Investigations of the March 2006 African dust storm using ground-based column-integrated high spectral resolution infrared (8–13 μm) and visible aerosol optical thickness measurements:

1. Measurement procedures and results

M. Thomas,1 C. Gautier,1 and P. Ricchiazzi1

Received 4 August 2008; revised 5 February 2009; accepted 24 February 2009; published 4 June 2009.

1 The infrared (IR) aerosol optical thickness (AOT) spectra of Saharan dust measured during the Portable Infrared Aerosol Transmission Experiment (PIRATE) are reported. Saharan dust optical thickness (extinction) spectra from 8 to 13 μm were obtained using column-integrated solar transmission measurements in Puerto Rico in July 2005 and Senegal in January and March 2006 (during a dust plume) using a Fourier transform infrared (FTIR) spectrometer. The FTIR measured the solar spectral irradiance in the IR in the presence of Saharan dust, and the AOT was determined by comparing the measured spectra to modeled downwelling spectra without dust for the same atmospheric temperature profile, solar zenith angle, water vapor, and ozone concentrations. The modeled dust-free spectra are generated using the Santa Barbara Disort Atmospheric Radiative Transfer (SBDART) program. The measured dust AOT is compared with modeled AOT spectra obtained using Mie theory with dust indices of refraction from Volz and Fouquart with assumed lognormal size distributions. The visible AOT values from nearby Aerosol Robotic Network (AERONET) sensors are compared to the IR AOT values, results from various dust loadings show that the IR dust AOT at 9.5 μm is typically only one third that of the visible (670 nm) dust AOT, but there is some evidence that this ratio could increase for larger dust size distributions. The surface IR dust forcing is determined to be about −0.4 W/m² by summing the dusty and clear irradiance differences.

1. Introduction

[2] Mineral dust aerosols have a significant impact on the Earth’s radiation budget and climate [Forster et al., 2007]. Dust redistributes radiative heating at the surface and in the atmosphere by scattering and absorbing shortwave radiation and by scattering, absorbing and emitting longwave radiation. To monitor dust distributions and their climatic impact, ground and satellite-based observations have been performed [Fraser, 1976; Glaccum and Prospero, 1980; Fouquart et al., 1987a, 1987b; Legrand et al., 1988; Tanre and Legrand, 1991; Jankowiak and Tanre, 1992; Goloub et al., 1999; Hsu et al., 2000; Kaufman et al., 2000; Schmid et al., 2000; Prospero et al., 2002; Sokolik, 2002; Formenti et al., 2003; Highwood et al., 2003; Petit et al., 2005; Slingo et al., 2006]. To date most of the ground-based dust observations have been in the ultraviolet (UV) [Petit et al., 2005], visible (VIS) and/or near-infrared (NIR) [Moorthy et al., 2001]; however, Agassi et al. [2006] reported on measurements of infrared (IR) dust radiance in Israel to discriminate dust from other aerosols, while a more recent paper by Turner [2008] describes measurements in Naimiy, Niger of the IR radiance for the same 2006 Saharan dust storm that is the focus of this paper to determine the radiatively significant mineral aerosol composition and size distribution. Satellite-based dust observations have used wavelengths from the UV to the IR. Many satellite-based dust detection and tracking sensors (TOMS, SeaWifs, MODIS, MISR) use UV-NIR wavelengths and primarily track dust over ocean [Tanre et al., 1988; Li, 1995; Mishchenko and Travis, 1997; Goloub et al., 1999; King et al., 1999; Torricella et al., 1999; Guelle et al., 2000; Kaufman et al., 2000; Balkanski et al., 2006; J. E. Conel et al., Ground-based validation of the EOS Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrieval algorithms and science data products, paper presented at IGARSS’97, Inst. of Electr. and Electron. Eng., New York, 1997]. IR is also used in satellite observations of dust (AVHRR, MODIS and AIRS) because IR offers the potential advantages of day and night detection of dust and detection of dust over desert
surfaces due to thermal differences between the dust and surface [Legrand et al., 1988, 1989; Ackerman, 1997; Wald et al., 1998].

[5] Although IR detection of dust from space has its advantages, it also has its challenges. One of the principal challenges is the lack of observational data on either the altitude-dependent or column-integrated infrared optical effects of dust [Liao and Seinfeld, 1998; Gasso et al., 2000; Pierangelo et al., 2004]. IR dust detection algorithms for space-based sensors often rely on calculated IR optical properties (extinction, absorption and scattering efficiencies, and asymmetry parameter) based on index of refraction measurements from individual aerosol samples or minerals at discrete wavelengths and Mie calculations based on assumed size distributions and spherical particles of predefined mineralogy [Ackerman and Chung, 1992; Ackerman, 1997; Kaufman, 1987; Marticorena et al., 1997; Mishchenko et al., 1997; Li, 1998; Guelle et al., 2000; Haywood et al., 2001; Perlwitz et al., 2001]. Although these assumptions have been shown to be reasonable in many cases, detailed data of collected Saharan dust show that aerosols are neither spherical in shape nor composed of a uniform mixture of minerals [Kaufman et al., 1997; West et al., 1997; Gao and Anderson, 2001]. Uncertainties have remained regarding whether assumed optical properties of dust based on spherical and mineralogical assumptions for external mixtures accurately represent the optical properties for an ensemble of particle sizes, shapes, minerals, and mixtures. Further uncertainties exist regarding the accuracy of remote dust property retrievals from space using modeled dust properties [Tegen and Fung, 1994; Claquin et al., 1998]. To help reduce these uncertainties, we conducted experiments to directly measure the AOT of Saharan dust plumes in the IR as a function of wavelength.

