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Abstract: Researchers from a variety of disciplines have proposed models of human spatial
knowledge and reasoning in order to explain spatial behavior in environmental spaces, such as
buildings, neighborhoods, and cities. A common component of these models is a set of
hypotheses about the geomeiry of spatial knowledge, particularly with respect to the roles of
topological and metric knowledge. Recently, mathematicians and computer scientists interested in
formally modeling everyday intelligent spatial behavior have developed models incorporating
"qualitative" spatial reasoning ("naive" spatial reasoning). One branch of this effort has been the
development of so-called "qualitative metric” models to solve problems such as wayfinding. A
qualitative metric employs more sophisticated geomeiry than just topology but at a relatively
imprecise or coarse-grained level. Such models essentially reason with a small finite number of
quantitative categories for direction and/or distance. In this chapter, we evaluate the abilities of
qualitative metric models to account for human knowledge of directions by comparing simulations
derived from qualitative metrics to empirical data and theorizing derived from human-subjects
testing.

Introduction

Researchers have proposed models of spatial knowledge and reasoning in order to
explain human spatial behavior in environmental spaces (the relatively large-scale spaces
of buildings, neighborhoods, and cities). Although varying in comprehensiveness, these
models have typically included ideas about processes of knowledge acquisition, the form
of stored knowledge, and its retrieval and manipulation in working-memory. Such
models have been provided by researchers from a wide variety of disciplines:
geographers (Couclelis et al., 1987), psychologists (Piaget and Inhelder, 1948/1967;
Siegel and White, 1975), and computer scientists (Kuipers and Levitt, 1988; McDermott
and Davis, 1984), among others.

A common aspect of these models is a set of hypotheses about the geometric
sophistication of spatial knowledge acquired from direct locomotor experience in the
environment (cf. Golledge and Hubert, 1982; Kuipers and Levitt, 1988; Landau et al.,
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122 THE CONSTRUCTION OF COGNITIVE MAPS

1984; Mandler, 1988; McDermott and Davis, 1984; McNamara, 1992; Montello, 1992, in
press). Some models proposed for human spatial knowledge of the environment have
« suggested that it is best described as metric. A metric geometry describes spaces that have
properties such as symmetry and the triangle inequality, properties that define quantitative
*_ measurement on spatial dimensions (see Montello, 1992; Shepard, 1964). Others have

ﬁ.. suggesl_ed that spatial knowledge is characterized by a less sophisticated geometry than a
.'%"mnﬁic geometry. Geometries that are less than metric (e.g., topologies) do not define

such quantitative properties, but include qualitative propertics such as connectivily and

" containment. Still others have proposed compromise models that include multiple

" knowledge stores, one or more that is metric and one or more that is nonmetric.

Qualitative Metrics

Within the past decade, there has been considerable work within the Al (artificial
intelligence) community to develop a formal model of spatial reasoning that can reason
well without the necessity of very precise metric knowledge or elaborate decision
algorithms. This work has taken place within the larger context of qualitative reasoning, a
term describing models that reason fairly effectively about a variety of problems without
sophisticated and precise calculation abilities. Work in naive or qualitative physics, for
example, has attempted to predict the motion of pulley systems without the use of precise
physical data and rules of calculus (e.g., Forbus et al., 1991). In turn, qualitative
reasoning models have derived much of their inspiration from the now robust topic of
fuzzy logic (Dutta, 1990; McDermott and Davis, 1984; Zadeh, 1975).

For instance, Dutta (1988) provides a fuzzy model of spatial knowledge in which a
staiement about distance and direction is modeled as two fuzzy categories, each category
consisting of a center value, and left and right intervals of spread. The statement "object A
is about 5 miles away", for example, is modeled as having a center of 5 miles and 1 mile
spreads around 5 miles. The stalement essentially says that the distance is between 4 and
6 miles. The statement "object A is in about a north-easterly direction” is modeled as
having a center at 45° and 10° spreads around 45°, The stalement essentially says that the
direction is between 35° and 55°, In both cases, the correct value is modeled as having
some nonzero probability of falling within the category spreads. As we will discuss
below, however, modelers such as Dutta provide no a priori reasoning or empirical
evidence as to deciding how large this spread should be,

Such imprecise and inelaborate models of reasoning about spatial quantities have been
dubbed qualitative metrics. They hold promise as models of human environmental spatial
knowledge. Presumably, the models could account for human abilities and limitations at
skills such as navigation and communication about space. Qualitative modelers have
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noted several difficulties with information processing in the real world, including
perceptual imprecision, temporal and memory limitations, the availability of only
approximate or incomplete knowledge, and the need for rapid decision-making (Dutta,
1988, 1990). One of the attractive properties of such approaches is possibly providing a
way to incorporate both the metric skills and metric limitations of human spatial behavior
without positing separate metric and topological knowledge structures.

