A Computer Movie Simulating Urban Growth in the Detroit Region

Waldo R. Tobler
University of Michigan

In one classification of models the smulation to be described would be considered a
demographic model whose primary objectives are instructional. The model developed here may
be used for forecasting, but was not constructed for this specific purpose, and it is a demographic
model since it describes only population growth, with particular emphasis on the geographical
distribution of this growth.

Asapremise, | make the assumption that everything is related to everything else. Superficially
considered this would suggest a model of infinite complexity; a corollary inference often made is
that social systems are difficult because they contain many variables; numerous people confuse
the number of variables with the degree of complexity. Because of closure, however, models
with infinite numbers of variables are in fact sometimes more tractable than models with a finite
but large number of variables [27]. My point here is that the utmost effort must be exercised to
avoid writing a complicated model. It is very difficult to write a simple model but this, after al,
is one of the objectives. If one plots a graph with increasing complexity on the abscissa, and
increasing effectiveness on the other axis, it iswell known that science is only asymptotic to one
hundred percent effectiveness. No scientist clams otherwise. But the rate at which this
effectivenessis achieved is extremely important, ceterus paribus. In other words, the objectiveis
high success with a simple model. Statistical procedures that order the eigenvalues are popular
for just this reason. Because a process appears complicated is aso no reason to assume that it is
the result of complicated rules, examples are: the game of chess, the motion of the planets before
Copernicus; evolution before Darwin and the double helix, geology before Hutton, mechanics
before Newton, geography before Christaller, and so on. The plausibility of models also varies,
but this is known to be an incomplete guide to the scientific usefulness of a model. The model |
describe, for example, recognizes that people are born, migrate, and die. It does not explain why
people are born, migrate, and die. Some would insist that | should incorporate more behavioral
notions, but then it would be necessary to discuss the psychology of urban growth; to do this
properly requires atreatise on the biochemistry of perception, which in turn requires discussion
of the physics of ion interchange, and so on. My attitude, rather, isthat since | have not explained
birth, migration, or death, the model might apply to any phenomenon that has these
characteristics, e.g., people, plants, animals, machines (which are built, moved, and destroyed),
or ideas. The level of generality seems inversely related to the specificity of the model. A model
of urban growth should apply to al 92,200 cities [9, p. 81] (not just to one city), now and in the
future, and to other things that grow. These are rather ambitious aims. Conversely, the model
attempts to relate population totals only on the basis of prior populations, and neglects
employment opportunities, topography, transportation, and other distinctions between site
gualities. Consequently the only difference between places in the model is their population
density, and other demographic differences are ignored. Similarly, the population model attempts
to relate population growth only to population in the immediately proceeding time period. Since,
by assumption, everything is related to everything else, such a neglect of history may prove
disastrous. To include all history, however, is known to require integral equations of the Volterra
type [37] and these complicate the presentation. We may also determine empirically whether a
neglect of history has serious consequences, at least in the short run. In summary, the many



simplifications of the model are acknowledged as advantages, particularly for pedagogic
purposes.

Conceptually, I have been influenced by Borchert’s model of the twin city region [2]. This was
later applied to Detroit by Deskins, and | have used his data [8]. As formulated by Borchert and
Deskins the model is in graphical form and suggests that the lines of growth coincide with
extrapolations, modified by local conditions, of the orthogonal trgjectories to the level curves of
population density. The difficult step is to estimate the amount of growth along these trgjectories,
Presumably this is proportional to the population pressure, or the gradient of the population
density [23].

Following Pollack [26] specific equations may now he postulated, letting dP/dt denote
popul ation growth at any location:

dP/dt = k, constant regiona growth, or

dP/dt = kP, proportiona growth, or

dP/dt = k(1- a)P, logistic growth, or

dP/dt = k[(dP/dx)? + (dP/dy)?]“? , growth is proportional to the population gradient, or

dP/dt = k(d?P/dx? + d?P/dy?), growth is proportiona to the rate of change of the population
gradient, or

d?P/dt? = k(d?P/dx?® + d’Pidy?), the acceleration of growth is proportional to the population
curvature, and so on.

Each of these equations could now be examined in some detall, or converted to finite
difference form for empirical estimation purposes, but | prefer to generalize in a different
direction.