[4] The main dust plume we investigated was from an African dust storm that originated on 5 March 2006 when anomalously strong northerly winds produced a wide front of dust in northern Algeria. The front propagated southward across the Sahara over the following days, lifting more dust into the atmosphere. Slingo et al. [2006] reported that the southward movement of the dust from Algeria appeared to propagate close to the surface, following the lowest terrain and moving around the highest topography (e.g., the Tibesti) or being channeled through mountain passes (in the Hoggar and Air massifs). The dust reached Niamey, Nigeria on 7 March and Dakar, Senegal on 8 March. For the next 5 days dust poured off West Africa and over the Atlantic. Figure 1 shows pictures taken in M’bour, Senegal on 14 January 2006 under relatively clear skies and 9 March 2006 during the dust storm. In the following sections we report on the experimental methods, spectral irradiance calculations, optical thickness calculations, comparisons with the AERONET data and dust models, and discuss the results from measurements made during this and two smaller dust plume events.

2. Experimental Methods

[5] The Portable Infrared Aerosol Transmission Experiment (PIRATE) was a ground-based experiment designed to measure the infrared AOT of mineral aerosols (dust). A Fourier Transform Infrared (FTIR) spectrometer was used as a high-resolution infrared Sun photometer in the solar trans-

mission mode. PIRATE measurements were made for calibration in three locations under three atmospheric conditions (all dust and cloud-free). Dust-free (visible AOT < 0.3) measurements were made on 28 July 2005 in San Juan, Puerto Rico, 13 December 2005 in Santa Barbara, California, and 14 January 2006 in M’bour, Senegal (60 miles south of Dakar) at the Institute for Research and Development (IRD). Light dust (visible AOT ~ 0.5) measurements were made in San Juan on 25 July 2005 and M’bour on 15–16 January 2006. Heavy dust (visible AOT > 1) measurements were made in M’bour on 8–12 March 2006.

[6] The PIRATE equipment was setup within 20 feet of an AERONET sensor during the measurements in Santa Barbara and M’bour so that the AERONET’s visible measurements of the dust AOT, size distribution, zenith angle and water vapor could be directly used for comparison. For Puerto Rico the closest AERONET sensor was in La Parguera, about 75 miles away from San Juan, so the AERONET AOT results are an approximation of the dust observed in San Juan. A summary of the experiment dates, conditions and locations is shown in Table 1. The AOT, water vapor and mean radius, r_m, are from AERONET while the ozone is from the Ozone Monitoring Instrument [Dobber et al., 2008].

[7] The PIRATE equipment consists of the FTIR mounted on a motorized (Sun tracking) tripod, a pinhole camera above the FTIR to track the alignment of the FTIR relative to the Sun, a removable aperture in front of the FTIR to reduce the magnitude of the impinging solar spectral radiation, two blackbodies for calibration, a computer to control the FTIR and digitize its interferograms, and software to transform the interferograms into spectral irradiance. The FTIR is a Block model 100 LWIR with a 1” diameter entrance aperture, a 1.5° x 1.5° field of view (FOV), 4 cm⁻¹ spectral resolution and 4-Hz scan rate. Although the FTIR can measure spectra from 3 to 13 μm, the signal-to-noise is best at the longwave

Figure 1. Pictures from M’bour observation site when (top) clear and (bottom) dusty.
Table 1. Experiment Dates, Locations, Purpose, Visible AOT, Water Vapor, Ozone, and Mean Radius

<table>
<thead>
<tr>
<th>Date</th>
<th>City</th>
<th>Location</th>
<th>Purpose</th>
<th>AOT (670 nm)</th>
<th>Water Vapor (mg/cm²)</th>
<th>Ozone (DU)</th>
<th>(r_m) (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 July 2005</td>
<td>San Juan, Puerto Rico</td>
<td>Isla Verde Hotel</td>
<td>Data</td>
<td>0.4</td>
<td>3.9</td>
<td>280</td>
<td>0.1</td>
</tr>
<tr>
<td>28 July 2005</td>
<td>San Juan, Puerto Rico</td>
<td>Isla Verde Hotel</td>
<td>Calibration</td>
<td>0.15</td>
<td>3.9</td>
<td>280</td>
<td>0.1</td>
</tr>
<tr>
<td>13 December 2005</td>
<td>Santa Barbara, CA</td>
<td>UCSB</td>
<td>Calibration</td>
<td>0.1</td>
<td>1.2</td>
<td>275</td>
<td>0.1</td>
</tr>
<tr>
<td>14 January 2006</td>
<td>M’bour, Senegal</td>
<td>IRD</td>
<td>Calibration</td>
<td>0.1</td>
<td>2.4</td>
<td>285</td>
<td>0.1</td>
</tr>
<tr>
<td>15–16 January 2006</td>
<td>M’bour, Senegal</td>
<td>IRD</td>
<td>Data</td>
<td>0.5</td>
<td>2.2</td>
<td>245</td>
<td>0.2</td>
</tr>
<tr>
<td>8–12 March 2006</td>
<td>M’bour, Senegal</td>
<td>IRD</td>
<td>Data</td>
<td>1.1–2.5</td>
<td>1.1</td>
<td>260</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Figure 2. Photograph of PIRATES equipment (background) setup near the Dakar AERONET sensor (foreground). The FTIR is on the tripod.