Most of the work on qualitative metrics has focused on knowledge of directions in the
environment necessary for navigation and spatial communication. Although the details of
these proposals vary, they agree in positing a model of directions which consists of a
small number of coarse angular categories, commonly four 90° categories (front, back,
left, right) or eight 45° categories (front, back, left, right, and the four intermediate).
Frank (1991a, 1991b) provides good examples of such approaches. His models consist
of either 4 or 8 "cones” or "half-planes” of direction. Values along the category
boundaries are considered "too close to call” and result in no decision about direction. He
also provides a set of operators for manipulating these values. Other writers provide
similar models of directional knowledge (Freksa, 1992; Herniindez, 1991; Ligozat, 1993;
Zimmermann, 1993).

It must be noted that Al researchers in general, and qualitative spatial modelers in
particular, are not motivated exclusively or even primarily by a desire to simulate human
knowledge and behavior accurately, In many cases, they may simply wish to design an
intelligent system that works. Such an approach may only implicitly or incidentally
produce a model of human spatial thought, if at all. But it should also be stressed that
qualitative metric modelers have definitely taken inspiration from what they consider a
realistic approach to human reasoning about space (and time):

"It is a truism that much of human reasoning is approximate in nature. Spatial reasoning is
an area where humans consistently reason approximately with demon-strably good
results.” (Dutia, 1988: 126).

"Spatial reasoning is ubiquitous in human problem solving.
Significantly, many aspects of il appear lo be qualitative” (Forbus et al., 1991: 417)

"Much of the knowledge about time and space is qualitative in nature. Specifically, this is
true for visual knowledge about space.” (Freksa, 1991: 365)

“Our goal is to establish qualitative spatial relations between objects in a cognitively
plausible way." (Herndndez, 1991: 374) i

"a new approach is presented...lo combine knowledge about distances and positions in a
qualitative way. It is based on p-':rn:plual and cogmlnc considerations about the capabilities
of humans navigating within their environments.” (Zimmermann, 1993, 69),
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In spite of all of this apparent wisdom about human spatial reasoning, these modelers
have nearly completely avoided citing any behavioral research to support such
conclusions. Our purpose in the work reported below is to make an initial attempt to
evaluate qualitative metric models against empirical data from human subjects. The
empirical data consists of estimates by humans of the sizes of tums of pathways they
have walked.

Empirical Data and Simulation Approach

A two-stage approach was taken in order to evaluate qualitative metric models of human
directional knowledge empirically. In Stage 1, existing models from the qualitative
reasoning literature were used to develop testable simulations that were maximally faithful
to those models. The results of Stage 1 were used to design improved simulations in
Stage 2. These Stage 2 simulations went beyond the existing qualitative metric models,
but nevertheless attempted to retain the fundamental insight of a qualitative metrie. That
insight is the proposal that humans employ a small, finite number of quantitative
categories to organize spatial knowledge. In both stages, Monte Carlo simulations were
carried out in which estimates of turns were generated by randomly sampling within the
discrete categories suggested by the model.

Some writers have proposed models in which entire single categories constitute
responses (e.g., a forward response is a cone with a range of 90°); the precision of the
response is not greater than the entire category (see Freksa, 1992; Zimmermann, 1993).
Such a model is incompatible with the requirement of many behavioral studies, including
the study we compare to our simulations in the present research, for subjects to estimate
at much higher levels of precision. Of course, the fact that people readily provide
estimates at the level of precision of one or a few degrees does not ensure that their
knowledge is stored or is accurate at that level of precision, but it does suggest that
similar precision should be designed into the simulations in order to ensure comparability.
Therefore, random responding at the level of the single degree within discrete categories
was considered the most realistic way to model the qualitative metrics in the simulations
below.

