not recorded, but the 1-median and 3-median
solutions which indicate there is not a fixed charge for the 2-median problem
are. DUALOC which has branch-and-bound coding was able to identify and verify
optimal so]utions to all problems attempted except the 2-median problem.

DUALOC verified as optimal the 5, 7, 8, 9, and 10 median solutions obtained

by the SOLD method. It would appear that neither DUALOC or the subgradient
procedure in their current form is a completely satisfactory solution prbcedure
for the SMP with random distance and random node weights. However enough
success has been demonstrated to indicate that for SMPs dual-based mathematical
programming procedures are often able to obtain verified optimal location

configurations.
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TABLE 5

25-NODE NETWORK WITH
STOCHASTIC DISTANCE AND STOCHASTIC WEIGHTS
SUBGRADIENT SCOLUTIONS

Execution Number of Weighted Lagrangian Facilities

P Time {a) Iterations Distance (b) Bound{c) Located at Nodes

1 1.25 41 1038275 13

2¢d) 9 20 400 786126 773416 13,24

3 5.20 221 511958 4,19,24

4 8.43 370 363594 2,13,18,24

5 9.44 400 297639 288494 2,12,13,18,24

6 9.84 400 240694 232496 2,8,12,14,18,24

7 10.43 400 183916 182998 2,8,12,14,18,19,
24

8 11.10 ) 400 145301 140187 2,8,12,14,18,19,
22,24

9 11.65 400 ‘ 114741 : 110368 2,5,8,12,14,18,
19,22,24

10 12.26 400 88590 85037 2,5,8,10,12,14,

_ 18,19,22,24

(a) Execution time in seconds on a UNIVAC 1190/61 computer.

{(b) Weighted distance is multiplied by 105 to facilitate comparison

with DUALOC solutions.
(c) The Lagrangian bound is noted only if optimality is not verified.
(d) Solution verified as optimal by complete enumeration in 0.96

seconds.
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TABLE 6

25~-NODE NETWORK WITH
STOCHASTIC DISTANCE AND STOCHASTIC WEIGHTS
’ DUALOC SOLUTIONS

Fixed Execution Number of - Branching Objective Weighted
P Charge Time (a) Iterations Required? Value Distance (b)
1 263159 2.39 55 Yes 1301434 1038275
3 263158 1.87 49 Yes 1301432 511958
4 1060000 0.48 1 No 763594 363594
80000 0.99 4 No - 683594 363594
5 60000 2.15 50 Yes 597639 297639
6(0) 56666 3.40 78 Yes 578744 238748
7 53333 1.75 32 Yes 557247 183916
50000 1.26 13 No 533916 183916
40000 1.60 10 No. 463916 183916
8 36666 1.14 9 No 438629 145301
33333 1.71 13 No 411965 145301
9 30000 2.34 22 No 354741 114741
10 20000 0.52 - 2 No 288590 885390

{(a) Execution time in seconds on a UNIVAC 1100/61 computer.

(b) Weighted distance is multiplied by 10° because DUALOC reqguires
integer cost.

(p) Optimal 6-median solution is located at nodes 2,8,14,18,19,24.
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SUMMARY

We have presented a reformulation of the generalized median problem
called fhe Stochastic p-Median Problem. Although there is on?y a subtle dif-
ference between this reformulation and the one originally given by Mirchandani,
the new formulation can be easily solved by existing p-Median solution
techniques 1né]uding those originally ruled out by Mfrchandani for solving
the SMP. Under certain conditions of relative closeness of facility sites jn
tréve] states, we have made the observation that the SMP can collapse into a
simple median problem. In many cases, it is also possible to resolve the SMP
with far fewer variables and constraints than contained in the complete SMP
formulation and reformulated SMP.

We have compared the performance of two dua1;based solution procedures,
DUALOC and the SOLD on a network with stochastic distances. DUALOC obtained
optimal so]ufions for all median location problems attempted on the 25-node
5-state network with stochastic distances and static node weights. For the
Z25-node b-state network; where both the node weights and distance§ were random,
optimal solutions to all problems attempted except the 2-median problem were
obtained with DUALOC. The subgradient procedure identified optimal solutions
to nine of the ten prob]ems.on this network but verified these solutions as
optimal for only three of the nine cases. The computer execution time for all
problems attempted are quite reasonable. For the problems where both DUALOC
and the subgradient procedure obtained verified optimal solution there does
not appear to be any significant difference in computer execution time
required. Where the subgradient procedure does not verify a solution as
optimal or when no fixed charge exists for a given median problem then

differences in computer requirements of the two methods are apparent.
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Improvements are needed in current computer codes to increase the
}1ke11hood of obtaining verified optimal solutions, however, even with
enhanced coding there.may be particulayr problems which can not be solved
optima?]y in a reasonable amount of execution time as the stochastic median
location problem is NP-complete. It should be noted that.for all the
problems attempted in this paper an optimal solution was identified and

verified by some method.
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