Figure 3. Normalized irradiance versus FTIR scan angle for two wavelengths on 16 January and 10 March 2006. No discernible signal is seen beyond 2° when dusty (10 March). The 0.5° width for the solar source is shown for reference.
at worst the ratio of the ~3% reflected ambient (35°C) irradiance to the 97% emissive irradiance from the 75°C blackbody is less than 2%. To see the magnitudes of the blackbody signals in relation to the measured solar signals (in counts to show the measured magnitudes before conversion to irradiance), Figure 4 shows a plot of the two blackbody signals (no aperture) along with measured solar signals (with the aperture) from 14 January 2006 (clear) and 11 March 2006 (dusty). Ideally the solar signals should be between the two blackbody signals at all wavelengths since that would produce the lowest calibration error. Indeed, the two solar signals are within this range for most of the wavelengths, so the 11 × attenuation of the aperture is about right. However, the solar signals are above the 125°C blackbody signal for wavelengths below about 9.3 μm on 14 January while the 11 March signal is below the 75°C blackbody signal in the area of the ozone band (9.3–10 μm).

To determine how linear the FTIR is for the range of solar signals measured, data were taken for blackbody temperatures of 55°C, 75°C, 125°C and 200°C. A measure of the FTIR counts versus calculated input spectral irradiance (from the blackbody temperature and Planck’s function) for three wavelengths (8.1, 9 and 10 μm) and three temperatures (75°C, 125°C and 200°C) is shown in Figure 5 (at 10 μm the 200°C point is not shown). The line for each wavelength is based on the slope computed from the 75°C and 125°C points, since those were the two temperatures normally used to characterize the FTIR response. The response is linear from 55°C to 125°C with a Pearson correlation coefficient, R², of greater than 0.994 at all wavelengths from 8 to 13 μm. However, it is obvious from the 8.1 and 9 μm data that the FTIR response is not linear for the higher (200°C) signal levels. Also shown, for comparison, are vertical bars indicating the combined range of solar signal counts from 14 January (clear) and 11 March (dusty) for all three wavelengths. The irradiances for these data points were set to cross the line connecting the 75°C and 125°C points.

When the solar signals lie between or close to the 75°C and 125°C blackbody signals, linear interpolation of the solar signal counts to irradiance using the 75°C and 125°C blackbody data will have little error (<3%). This is true for wavelengths from about 10 to 12 μm. Below 9.3 μm for 14 January and below 8.8 μm for 11 March the measured solar signals exceed the blackbody signals for 125°C by as much as a factor of 3, while between 9.3 and 10 μm the solar signal for 11 March is as much as 35% less than the blackbody signal for 75°C. To assess the errors due to these excursions from the normal signal range and the FTIR nonlinearity, we computed what the FTIR counts should have been based on the 55°C-to-75°C slope or the 125°C-to-200°C slope, depending on whether the excursion was low or high, respectively. We then determined the AOT for the difference between the corrected and measured values and then for the high-excursion cases, for example, 8.1 μm, determined the difference in the AOTs for the high and low signal levels at each wavelength. The AOT error from the FTIR nonlinearity is then the maximum of the low- and high-excursion AOTs. As shown in Figure 6, the AOT error is quite variable with wavelength, with peaks at 8.0, 8.2, 8.8, 11.7 and 12.5 μm, but the FTIR nonlinearity AOT error is less than 0.2 from 8 to 13 μm.

To partially compensate for the FTIR nonlinearity we used an irradiance-fitting procedure (described below using SBDART and an adjustment to the aperture counts based on the 75°C blackbody measurement with the aperture), to make the measured dust-free irradiance equal to the computed SBDART irradiance (at all wavelengths). Thus we employed a unique correction term at each wavelength to linearize the FTIR response for the dust-free irradiance levels. We used the same adjustment for the dusty measurements. Consequently we estimate the AOT error for the FTIR nonlinearity (and nonunity blackbody emissivity) to be somewhat less than that shown in Figure 6.

In Figure 4 the measured dusty counts (11 March) exceed the clear counts (14 January) below 8.4 μm owing to the lower water vapor during the dusty conditions. These differences in the atmospheric profiles between measurements on different days were calibrated out using SBDART.
spectral irradiance computation results [Ricchiazzi et al., 1998] (see section 3), a high-spectral resolution radiative transfer model that combines a correlated-k approximation together with the discrete ordinate technique [Yang et al., 1999], along with dust-free measurements made in Santa Barbara and M'bour with similar water vapor and ozone levels to the dusty cases. Thus, although the measured counts for 14 January and 11 March appear to contradict each other at some wavelengths, when converted to irradiance and compared to SBDART models using measured atmospheric properties, the results are more consistent. The SBDART model has an accuracy of about 3% relative to line-by-line models.