The data used to evaluate qualitative metric models of directional knowledge came
from the results of some research by Sadalla and Montello (1989). This research was an
investigation of subjects' knowledge of turn sizes after walking pathways containing a
single turn. Vision-restricted subjects who could see only the floor down around their feet
walked an 8.3 m pathway marked on the floor containing two straight segments and one
turn. There was a .5 m gap between the end of the first segment and the beginning of the
second segment (thus not providing a completed visible angle). On different trials, the
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size of the turn from straight ahead was varied. All subjects walked and estimated 11
different turns in different random orders, ranging in size from 15° to 165° from straight
ahead and separated by 15° increments (Figure 1). Thus, the least extreme turn from
straight ahead is labeled 15° and the most extreme turn is labeled [65°. Half of the
subjects walked turns to the right, the other half to the left. This variable was unrelated to
estimation performance and was not considered further by Sadalla and Montello, nor is it
considered below,

After walking to the end of the path, subjects used a circular pointer to provide three
separate measures of their knowledge of the angular size of the pathway turn. Two of
these measures are used below to evaluate the simulations. Measure 1, henceforth called

Figure 1
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Figure 1: Angular pathways walked by subjects in Sadalla and Montello {1989).
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Turn Size, required subjects to "reproduce the size of the turn"; measure 2, called Original
Direction, required subjects to "point in the original direction of travel". Thus, correct
answers to the two measures would be mirror images for any given turn. The latter
measure is expected to result in poorer performance, however, because it compounds
error from two sources: estimation of the angle of the tum size and estimation of the angle
of the original direction from the heading direction at the end of the path. Measure 3 from
Sadalla and Montello required subjects to "point back to the start location" and is not used
here to evaluate the simulations because it involves both distance and directional
knowledge.

Our thinking about human knowledge of directions in the environment is guided by a
simple psychological process model that describes the acquisition, storage, and use of
that knowledge (e.g., Simon, 1979). The model consists of five stages: (1) perception,
(2) encoding, (3) long-term memory storage, (4) retrieval and recoding in working
memory, and (5) behavioral output. Information about directions is perceived from the
environment or from body movement. This information is encoded and stored in long-
term memory. When the information is needed (e.g., for wayfinding decisions or
researchers’ requests), it is retrieved from long-term memory and placed in working
memory (short-term memory). Various recoding processes (e.g., scale construction,
image manipulation, verbalization) are brought to bear on the working-memory
representations in order to produce behavioral outputs such as turn reproductions.

At various stages in the model, processes occur which produce error in the directional
knowledge. These error processes result in both inaccuracies and imprecision in
knowledge, and in behavioral output. The processes are of three types: systematic bias,
categorization, and random fluctuation. Systematic biases lead to reliable inaccuracies, as
when a turn is repeatedly recalled as being closer to 90° than it actually was. Biases are
thought to operate during the encoding or working-memory recoding stages, or both.
Categorization leads to the imprecision of angular knowledge that characterizes qualitative
reasoning. Categorization is essentially a process whereby continuous information is
coded into discrete intervals. It is also thought to operate during the encoding or working-
memory stages, or both. Finally, random fluctuations lead to inaccuracies that are not,
however, reliable or repeatable. They are expected to operate at all stages of the model.

Simulation Stage 1

Perhaps the most critical issue in designing the simulation models concemns the number of
quantitative categories of knowledge to incorporate, essentially the level of precision
expressed by the model. As discussed further below, existing proposals have not decided
this issue in any empirically principled way, Rather, they have generally attempted to
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produce adaptive reasoning with as few categories as possible. Two levels of precision «
directional knowledge were tested in the Stage 1 simulations, a 4-cone {cones of 90
each) and an 8-cone model (cones of 45° each) (Figure 2). Because the idea of
qualitative metric is that the reasoner has no reliable information more precise than at th
level of the spatial category, the directional cones were modeled as uniform randor
distributions during Stage 1 (as opposed to normal distributions, for instance),

1"

Figure 2: Homogeneous 4-cone and 8-cone models tested in Stage 1,

A second important issue in designing the simulation models concerns the accuracy o
knowledge. Unfortunately, existing models do not address the accuracy issue; the
assume perfect accuracy within their limits of precision. That is, existing models do ne
incorporate any systematic biases in knowledge. All estimates for any tumn falling within
particular cone will be sampled from that cone. This approach to accuracy is modeled i
Stage 1 in two ways. First, all estimates for a given pathway turn are consistentl’
sampled from within a single correct cone, referred 1o as single-cone sampling (turn
falling on cone boundaries were considered ambiguous, however, and were sample
equally from the two neighboring cones). Single-cone sampling will result in constan
errors that vary across tumns (imperfect accuracy). Sampling during Stage 1 was done in
second way by proportionately sampling from two neighboring cones so that no averag:
inaccuracy resulted for any turns, referred to as proportional sampling. Proportiona
sampling results in patterns of no constant error, perfect accuracy across turns (withir
limits of sampling error). Each simulation was run cnough limes to generate 20
estimates for each tum,
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Both the single-cone and proportional sampling approaches to the question of accuracy
have implications for variability of performance as well. Of course, such perfect
accuracy, even if imprecise, is almost certainly a poor model of human spatial
knowledge. This is addressed directly in the Stage 2 simulations.

