Module organization

- Basic concepts
- Complete Spatial Randomness (CSR)
- Descriptive measures
 - Density based
 - Distance based
- Inference and interpretation

Basic concepts

- Spatial process underlying observed spatial pattern
- Spatial variation can be decomposed into:
 - Large scale variation: mean of spatial process
 \[z_s = f(X_sB + e_s) \]
 - Small scale variation: covariance of spatial process
 \[\text{Cov}(e_i, e_j) \neq 0 \]
- Objectives:
 - Descriptive measures and visual assessment
 - Inference to spatial process
 - What is the likelihood that the observed pattern resulted from a given stochastic spatial process?

Demonstration data 2: The Beach

Spatial continuous (fields) → Geostatistics

Points (objects) → Point Pattern Analysis

Irregular / Regular lattice (objects) → Spatial Econometrics

Volume of interaction among areas → Spatial Interaction Modeling
Complete Spatial Randomness (CSR)

- Baseline distribution:
 - clustered, random (CSR), or regular.

- Definition of CSR:
 - Equal probability:
 - Everywhere in domain S has an equal chance of event.
 - Independent:
 - Event locations are mutually independent; location of one event has no impact on location of other events.

Point pattern description

- n events
- $s = \{s_1, \ldots, s_n\}$ locations where $s_i = \{x_i, y_i\}$
- $A =$ study region
- $|A| = a =$ area of region

Density-based description

- Large scale variation; first-order intensity
 $$\lambda = \frac{n}{|A|} = \frac{\sum S \in A}{|A|}$$

- Density estimation
 - kernel-smoothing
 $$\lambda_p = \frac{\sum S \in C(p, r)}{\pi r^2}$$
 - r is bandwidth, p is set of nodes on grid.
Distance-based description

- **Distance from** s_i, s_j:
 - $d(s_i, s_j) = \text{distance from } s_i, s_j$.
- **Distance matrix**:

![Distance matrix diagram]

- Nearest neighbor
 - $G(d) = \frac{\#[d_{\min}(S_i) < d]}{n}$
 - Interpretation: CDF of nearest-neighbor distances
 - If G increases faster than CSR, clustered
 - If G increases slower than CSR, dispersed
 - $F(d) = \frac{\#[d_{\min}(p_i, S) < d]}{m}$
 - If F increases slower than CSR, clustered
 - If F increases faster than CSR, dispersed
 - $J(d) = \frac{1 - G(d)}{1 - F(d)}$ (1)
 - $J(d) > 1$ clustering; $J(d) < 1$ dispersion; $J(d) = 1$ random

Distance-based description

- **Interevent distances**
 - $K(d) = \text{sum}[S \text{ in } C(s_i, d)]$
 - $L(d)$ transforms to center on zero
 - $L(d) = 0$, random
 - $L(d) > 0$, clustered
 - $L(d) < 0$, dispersed
Inhomogeneous and marked point patterns

- What if $\lambda \neq \lambda(s)$?
- $K_{\text{inhom}}(S, \lambda(s))$ incorporates spatially varying mean.

- Marked patterns: May be interested in the dependence or inhibition among different types of events (suits vs. no suits)

Inference for distance measures

- Closed-form versus Monte Carlo simulation
- envelope(*) function in R
 - Allows for user-authored functions
Module III review

- Basic concept: process \rightarrow pattern
- Measures incorporate scale-dependence (unlike lattice measures)
- MC simulation for inference
- Extensions:
 - linear model as function of environment instead of kernel smooth.
 - alternative process specifications for stochastic component.
Appendix

Expanded distance measures

• Exploring Spatial Point Patterns
 ▪ Spatial variation in mean (1st order)
 \[\lambda(s) = \frac{1}{\delta(s)} \sum \frac{1}{r} \kappa\left(\frac{s - s_i}{r}\right) \]
 ▪ Covariation: Nearest Neighbor
 \[G(u) = n^{-1} \sum I(u_i < u) \]
 \[F(x) = m^{-1} \sum I(z_i < x) \]
 \[J(r) = \frac{1 - G(r)}{1 - F(r)} \]

• Exploring Spatial Point Patterns
 ▪ Spatial covariance (2nd order)
 \[K(t) = (n(n-1))^{-1}|A| \sum_{i \neq j} w_{ij}^{-1} I(u_{ij} < t), u_{ij} = |x_i - x_j| \]
 \[K_f(t) = |A| \sum_{i \neq j} w_{ij}^{-1} I(u_{ij} < t) \lambda(x_i) \lambda(x_j) \]

▪ Interpretation of K-function