3. Spectral Irradiance Calculations

[16] The solar spectral irradiance calculations require blackbody measurements, solar measurements, and instrument calibration using modeled clear-sky spectral irradiances. The forward computations of direct and diffuse downwelling solar spectral irradiances under dust-free conditions were made using SBDART. We used irradiance rather than radiance in our calculations because we knew the FTIR FOV and could account for the solid angle, in addition to being able to better account for the aperture emission.

[17] The spectral resolution, central wave numbers and FOV for SBDART were set to those of the FTIR, while the zenith angle and water vapor were set to those determined by AERONET, and the ozone was set to that determined by OMI. SBDART runs were performed for the 13 December 2005 measurements using a midlatitude winter [McClatchy et al., 1972] temperature profile increased by 20°C at the surface (to match the actual temperatures), and for 14–16 January 2006 and 8–12 March 2006 using a tropical temperature profile increased by 10°C at the surface. The 13 December and 14 January SBDART runs were used for calibrating the response of the spectral irradiance calculations under dust-free conditions as described below. Owing to the larger FTIR FOV (relative to the Sun’s 0.5° disc), both direct and diffuse spectral irradiances were computed in the SBDART runs.

[18] All FTIR measurements (BB, aperture and solar) used an average of 50 interferograms for noise suppression. The interferograms were Fourier-transformed into spectra (counts versus wavelength) using triangular apodization, dc offset correction, phase shift correction and 2× zero filling. The before and after blackbody spectra (see section 2.1) at each temperature were averaged for noise reduction. Between five and ten measurements were made of the solar irradiance each observation day.

[19] The first task in computing the solar spectral irradiance is to compute the blackbody spectral irradiance projected into the FTIR using equation (1) (based on Planck’s Law) for each temperature (where 1.5 deg × 1.5 deg is the full FOV of the FTIR) assuming an emissivity of 1 and a wavelength dependence for the spectral irradiance, I. The constants h, c and k in equation (1) are Planck’s constant, the speed of light and Boltzmann’s constant, respectively, and λ is the wavelength.

$$I(T)_{BB} = \frac{(2hc)}{(\lambda^4c^2)}\left[2\pi(1 - \cos(1.5/2))\right]/(4/\pi).$$

The next task is to determine the spectral irradiance/counts slope, dl/dC, at each wavelength using equation (2) with no aperture using blackbody measurements at 75°C and 125°C.

$$\frac{dl}{dC_{open}} = \frac{I_{125C} - I_{75C}}{C_{125C} - C_{75C}}.$$

The third task is to determine the spectral irradiance offset, I_{off}, at each wavelength using equation (3) with no aperture using the blackbody measured counts at 75°C, C_{75C}, the computed spectral irradiance at 75°C, I_{75C}, and dl/dC. The irradiance offset primarily comes from internal emissions within the FTIR.

$$I_{off} = C_{75C}\frac{dl}{dC_{open}} - I_{75C}.$$

The solar spectral irradiance at each wavelength is determined using the terms above, the measured solar signal in counts, C_{s}, the blackbody signal at 75°C with the aperture, $C_{75C+aper}$, and the calculated aperture self emission counts, C_{aper}, as shown in equation (4). Since the FTIR self emission irradiance offset is contained within the I_{off} term, the only other thermally emitting object besides the Sun, atmosphere and aerosol is the aperture, and this emission is subtracted from the measured solar signal prior to conversion to irradiance in equation (4). The C_{aper} multiplier in equation (4) (in the parentheses) represents the inverse of the transmission of the aperture with the aperture self emission subtracted.

$$I(\lambda) = \frac{dl}{dC_{open}} \left[C_{s}\left(\frac{C_{75C}}{C_{75C+aper}} - C_{aper}\right) - C_{aper}\right] + I_{off}.$$

The aperture irradiance, C_{aper}, is dependent on its temperature, but since its outer surface was reflective and we kept it in
the shade when not in use, its temperature was always close to ambient; this was verified periodically with a temperature probe on the surface of the aperture. The aperture’s inner surface was painted black to minimize reflections of thermal sources from within the FTIR. We determined that the best method for computing the aperture irradiance signal, \(C_{\text{aper}} \), was to measure the aperture with the 75°C blackbody behind it since this provided a stable source filling the aperture opening (we also tried viewing the cold sky but its irradiance was too variable). This measurement gives the \(C_{75C+\text{aper}} \) term which equals the 75°C blackbody signal dimmed by the aperture and the aperture emission signal. The dimmed 75°C blackbody irradiance is always the same, so any changes in the \(C_{75C+\text{aper}} \) term are due to aperture temperature changes (or changes in the FTIR but those are compensated for in the \(I_{\text{open}} \) and \(dI/dC \) terms in equations (3) and (4)). Thus we conclude that the \(C_{\text{aper}}/C_{75C+\text{aper}} \) ratio is basically constant (approximately equal to 0.75), so by multiplying this ratio by a measured \(C_{75C+\text{aper}} \) signal we can retrieve the corresponding \(C_{\text{aper}} \) signal as formulated in equation (5).