Results of Stage 1

In order to evaluate the responses of the simulations, patterns and magnitudes of both
constant error and variability from the simulations are compared to those from the
empirical data set. Circular statistics (Batschelet, 1981) is used to calculate mean
directions and mean angular deviations. These statistical techniques are appropriate for
use with variables that consist of directional responses in 3607, called circular variables
(or any periodic variable that shows cyclical trends). The techniques allow calculation of a
mean angle or direction. Subiracting the mean direction from the correct answer provides
a measure of constant error (systematic bias in one direction or the other). Mean angular
deviation is also calculated as a measure of between-case variability (sometimes called
variable error) in performance. It is the angular analogue to standard deviation. Mean
angular deviation equals () when all directional estimates are exactly the same, and it
reaches a maximum at just over 80° when directional estimates are maximally distributed
around 3607 (i.e., no agreement between subjects).

Constant errors for the empirical data (right and left turns collapsed) are depicted in
Figure 3, both for Turn Size and Original Direction. Figure 4 depicts constant error for all
four Stage 1 simulations: 4-single, B-single, 4-proportional, and 8-proportional sampling.
In all graphs of constant error, distortions toward 90" are graphed as positive errors,
those away from 90° as negalive errors.

Figure 3
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Figure 3: Constant error for empirical data from Sadalla and Montello (1989). Positive errors are
distoried towards 917,
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Figure 4: Constant error for Stage 1 simulation data, Positive ermors are distorted towards 90°

Constant error in the empirical data shows a distinctive pattern. There is a clear
tendency for subjects to distort their turn estimates toward 90° (positive errors), with the
error for Turn Size at 120° a clear exception that is likely due to a mistake in the original
data collection. The range of distortion across turns is about 15°, with more distortion for
acute than for obluse turns (acute turns are 15-75°, obtuse s are 105- 165°). The
distortion is greater for Original Direction than for Turn Size. As discussed above, this is
expected insofar as the former measure compounds the angular processing required for
the latter measure.
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None of the simulations mimic this pattern of accuracy well; most notably, none show
a consistent bias loward right angles. It is true that the range of distortion is fairly well
reproduced by the 4-proportional model, but this results from chance sampling error
only. The 8-proportional model is nearly flat, showing very little distortion at all. Both
single-cone models show a range of distortion across turns that is far too extreme, about
60° for the 4-cone model and 30° for the 8-cone model.

Figure 5 depicts mean angular deviations (variability) for both empirical measures. The
corresponding results for the four simulations are depicted in Figure 6. Variability in the
empirical data shows a distinctive pattern that was in fact the focus of the original analysis
by Sadalla and Montello (1989). There is low variability for turns at or near the
orthogonal axes (0°, 90°, 180%), with gradually increasing variability towards oblique
turns (45°, 135°). Average variability is about 307, with a range across turns of about
20°. As with constant error, there is more variability for acute than for obtuse turns. Also
like the constant error, there is greater variability for Original Direction than for Turn
Size, at least in the acute quadrant.

Figure 5

50 1 “* jum size
4 o
g
g 27
g m-
&0
|

10 I

o T i T T
O 15 30 45 60 75 90 105 120 135 150 165 180
Turn

Fligure 5: Mean angular deviation (variahility) for empirical data from Sadalla and Montelio | 1959).
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Interestingly, this pattern is reproduced to some extent by the 4-cone models: both
proportional and single-cone sampling show the high agreement near orthogonal axes and
the low agreement at oblique turns. The 4-proportional sampling results in a gradual
increase to the obliques, while the 4-single sampling is flat for turns not exactly at 45° or
135". But both 4-cone models produce overall variability that is too high (45-55%) and a
ringe across turns that is too severe (307). The 8- single model, on the other hand, results
in a magnitude of variability (about 20%) that is too small in comparison to the empirical
data and no change in variability across turns at all. Only the 8-proportional model results
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Flgure 6: Mcan angular deviation (variability) for Stage 1 simulation data.