The simulation of urban growth raises questions of geographical syntax. As an example,
recall that many predictive models are of the form

C=BA
where A is an n by 1 vector of known observations, B is an m by n transformation matrix of
coefficients or transition probabilities, and C is the m by 1 vector to be predicted. This scheme
seems inadequate as a geographical calculus. The geographical situation is better represented, in
asimplified special case, as
D =NGE
where G and D are now m by n matrices, isomorphic to maps of the geographical landscape [32],
and N and E are coefficient matrices representing North-South and East-West effects. The matrix
D could of course be converted into a long column vector (mn by 1) by partitioning along the
columns and the placing of these one above the other. But this destroys the isomorphism to the
geographical situation. Since “the purpose of computing is insight, not numbers,”[13] I aim for a
simple structure. Using geographical state matrices seems more natura than using state vectors.
To some extent attempts to simulate urban growth are also related to the problem of comparing
geographical maps, a question which occurs frequently in geography [30]. Let me clarify this
analogy. Suppose | have a map showing the 1930 distribution of population in the Detroit region,



and a map of the 1940 distribution. | would like to measure the degree of similarity of these two
maps. Some type of correlation coefficient is needed. Certainly this is necessary to evaluate an
urban growth model, which can be considered a means of predicting a map of population
distribution. In order to evaluate the coefficient of correlation properly, | should have some
notion of the probability of two randomly selected maps being similar. This requires some
information concerning the distribution of actual population maps over the set of al possible
population maps. Suppose that the population data are assembled by one-degree quadrilaterals of
latitude and longitude, of which there are approximately 360 by 180 on a sphere. If only land
areas are considered, say 90 by 180 ~ 1.6 x 10* cells. If a maximum population density of 5000
persons per square-mile is alowed, each quadrilateral can contain from zero to roughly 17.5 x
10° people. The number of possible population maps is then the number of states raised to the
number of cells, that is, (17.5 x 10°)*°* "4~ 10°1. Not al of these are equally likely, and a
prediction much better than random can be made by asserting that there will be no change from
the present. This suggests that, from an information-theoretic point of view, a prediction does not
contain a great deal of information! This unhappy conclusion is avoided by recognizing that
geographical predictions must be discounted for the effect of persistence.

The usual measure of association is the Pearsonian correlation coefficient. This not only
serves as a measure of similarity, but also provides, viathe linear regression equation, a means of
prediction. Most discussions of methods of comparing maps overlook this important feature.
This clearly suggests predicting the 1940 population of a cell as a linear function of the 1930
population of that cell, that is, P°*; = A + B P, . Now this, as amodel, has advantages and
disadvantages. For example, discrepancies between the model and the actual situation might be
used as a measure of the perceived suitability of a site for occupation. More cogently, a major
disadvantage is that it ignores the premise “everything is related to everything else.” The
geographical interpretation of this premise should be that population growth at place A depends
not only on the previous population at place A but also on the population of all other places.
More concretely, population growth in Ann Arbor from 1930 to 1940 depends not only on the
1930 population of Ann Arbor, but also on the 1930 population of Vancouver, Singapore, Cape
Town, Berlin, and so on. Stated as a giant multiple regression, the 1940 population of Ann Arbor
depends on the 1930 population of everywhere else; that is, it is a function of about 1.6 x 10°
variables, if population data are given by one-degree quadrilaterals. Note that the meteorologist
has a similar problem when attempting to predict the weather, and solves it in the following
ingenious manner [10, 11, 14, 15, 25 pp. 233-56; 96]. The world wide (or hemispheric)
distribution of the pertinent weather elements are summarized by an approximating equation.
The coefficients of this equation are then used as surrogate variables, much reduced in number,
representing the actual distribution. Geographers have also recently used such trend equations
[6], but not in this interesting manner. The global distribution of population could now be
approximated by an equation with a modest number of coefficients. Alternately, the world
population potential [29] could serve as a single surrogate for the 1.6 x 10* variables. Instead of
using this approach | invoke the first law of geography: everything is related to everything else,
but near things are more related than distant things. The specific model used is thus very
parochial, and ignores most of the world.

There is merit in considering urban growth from yet another point of view. Think of it as a
linear input-output system; that is, the 1930 population distribution serves as input to a black
box, the output of which is the 1940 population distribution. Two points of view can be taken:
(&) given the inputs and outputs, calculate the characteristics of the black box, i.e., infer the



process; or (b) design the system to achieve a specific output. The latter is what an engineer does
when he builds a radio, or what some urban planners hope to do. The present intent is to deduce
some characteristics of the process.

A convenient method of studying linear, origin invariant black boxes is by means of the
response to a unit impulse:

BLACK

W sox OUTRT

In the present instance the input and output are both two-dimensional distributions, and it is
assumed that the system consists of a linear, positionalv invariant, local operator. Such
processes are less familiar to engineers hut occur in the study of optical systems[20, 17 pp. 278-
281, 28]. The equivalent to the unit impulse is the unit inhabitant. Let us see what happens to
him in a decade:

(@ hehas0.3 children,

(b) 0.2 of himdies,

() 0.05 of him movesto California,
(d) 0.4 of him movesto the suburbs,
(¢) 0.6 of him does nothing

These data are fictitious, hut observe that they include, birth, death, and migration. The net result
is 1.15 inhabitants, geographically distributed some what more widely than originally. This then
isthe final model presented.