\[
C_{\text{aper}} = C_{75C+\text{aper}} \left[\frac{C_{\text{aper}}}{C_{75C+\text{aper}}} \right]_{\text{Cal}}.
\]

We determined the \(C_{\text{aper}}/C_{75C+\text{aper}} \) ratios using two calibration days to tune the corresponding irradiance from SBDART. This way our calculations of the irradiance under dust free conditions match the computed SBDART irradiance, so any differences between the measured irradiance during noncalibration days and the corresponding SBDART irradiance is due to dust extinction. It turns out water vapor plays a significant role in the irradiance measurements, so to minimize errors from water vapor separate calibrations were used for each range of water vapor corresponding to our dust measurement conditions. Thus the 13 December 2005 calibration was used with the 8–12 March 2006 measurements since both had water vapor column densities of about 1 g/cm\(^2\), and the 14 January 2006 calibration was used with the 15–16 January 2006 measurements since both had water vapor column densities of around 2.3 g/cm\(^2\).

[20] The \([C_{\text{aper}}]_{\text{Cal}}\) terms for the two clear calibration days were calculated using equation (9). This equation was obtained, as shown in the progression in equations (6)–(8), by starting with equation (4) and solving for \(C_{\text{aper}} \) with \(C_{\text{n}} \) set to the measured clear solar counts and \(I_{\text{c}} \) set to the computed clear irradiance from SBDART. Then we divided the computed \(C_{\text{aper}} \) by the measured \(C_{75C+\text{aper}} \) to obtain the ratio used in equation (5). This ratio, though still approximately 0.75, now has dips at some wavelengths due to water vapor and ozone absorption; the dips are needed to get the measured irradiance to equal the SBDART irradiance at all FTIR wavelengths. The \(\text{Cal} \) subscript in equations (5) and (9) refer to the fact that the \(C_{\text{aper}} \) value was obtained from a calibration measurement and calculation. Consequently the \(C_{\text{aper}} \) terms in equations (4), (5) and (9) all represent the same thing: the aperture self emission. As a sensitivity analysis, we calculated that a large 10°C change in the aperture temperature (were it not accounted for in the \(C_{75C+\text{aper}} \) signal) would produce a difference in the solar signal of only about 10,000 counts, less than 3% of the typical solar signal with the aperture. This is insignificant compared to the other errors.

\[
(C_{75C+\text{aper}} - C_{\text{aper}}) \left(\frac{dI_{\text{c}} - I_{\text{off}}}{dI/dC_{\text{open}}} \right) = C_{\text{aper}}(C_{75C+\text{aper}} - C_{\text{aper}}).
\]

Equation (8) is a quadratic equation with variable \(C_{\text{aper}} \) which can be solved using the quadratic formula. Equation (9) shows the solution for \(C_{\text{aper}} \) where \(C_{\text{aper}} \) has been given the name \(C_{\text{aperCal}} \) because this equation is only used during clear calibrations.

\[
C_{\text{aperCal}} = 0.5 \left(\frac{I_{\text{c}} - I_{\text{off}}}{dI/dC} - C_{75C+\text{aper}} \right)^2 - 4 \left[C_{\text{aper}}(C_{75C+\text{aper}} - C_{\text{aper}}) \right]^{0.5} - \left(\frac{I_{\text{c}} - I_{\text{off}}}{dI/dC} - C_{75C+\text{aper}} \right).
\]

4. Spectral Irradiance Results

[21] Plots for measured and modeled (dust-free) spectral irradiances for 15 January 2006 are shown in Figure 7. This is for medium dust conditions with visible AOT about 0.4 at 670 nm (from AERONET). The measured spectral irradiances are very close to the modeled spectral irradiances, so the dust on 15 January did not appear to have much
attenuation in the infrared. Differences do exist owing to water vapor between 8 and 9 μm (strong water vapor lines exist in this part of the spectrum as opposed to the lower absorbing continuum in the 10- to 12-μm range) and ozone between 9.4 and 10 μm.

A plot of the measured (dusty) spectral irradiance for one measurement on 9 March 2006 is shown in Figure 8 along with the corresponding dust-free modeled spectral irradiance. This is for heavy dust conditions with visible AOT about 2.5 at 670 nm and there appears to be considerable attenuation in the infrared. The differences between the attenuation on 15 January and 9 March are likely due to differences in the dust loading, size distributions and compositions.