in a magnitude of variability that matches the empirical data very well. This model results
in an overall variability of about 25-30°, almost the same as the empirical data, and a
range across turns of about 15°. However, neither 8-cone model reproduces the
distinctively shaped pattern of the empirical variability. The B-single model is flat, as
mentioned above, showing no change in variability across turns at all. And the 8-
proportional model results in lower variability at both 90° and the obliques, 45° and
135°. This drop at the obliques is the opposite of what is found in the empirical data. In
addition, this model does not produce a decline in variability near 0° and 180°,
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As a final approach to evaluating the performance of the simulations, circular
correlations (Jammalamadaka and Sarma, 1988) are calculated between the correct turn
values and both the empirical estimates and the simulated estimates. Circular correlation
provides a measure of relationship between two circular variables. These are calculated
within-case and averaged across cases using Fisher's r-to-z transformation to calculate
mean correlations. The empirical estimates correlate very highly with the correct values,
.94 for Turn Size and .89 for Original Direction. Both 8-cone models are similarly highly
correlated with the correct values, .95 for single and .94 for proportional sampling. The
4-cone models also correlate strongly with the correct values but less so, 81 for single
and .71 for propertional sampling.

Discussion of Stage 1

Our Stage 1 attempt to evaluate qualitative metric models empirically suggests their
possible viability as models of human directional knowledge. A qualitative metric model
consisting of 8 45°-cones sampled proportionally reproduces the magnitudes of
variability quite well. And both 8-cone models produce estimates that correlate with the
actual turn sizes almost exactly as strongly as do the empirical estimates. The 4-cone
models, on the other hand, produce far too much variability in performance and did not
correlate with the actual turn sizes strongly enough.

Unfortunately, the 8-proportional model failed to reproduce the distinctive and oft
replicated empirical pattern of minimal variability near orthogonal turns and maximal
variability at oblique tumns. Nor did it reproduce the empirical pattern of minimal constant
error near orthogonal turns and distortion of turns toward 90° (empirical evidence of
these patterns is cited and presented in Franklin et al., under review; Loftus, 1978;
Sadalla and Montello, 1989; Tversky, 1992). These failures probably stem to a large
extent from the lack of a reasonable approach to knowledge accuracy in existing
qualitative metric models (we discuss this further at the end of the chapter). In our Stage 2
simulations, therefore, we attempt to improve the fit of the simulation results primarily by
incorporating into the models some empirical and theoretical ideas about knowledge
accuracy.

Simulation Stage 2

The Stage 1 simulations were attempts to test qualitative metric models as they are
currently described in the literature. Our approach in the Stage 2 simulations is to design
more promising qualitative metric models of human spatial knowledge using the Stage 1
results as a guide. Because the B-proportional model from Stage 1 did a good job of
replicating the empirical magnitudes of variability and the within-case correlations with

MODELING DIRECTIONAL KNOWLEDGE AND REASONING LEX]

the actual turn sizes, it was decided to use B-proportional approaches as a basis for our
Stage 2 simulations.

Our discussion of the Stage 1 resulis above supgests several ways to modify and
improve our initial simulations. Our first modification is to use heterogeneous cone sizes
in an attempt to produce maximal variability near oblique turns and minimal variability
near orthogonal turns. This is done in two ways: orthogonal cones of 30" and obligque
cones of 60°, or orthogonal cones of 20” and oblique cones of 70°. In addition, we tried
to decrease the variability for turns near 0° and 180° even more by splitting these two
cones in half, producing cone sizes of 15°- 60°-30°-60°-15° or 10°-70°-20°-70°-10°
(these are actually 10- cone models). These models are depicted in Figure 7. Decreasing
the sizes of cones directly in front and behind the body by splitting them in half is
consistent with the theoretical primacy of the front-back over the left-right axis of
egocentric space (Franklin et al., under review; Shepard and Hurwitz, 1984) and the
resulting maximal acuity of directional judgments near 0° and 180°. Franklin and Tversky
(1990), for example, in a discussion of their spatial framework, found that subjects
responded faster to locational queries about objects located in front or in back than about
objects located to the left or right. The primacy is seen in our empirical data by the fact
that variability for the 90" turn is generally greater than that for the 15°.

Eiguse 7

W80 B-cone ]

AT B-cone: misle] 15 [0 |

Figure 7: Heterogeneous 8 and 10-cone models tested in Stage 2.