The population of acell, 1.5 miles on aside, is estimated as a linear function of the same and
neighboring cells in the preceding time period, i.e., where the unit inhabitant came from, rather
than where he went. This result can be visualized in several equivalent fashions. Consider the
following Gedanken experiment. Randomly sample the population of the region under study and
plot a map showing the locations of individuals in 1930 connected by a directed line to their
locations in 1940. Now trandlate each line to a common origin, thus creating a migration rose.
The end points of the migration vectors constitute a probability density surface. A comparable
result could be achieved by a random sample of select cells and a study of the behavior of all of
the inhabitants of these cells, followed by an averaging over al of the sampled cells. The net
result should not differ appreciably from the present more indirect inferential procedure of
comparing maps. Mathematically the distribution in, say, 1930 can he considered to be described
by P(x,y}, that in 1940 by P’(x,y), and the spread of the unit inhabitant by W(u,v). The
assumption is that each individua in P(x,y) undergoes an identical spreading W(u,v)P(x+u,y+V)
and the fina result is the sum of the individual effects, i.e., [ [W(u,v)P(x+u,y+Vv) du dv. Now if
F(W) denotes the Fourier transform of W(u,v), F(W) = [ [W(u,v) exp(2zmi(au + bv)) du dv then,
by the two dimensiona convolution theorem F(P’) = F(W)F(P). Thus, by converting to the
frequency domain there exists a convenient procedure for calculating the spread function.
Specific computational details, and application to other geographical situations are given in an



earlier paper [33]. The similarity to Hégerstrand’s Mean Information Fields [12], and to an
approximately 1000-region input-output study [18] should be apparent. A stochastic model can
be written along similar lines [1].

For the initial computer movie[19] the equations used are P, = 22 WP*C0pj4q , With p
and q ranging from -2 to +2, and with Wyq = Apq + BpgAt where At is measured in years from
1930. Apq and Bpq were obtained from the coefficients given in the earlier paper [33] by
weighting the 1950/60 coefficients twice as much as the 1930/40 and 1940/50 values. An
additional movie, giving equal weight to all of the time periods by using Wyq = Apgq + Bpg At +
Cpq(At)2 may be more realistic. Both of these models describe time variant systems [3]. The
movies simulate from 1910 to 2000 in time steps of At = 0.5 and At = 0.05 years. A time step of
one frame per month would appear to be the most appropriate speed, assuming viewing at 16
frames per second. An interesting question is whether the same coefficients could he used for
some other urban region of the United States since the exogenous conditions are obviously
relatively constant.

The expectation of course is that the movie representations of the simulated population
distribution in the Detroit region will provide insights, mostly of an intuitive rather than a formal
nature, into the dynamics of urban growth. Comparison of the simulated values for 1930, 1940,

Actual population growth, Detroit Region
(non-linear vertical scale).

1950, and 1960 with the actual values for these dates shows that the model differs from a simple
interpolation, which could in fact be made to provide an exact fit to the data and its time
derivatives. Viewing the movies suggests that the model introduces an excessive amount of
smoothing, and that the decline in population of the CBD does not seem to have been adequately
captured by the equations. These inadequacies may he due to several factors. For example, the



neighborhood over which the spread function was estimated may have been too small, or the
8200 sguare-mile region over which it is averaged too large. Both of these deficiencies could be
explored by additional computations using the available data. Since there is some evidence that
diffusion waves occur in city growth [24, 22, 35 pp. 326-340], an equation somewhat more
genera than those postulated earlier may be proposed to characterize geographical change,
namely,

n m
Y And"Piot" = Y Kn(0™PIOX™ + 9™PIoy™)
(0] (0]

where k is a variable function of x, y, and t. This is clearly an attempt to adapt the linear
differential equation commonly encountered in systems anaysis to take into account the
geographical aspects of the problem. It can aso be viewed as a statistical procedure for
predicting a univariate geographical series, the usual exponential time discounting being
extended to include exponential-like space discounting, each observation being related to a
gpace-time cone of previous and nearby observations. There is no assurance, of course, that
urban growth can be described by positionally invariant linear equations; eventual extension to
interactive multivariate geographica forecasting is aso required. From a pedagogic point of
view the model presented here has the distinct advantage that its shortcomings are obvious. The
model given here, for example, uses trandationaly invariant two-dimensional Fourier
transforms, but a rotationally invariant Mellin-Fourier transform would seem more appropriate
for cities. This would alow the spreading of the unit inhabitant to depend on his distance from
the CBD, and this seems a more realistic approximation to the true, situation.
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