5. Aerosol Optical Thickness

The measured dusty irradiance, \(I_D \), is a combination of the clear solar irradiance transmitted through the dust-free atmosphere and the emitted irradiance from the dust-free atmosphere, \(I_C \), computed from SBDART, along with the extinction, \(e^{-\tau_d \cos(\theta)} \), and self emission from the dust, \((1-e^{-\tau_d \cos(\theta)})I_E\). Equation (10) shows this relationship, assuming all of the dust is emitting at a constant temperature.

\[
I_D = I_C e^{-\tau_d \cos(\theta)} + (1-e^{-\tau_d \cos(\theta)})I_E.
\] (10)

Under dust-free conditions, equation (10) shows that \(I_D = I_C \). When dust is present, the dust infrared AOT, \(\tau_d \), is determined by inverting equation (10) as shown in equation (11) (where wavelength dependence is implied for each term),

\[
\tau_d = (\ln(I_C - I_E) - \ln(I_C - I_E)) \cos(\theta),
\] (11)

where \(I_C \) and \(I_D \) are at the same solar zenith angle, \(\theta \), water vapor and date (to account for changes in the Earth-Sun distance). \(I_E \) is for a blackbody at 35°C at all wavelengths; 35°C was selected since the surface temperature for 9–11 March was about 40°C and the AIRS [Divakarla et al., 2006] air temperature at 925 mb was about 30°C. The dust emission irradiance relative to the direct solar irradiance is typically small (about 10%), though not negligible, especially at wavelengths where the AOT is higher. The AOT was determined using equation (10) from 8 to 13 μm with about 8 cm\(^{-1}\) (~80 nm) resolution after smoothing.

5.1. AOT Results

Daily average IR AOT as a function of wavelength for 15–16 January 2006 are shown in Figure 9. These are for “medium” dust conditions with visible AOT around 0.4. The dip at 9.3 μm is due to the ozone transition and the dip at 8.14 μm is likely due to differences in the water vapor between 15–16 January in M’bour and the 13 December 2005 calibration measurements in Santa Barbara. Although the AOT signal-to-noise for this dust event is close to or less than 1:1 at most of the wavelengths (on the basis of the AOT error in section 5.2), in the vicinity of 9.8 μm the computed IR AOT is greater than the AOT error. The ratio of the 670 nm AOT to the 9.8 μm AOT (visible/IR) is 0.5/0.2 = 2.5.

The daily average IR AOT spectra for 8–12 March 2006 are shown in Figure 10. These are for “heavy” dust conditions with visible AOT > 1 at 670 nm. The main features in these AOT spectra are a principal AOT peak in the 9- to 12-μm range.
10-μm range and a secondary rise above 12 μm (even after subtracting off residual water vapor OT above 12 μm). Both of these AOT features, as well as the general shape of the AOT spectra with decreases at 8 and 12 μm, are consistent with radiances measurements made by Turner [2008] for the March 2006 dust plume and the brightness temperature difference measurements (clear minus dusty) from Highwood et al. [2003] for a 2003 Saharan dust plume measured from above the dust layer. The ratio of the 670 nm AOT to the 9.8 μm AOT (visible/IR) is 2.1/0.7 = 3.0. This differs from the results of Turner [2008] where through radiances measurements of the March 2006 dust storm in Naimey, Niger, he found the ratio of the 1.02 μm AOT to the 11.0 μm AOT (NIR/IR) is 2.2, though the size distribution in Naimey was a little larger than in Dakar so this could have lowered the ratio. It also differs from the results of Desouza-Machado et al. [2006], who found the 550 nm AOT from MODIS and the 11 μm AOT from AIRS to be related by AOT(VIS) = AOT(IR)*0.425 – 0.084 for Saharan dust over the Mediterranean Sea. However, Pierangelo et al. [2004] found for Saharan dust over the North Atlantic the relationship between the MODIS AOT at 550 nm and the AIRS AOT at 10 μm to have the ratio of AOT(0.55 μm)/AOT(10 μm) = 3.2 which is close to what we measured. Thus there is some discrepancy between the visible to IR AOT ratios for dust depending on when, where and how the AOTs were measured. Pierangelo et al. [2004] found the visible to IR AOT ratio increases with distance from the source region; presumably this is due to the loss of larger dust particles with time and distance.

[26] The 8–12 March IR AOT curves have much broader peaks in the 9- to 10-μm range than the 15–16 January AOT. This difference could simply be due to the greater AOT in March, or it could be due to more subtle differences in the dust properties such as the presence of certain minerals or the dust size distribution. We are not sure if the differences in the visible/IR AOT ratios for January and March are significant, the former having low signal-to-noise. It is interesting, though, that AERONET’s Angstrom exponent was lower for 15–16 January than for 8–12 March, making the computed dust size distribution in January slightly larger than in March. This supports the idea that as the dust size distribution goes up, the IR AOT should go up and the visible/IR AOT ratio should go down, which is consistent with our results above.

5.2. AOT Error Analysis

[27] To compute the AOT error in our measurements each day, for each measurement cycle we substituted one of the 125°C BB measurements (in counts) for the solar signal (C m in equation (4)), to factor in the slope, offset and aperture effects, then computed the irradiance standard deviation of these 125°C signals each day, then added this standard deviation irradiance to the average irradiance for that day, then computed the AOT for the average irradiance plus standard deviation, and finally subtracted this AOT from the AOT based only on the average irradiance to yield the AOT standard deviation for that day. The AOT error was computed as the average AOT standard deviation for the 5 days. The average error computed in this manner is shown in Figure 11. The error is lowest at 8.1–9.3 μm and 10–11 μm, and highest in the ozone band (9.4–10 μm) and above 12 μm owing to reduced FTIR sensitivity. When this AOT error is combined with the FTIR nonlinearity AOT error (Figure 6) using the root-sum-square method (since the errors are independent), the total AOT error for our measurements is found and shown in Figure 12. The total AOT error is always below 0.22 and the mean total error from 8 to 13 μm is 0.12.