Our second modification is designed to increase variability, particularly for turns near
and at 45° and 135, This "variability adjustment" is done by modifying the sampling of
the 45°, 135°, and 90° turns. For all three turns, 10 cases are shifted from the cone
containing the actual turn value to each of the two neighboring cones on either side, This
adjustment method includes the %0° turn because the Stage 1 simulations had suggested
that sampling entirely within a 20° or 30" cone would not produce enough variability for
the 907 turn. Such an adjusiment is also consonant with the lesser acuity for the left-right
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vs. front-back dimensions of space mentioned above. Each simulation was again run
enough times to generate 200 cases,

Owr third modification is to build in a right-angle hewristic. Any turn that deviates from
straight ahead or straight behind is judged to be more nearly a right-angle turn than is
actually the case. This is done by oversampling cones towards 90° for all turns other than
the 90° turn, and is over and above the variability adjustments just described. Such a
heuristic should produce the characteristic empirical pattern of distortion towards 90°,
The heuristic is implemented in two ways: a fixed number of estimates are shifted one
cone towards the 90° cone, or a percentage of estimates are shifted to the 90° cone. In
either case, this adds sampling of the 90 cone for those turns that did not already sample
it (such as the 15° wm).

In addition, the right-angle heuristic is made asymmetric by oversampling to a greater
extent for acute than for obtuse turns. In the fixed number method, 10 cases are shifted
toward 90° for the 15° and 165° tums, 40 cases are shilted for all other acute turns, and
20 cases are shifted for all other obtuse turns. In the percentage method, 20% of cases are
shifted to the 90° cone for acute turns, and 10% are shifted for the obtuse turns. Either
method should produce greater distortion for acute turns than for obtuse tumns, and may
also produce greater variability for estimates of acute turns,

Finally, we also examined the effect of using a different distribution to sample within
each cone. All cones were sampled according to uniform distributions in the Stage 1
simulations. For the Stage 2 simulations, we also try sampling according to a normal, or
Gaussian, distribution. These normal distributions were designed so that £2 standard
deviations covered the ranges of the corresponding cone (e.g., 30° or 60).

Results of Stage 2

As was done with the Stage 1 simulations, patterns and magnitudes of both constant error
and variability are compared to those from the empirical data set. All of the simulation
variations described above were systematically varied across all possible combinations,
but only the results from four simulations are considered here in detail. Uni30fix samples
uniformly from 30" and 60° cones and biases according to a fixed number of cases.
Uni20fix does the same but for 20° and 70° cones. Unil 5% samples uniformly from
15°, 307, and 0° cones (10-cone model), and biases according to a percentage of cases.
Norml5% does the same but samples normally.

Constant errors for Uni30fix and Uni20fix are depicted in Figure 8, along with the
empirical results for Turn Size and Original Direction. Constant errors for Unil5% and
Morm15% are similarly graphed against the empirical results in Figure 9. Distortions
toward 90° are again graphed as positive errors, those away from 90° as negative errors.
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Figure 8: Constant error for Stage 2 simulation data (Unid0fix, Uni20fix) and empirical data.
Posilive errors are distored towards 90°,

All four simulations recreate the empirical pattern of constant error quite well: minimal
distortion near orthogonal turns, bias toward 90%, and greater bias for acute turns. The
magnitudes of distortion match those for Turn Size very closely, with the exception of too
little bias for the acute turns of 15-45°. Of note is the fact that the two alternatives for
cone size are nearly equivalent; whether 30° and 60° or 20" and 70° cones are used
makes very little difference (Figure 8). Similarly, whether uniform or normal
distributions are used to model the cones makes very little difference (Figure 9). These
conelusions were supported throughout all of the conducted simulations.
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Figure 9: Constant error for Stage 2 simulation data (Unil 5%, Norm15%) and empirical data.
Pasitive errors are distoried towards 90°,

Similarly close fils are seen from an examination of variability in performance. Figure
10 depicts angular deviation for Uni30fix and Uni20fix, along with the empirical results
for Turn Size and Original Direction. Figure 11 shows angular deviation for Unil5% and
Norm15%. Again, all four simulations recreate the empirical pattern quite well: minimal
variability near orthogonal turns, maximal variability for oblique turns, and greater
variability for acute turns. The magnitudes of variability match those for Tum Size very
closely. It can again be seen that the choice of cone sizes and sampling distributions is of
little consequence, a result that was also echoed throughout all of the conducted
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Figure 10: Mean angular deviation (variability) for Stage 2 simulation data (Uni30fix,
Uni20fix) and empirical data.

simulations. One modification that does make a difference was splitting the 0° and 180°
cones in half in the Unil3% and Norm15% simulations. This reduces the excessive
variability for turns of 15° and 165" seen in the first two simulations, though still not to
the level of the empirical data,

Finally, circular correlations between the correct turn values and the four sets of
simulated estimates are calculated as in Stage 1. The mean correlations for Uni30fix,
Uni20fix, and Unil5% are all .90, and that for Norm15% is .91. These compare
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Figure 11: Mean angular deviation (variability) for Stage 2 simulation data (Unil5%,
Morm15%) and empirical data.

favorably with the correlations of the empirical estimates with the correct values presented
above, .94 for Turn Size and .89 for Original Direction.

Discussion of Stage 2

The Stage 2 simulations incorporated insights from the Stage 1 simulations and from
other behavioral literature on directional knowledge. Their performance matched the
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patterns of constant error and variability in the empirical data quite well, though not
perfectly. This occurred without completely forgoing the essential insight of the
qualitative metric literature. Each estimate was drawn randomly from one of a small
number of cones, providing support for the idea that directional knowledge is imprecise
and consists of a small number of quantitative categories of directions. Undoubtedly,
other specific approaches to designing qualitative simulations could have been taken.
though the relative insensitivity of the Stage 2 simulations to factors such as the exact
cone size and nature of the sampling distributions suggesis that additional variations in the
specifics of the simulations would produce only modest improvements in their fit to the
empirical data.

Summary and Conclusions

The results of our simulations based on qualitative metric models provide some support
for their promise as models of human spatial knowledge, but also suggest some of their
serious weaknesses. Their major insight, that human knowledge is metric but only in a
very imprecise way, receives support from these evaluations. In particular, some variety
of proportional sampling within 8 or 10 directional cones produces magnitudes and
patterns of constant error and variability that coincide closely with empirical patterns
obtained from human-subjects testing. The exact sizes of the cones is apparently not
eritical, as long as orthogonal cones are smaller than oblique cones. It is also important to
include in the model in some way a heuristic that oversamples cones towards 907,

These simulations point to what is probably the most notable weakness of existing
qualitative metric models, namely their lack of a reasonable approach to modeling
knowledge accuracy. This conclusion derives from the empirical fact that none of the
Stage 1 simulations, which were designed to be maximally faithful to existing models,
produce anything like the pattern of bias towards right angles found in the empirical data
used here or found in other research. Restricting sampling to single cones leads to
unrealistically inaccurate performance; sampling proportionally from neighboring cones
without implementing any biasing heuristic leads to unrealistically accurate performance.
Also telling, however, is the difficulty and arbitrariness we experienced in trying to
interpret existing proposals to guide how qualitative categories should be constructed and
sampled. There was a definite ad hoc character to the decisions we made about how many
quantitative categories to use, how large their respective ranges should be, and how they
should be sampled. In its current state, therefore, the qualitative reasoning literature does
not provide suitable models of human directional knowledge because it lacks an a prior
principled approach to some of the central issues of such models,

As far as the Stage 2 simulations indicate, it is not important whether the cones are



340 THE CONSTRUCTION OF COGNITIVE MAFPS

modeled as uniform or normal distributions. Models in which cones are described as
consisting of central prototype values and normal variability around the prototype have
been proposed in the behavioral literature (Huttenlocher et al., 1991). It is in fact a
common approach to modeling fuzzy categories in the qualitative reasoning literature
(e.g., Dutta, 1988, 199(); see also the discussion by McDermott and Davis, 1984). The
distinction between uniform cones without internal structure and cones consisting of
variability around a central value cannot be decided by these simulations.

The work in this chapter leads to ideas very similar to those found in Franklin and
Tversky's (1990) discussion of their spatial framework. Maotably, both research programs
siress the idea of a Cartesian frame for organizing egocentric spatial knowledge. Two
apparent contradictions with their work call for comment, however. Cne is the empirical
finding by Sadalla and Montello (1989) that performance on acule turns (to the front) is
more distorted and less precise than on obtuse tums (to the back). Franklin and Tversky
not only found that subjects responded faster to front-back queries than to left-right
queries, but also that responses to front queries were faster than to back queries. Franklin
et al. (under review) replicated this and also found that directional pointing to objects in
the front was more precise than to objects in the back across repeated trials (however,
they also found that the range of directions which subjects would consider "to the front”
was greater than to other directions). On the face of it, these results scem Lo contradict
those by Sadalla and Montello. After all, trials with obtuse turns required subjects to turn
around and walk “back”, and to point in a backwards direction for both measures. And
yet these trials resulted in lower variability than did performance after walking acute
turns.