5.3. Comparisons With AERONET

[28] The visible AOT (courtesy of D. Tanre) was measured by an AERONET (Cimel) Sun photometer next to the PIRATE equipment. Figure 13 shows a time series plot of the daily average AOT at 10 μm along with the daily average AOT at 670 nm from AERONET [Holben et al., 1998] for 8–12 March. The vertical error bars for each point indicate the standard deviation of the AOT each day at each wavelength. The correlation between the IR (10 μm) and visible AOTs

![Figure 11](image1.png)

Figure 11. Average AOT error versus wavelength for 8–12 March 2008 based on the daily standard deviation of AOT retrievals using the 125°C blackbody signal instead of the solar signal (C m in equation (4)).

![Figure 12](image2.png)

Figure 12. Total AOT error versus wavelength for 8–12 March 2008 based on the root-sum-square of the daily standard deviation of AOT retrievals for the 125°C blackbody signal (Figure 11) and the FTIR nonlinearity AOT error (Figure 6).
for these dates is 0.98. Conversely the correlation for 15–16 January 2006 was close to 0. This low correlation is likely due to the low AOT (the IR AOT for 15–16 January was about equal to our detection limit of about 0.10; see section 5.2) and the fact that the comparison is for only two points, but it is possibly also due to the dust composition (mineral types and size distributions) and differences between assumed and actual atmospheric profiles.

The average AERONET number size distribution for 9–11 March 2006 is shown in Figure 14. The data have three modes: 0.05 μm, 0.5 μm and 1.7 μm. A trimodal lognormal size distribution is also shown in Figure 14, where the geometric standard deviation, σ, is shown for each mode. For radii from 0.05 to 5 μm the sum of the lognormal curves closely matches the AERONET data. The root mean square (RMS) radius is 0.11 μm, the mean radius is 0.2 μm, and the effective radius is 1.3 μm.

5.4. Comparisons With Dust Models

In this section we show comparisons between the measured spectral AOT and the computed AOTs for two predefined dust models. The modeled AOTs were derived using Mie calculations with indices of refraction from the Volz [1973] Saharan dust: Barbados and the Fouquart et al. [1987b] dust (only from 7 to 13 μm). To match the average measured AOT for 9–11 March the modeled AOT is set equal to 2.25 at 550 nm. The measured AOTs are from AERONET at 440, 670, 870 and 1020 nm, and our IR AOTs are at 15 wavelengths.

Figure 15 shows the computed AOT along with the measured AOTs. The Volz AOT does not match the average measured AOT for 9–11 March 2006 in both the visible and infrared wavelength ranges very well. One reason for this discrepancy is likely owing to AERONET’s underreporting of the large particle AOT. The modeled modal radii are slightly larger than the AERONET mean radius (0.2 μm) and the standard deviation of 2 is larger than the standard deviations of the trimodal distribution (1.3 to 1.7). The larger size distribution for the Volz model drastically changes the shape of the AOT in the visible to NIR. Whereas with the trimodal model the AOT decreased rapidly with wavelength, with the single-mode distribution the AOT slightly increases with wavelength. It is hard to say which fit is better in the visible to NIR. The Volz AOT with the single-mode distribution appears to better match the measured AOT between 9 and 10 μm than with the trimodal distribution, but the single-mode AOT is too high between 10 and 11 μm. The Fouquart AOT provides a better match to the measured AOT from 8 to 12 μm than the Volz AOT, but the lack of visible data for Fouquart makes it impossible to fully compare the two. Neither model shows a rise in the AOT above 12 μm, as the measured AOT does. The

Figure 14. Average AERONET number size distribution for 9–12 March 2006.

Figure 15. Modeled AOT using indices of refraction from Volz with AERONET size distribution (trimodal), and the measured AOT (squares) in the visible (from AERONET) and IR (from PIRATES).
Measured and Modeled AOT using Volz and Fouquart Indices with Log Normal Size Distributions

Figure 16. Measured (squares) and modeled AOTs using indices of refraction from Volz and Fouquart with lognormal size distributions of mode radii 0.25 and 0.3 μm, respectively, and sigma = 2.

reason for this discrepancy is likely owing to the relative lack of quartz in the Volz and Fouquart samples.

6. Dust IR Forcing

[32] The dust IR forcing (W/m²) at the surface can be calculated using the difference between the dusty and clear irradiances by determining the integral of the difference versus wavelength as shown in equation (12)

\[F_{IR\,surface} = \int_8^{13} (I_D - I_C) d\lambda = \sum_{8}^{13} (I_D - I_C) \Delta\lambda. \]

A plot of the difference between the dusty and clear irradiances from Figure 8 (from 9 March) is shown in Figure 17. This curve shows the regions of greater (8–9.3 μm) and lower (11–13 μm) IR forcing. There is also a dip from 9.4 to 9.8 μm due to stratospheric ozone. The integral of this curve gives the total IR surface forcing due to dust in the 8- to 13-μm band to be −0.43 W/m². This IR forcing cools the surface by blocking the downwelling solar flux and warms the atmosphere since the dust is mainly absorbing. It is hard to allocate the cause for this as it could be due to the dust size, dust composition, atmospheric water vapor and temperature profiles, and/or detection limits in our equipment.

[34] One of the main conclusions we reached while doing this work is that mineral dust is normally transparent in the IR and the IR AOT is difficult to measure. This is based on the fact that we tried to measure a few dust plumes (two in Puerto Rico and one in Senegal) that were visible to the eye and had visible AOT > 0.3 yet were almost completely transparent in the IR. It is hard to allocate the cause for this as it could be due to the dust size, dust composition, atmospheric water vapor and temperature profiles, and/or detection limits in our equipment.

[35] For the 8–12 March dust plume we found the measured IR AOT peak at 9.5 μm is about 30% of the AOT at 670 nm. Thus for an assumed IR AOT error of 0.12, the 670 nm AOT must exceed about 0.36 and the size distribution must be moderately large in order for the IR AOT to be measurable with PIRATES. This is supported by the fact that we did not measure IR extinction for a dust plume in Puerto Rico when the AOT at 670 nm was 0.4 (the size distribution was very small), while we barely measured IR extinction for a dust plume in Senegal when the AOT at 670 nm was 0.5 (with a larger size distribution), and we easily measured IR extinction for a dust plume in Senegal when the AOT at 670 nm was over 1. We conclude that for a dust plume to have any measureable surface and atmospheric IR forcing impacts, the IR AOT must be at least 0.2. Since the visible/IR AOT ratio is approximately 2.5 to 3, the visible AOT must be at least 0.5, the dust size distribution must be relatively large and/or the dust composition must contain IR absorbing minerals in order to meet this requirement.

7. Conclusions

[33] The results from the PIRATES experiment found that we were able to measure the IR AOT of dust plumes using an FTIR in a solar occultation mode similar to AERONET, and the measured AOT from an ensemble of mineral aerosols of various sizes, shapes, orientations and mineral composition basically matches the data from Highwood and the AOT spectra computed using Mie calculations and the mineral indices of Volz and Fouquart with trimodal and single-mode size distributions, though the matches are not perfect, especially in the visible for Volz. The Volz and Fouquart models’ AOTs lack some of the spectral structure seen in our measurements, most noticeably the lack of an AOT rise seen above 12 μm.
Acknowledgments. This work was conducted under NASA contract NNG04GL20G. We wish to thank the Institute of Research and Development in M’bour, Senegal, and Tamsir Diop, Aboubacry Diallo, Thierno Ndiaye, and Barama Sow for their generous hospitality and support of our work, as well as Bernadette Chatenet of the Laboratoire Interuniversitaire des Systemes Atmospheriques et Didier Tancre of Laboratoire d’Optique Atmospherique, Universite des Sciences et Technologie de Lille, CNRS, for their helpful support and facilitation of our work in Senegal. All the people who worked with in Africa were wonderful. We also thank Brent Holben and NASA GSFC for the use of their AERONET data. We thank the staff of the Holiday Inn, Isla Verde San Juan, Puerto Rico, for permitting measurements to be made at their hotel. We thank Peter Petersen and Claire Salustro of ICRESS for their help in processing the AERONET data. Finally, we thank the reviewers of this paper for their helpful comments and suggestions.

References
Agassi, E., A. Ronen, N. Shiloah, and E. Hirsch (2006), Discrimination and classification of mineral dust from mineral dust spectra from mineral dust. This could improve the formulation of models using IR dust radiative properties to determine mineral aerosols’ role in affecting climate. Additionally, we plan to work on deciphering the mineralogy in the March 2006 dust plume on the basis of the visible and IR AOT spectra presented in this paper.

[36] Future work in this field should involve more IR (multispectral or hyperspectral) observations of dust from ground-based and space-based sensors to get better statistics on the correlation between the IR AOT and the visible AOT as well as better assessment of the variability in the IR AOT spectra from mineral dust. This could improve the formulation of models using IR dust radiative properties to determine mineral aerosols’ role in affecting climate. Additionally, we plan to work on deciphering the mineralogy in the March 2006 dust plume on the basis of the visible and IR AOT spectra presented in this paper.

[37] Acknowledgments. This work was conducted under NASA contract NNG04GL20G. We wish to thank the Institute of Research and Development in M’bour, Senegal, and Tamsir Diop, Aboubacry Diallo, Thierno Ndiaye, and Barama Sow for their generous hospitality and support of our work, as well as Bernadette Chatenet of the Laboratoire Interuniversitaire des Systemes Atmospheriques and Didier Tancre of Laboratoire d’Optique Atmospherique, Universite des Sciences et Technologie de Lille, CNRS, for their helpful support and facilitation of our work in Senegal. All the people who worked with in Africa were wonderful. We also thank Brent Holben and NASA GSFC for the use of their AERONET data. We thank the staff of the Holiday Inn, Isla Verde San Juan, Puerto Rico, for permitting measurements to be made at their hotel. We thank Peter Petersen and Claire Salustro of ICRESS for their help in processing the AERONET data. Finally, we thank the reviewers of this paper for their helpful comments and suggestions.