However, the tasks in the two sets of studies were different in some ways that may
explain this apparent contradiction. Sadalla and Montello did not actually require subjects
to point "to" anything behind their bodies; rather, these subjects had to move a pointer to
show certain angular relationships on a circular pointer. The pointer had a movable wire
and a radius drawn on its surface, thus providing a visible angle to subjects. Obluse turns
required the production of an acute angle on the pointing circle; acute angles are
reproduced more precisely because of the stability provided by the context of the
neighboring wire and radivs line (cf. Prail, 1926). Further, these subjects were
responding with respect to a turn they had actually walked; subjects in Franklin et al.
pointed to an object that they perceived visually. These considerations suggest that the
quadrant asymmetries found by Sadalla and Moniello may not necessarily be generally
characteristic of egocentric directional knowledge. The issue calls for further clarification.

The second apparent contradiction with the spatial framework involves the superiorily
of at least an 8-cone model over a 4- cone model in the present simulations. The spatial
framework essentially posits a 4-cone model, though not framed in that way (see
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especially, Franklin et al., under review). The empirical work by Franklin and her
colleagues has not involved testing of qualitative metrics, however, and has not attempted
1o establish the number or sizes of cones necessary to produce appropriate estimation
variability from random responding. And much of their work has concerned referents for
natural language terms for direction (“front", "right”, etc.} rather than nonlinguistic
knowledge of directions. The two need not be synonymous.

The distinction between linguistic and nonlinguistic spatial knowledge is probably an
important one to make. Several of the qualitative modelers in fact take inspiration from
spatial information as expressed in natural language (Dutta, 1988, Fisher and Orf, 1991;
Frank, 1991a, 1991b; Hemdéndez, 1991; Zadeh, 1975; see also, Mark and Frank, 1991).
Either they see language as equivalent to knowledge in general, or they have a specific
interest in trying to model linguistic knowledge, for instance to improve natural language
queries in Spatial Information Systems. However, there is a growing consensus that
linguistic and nonlinguistic knowledge are not the same. The two involve at least partially
separate systems, psychologically and physiologically. Furthermore, although linguistic
knowledge of space is relatively limited in the precision of information it typically
expresses (great metric precision is usvally unnecessary), nonlinguistic knowledge may
be much more metrically precise (Jackendoff and Landau, 1991; Landav and Jackendoff,
1993; McMNamara, 1992; Rybash and Hoyer, 1992). Haber et al. (1993) found evidence
for this difference directly relevant to our concern with directional knowledge. In their
research, blind subjects indicated directions via several verbal and nonverbal methods; the
verbal methods produced noticeably less precision than the nonverbal methods.

Linguistic issues aside, empirical studies could be conducted that would provide a
more direct approach to designing and testing qualitative metric models than that provided
by Sadalla and Montello (1989). The estimation variabilities from their research were
actually obtained from between-subject performance. Within-subject variability is more to
the point, however, because humans may organize knowledge with somewhat
idiosyncratic quantitative categories. In an improved study, subjects would repeatedly
walk each of a series of turns several times, providing multiple estimates of each turn.
Furthermore, one could directly determine category ranges and boundaries by
psychophysically establishing relative thresholds for angles and distances in a design that
varies turn angles gradually over many repeated trials. A straightforaard approach would
require subjects simply to state which of two walked turns is greater or less than the
other, or whether they are in fact equal.

Finally, it would be valuable to investigate qualitative models of distance knowledge to
complement work on directional knowledge. Much less work on distance models has
been reported in the qualitative literature. Frank (1991b) briefly discussed qualitatively
modeling distance as consisting of two (near, far) or three (near, intermediate, far)
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categories; category size would depend on context, Fisher and Orf (1991) discuss a fuzzy
set model of "near” and "close”. Zimmermann (1993) exploits the information provided
by two sets of half-planes connected by a directional vector. A triangulation between the
two centers of the half-planes and a third point to be estimated results in some coarse
knowledge about the distance of the third point relative to the two centers. In any case, it
is likely that a successful qualitative model of distance would also incorporate
heterogeneous category sizes (the smallest distance categories would have shorter ranges)
and a biasing heuristic to produce overestimation of short distances relative to long
distances (Montello, 1991).

In conclusion, this work leads to fruitful ideas about how to model human knowledge
in a way that respects its metric qualities without imparting it with unrealistically
excessive precision and accuracy, An interesting but as yet untested possibility is that the
precision of human spatial knowledge decays over time (during long-term memory
storage?). Spatial knowledge may exhibit rather precise metric qualities during perception
(see Attneave and Pierce, 1978) and in memory after brief delays, delays characteristic of
most empirical research. Over time, perhaps after delays on the order of months or years,
there may be a continual degradation of spatial knowledge so that distortion and
imprecision both increase. As one of us has suggested in the past (Montello, in press),
such considerations support the need for rigorous very long-term longitudinal studies of
environmental spatial knowledge.
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