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1 Introduction

This chapter provides a general conceptual background to the more specific discussions
of GIS-based environmental modeling presented in this book. It addresses three main
themes central to environmental modeling: spatial models, complex systems, and
geocomputation. The discussion covers static and dynamic, discrete and continuous, and
social and natural system models, and helps put in perspective the diverse modeling
approaches and issues presented in the following chapters. This chapter highlights the
‘systems’ perspective with an emphasis on spatio-temporal environmental systems
representations. General classes of models rather than any specific ones are discussed, in
particular, systems dynamics models under the ‘top-down’ paradigm, and cellular
automata and agent-based models under the ‘bottom-up’ paradigm.

1.1 Environmental models in research and policy

A model is an abstract and partial representation of some aspect or aspects of the world
“that can be manipulated to analyze the past, define the present, and to consider
possibilities of the future” (Smyth 1998, p.191). According to other definitions, models
are devices for producing missing data about the past or the present, and for anticipating
data about possible futures; or, as one great 20th century physicist put it, they simply are
frameworks for organizing knowledge. Note that these latter definitions do not
presuppose that models must resemble the real world in any form or fashion: indeed, for
some model theorists, the ‘real world’ is nothing more than the universe of potentially
acquirable data (Zeigler et al. 2000). This non-committal view allows us to skirt the
difficult philosophical question of what the world is ‘really’ like, helps explain why very
different models of the same phenomenon may be equally ‘true’, and focuses our
attention on the performance of models as predictive or explanatory devices.

More specifically, what do we mean by ‘environmental’ models’? Any aspect of the
Earth’s environment may be the focus of environmental modeling: a definition can hardly
get broader than this. Atmospheric and hydrological processes, land-surface - sub-surface
processes, biological and ecological systems, natural hazards, ecosystems management
issues, are all popular themes. Environmental models cover a full range of geographic
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scales, from the local to the regional to the global. Moreover, they cover a wide range of
input domains: natural and human, biotic and abiotic, atmospheric, oceanic, terrestrial
and socioeconomic. Because the environment is a synthesis of all these domains,
environmental models often combine several aspects from one or more of these areas.
Thus we have models of the effects of climate change on biota, of fire and forest
regeneration, of the interdependence of hydrology and ecosystems, of atmospheric
circulation and industrial pollution, of fisheries under the impact of different fishing
policies.

There are many reasons why interest in environmental models has greatly increased in
the past decade or so. Mounting environmental consciousness in the industrialized
regions of the world and an increasing interest among public and private funding
agencies to support modeling work related to environmental issues have attracted large
numbers of capable researchers. At the same time appropriate techniques, computational
resources and especially data of suitable quality and quantity have become widely
available, so that the gap between the desirable and the feasible in environmental
modeling keeps decreasing. GIS, with its power to integrate diverse databases,
undoubtedly played a key role in this development and has become the core technology
of environmental modeling research.

While environmental models integrating natural processes have already achieved a
certain maturity, those seeking to combine human and natural processes are still in their
infancy. It is fair to say that today’s frontier in environmental modeling lies at the natural-
human interface: this is where some of the most important problems and some of the
more interesting research issues are to be found. Researchers and funding agencies alike
seem increasingly willing to invest in such cross-disciplinary research, despite the still
strong institutional and intellectual barriers separating academic fields. Major examples
of integrated human-natural environmental modeling research recently funded by the
U.S. National Science Foundation include the two Urban LTER (Long Term Ecological
Research) projects at the University of Maryland and the Arizona State University (see
http://baltimore.umbc.edu/lter, http://caplter. asu.edu), and some of the projects from the
1998 “Urban Change” competition (see, for example Alberti 1999 and the UCIME
project at http://www.geog.ucsb.edu/%7Ekclarke/ucime/). Similar efforts are underway
in the Netherlands (White and Engelen 1999) and other European countries.

1.2 What makes a ‘good’ environmental model?

Environmental models are developed for research or policy purposes. While the line
between the two is a fine one in applied fields, there are certain criteria that make a model
more suitable for one or the other purpose. All models must be built on good science,
they all need to be based on good data, and they all must deal with good problems.
Research models are expected to exhibit a higher degree of scientific rigor and to
contribute some original theoretical insights or technical innovation. In policy models
originality is less of an issue (often, the more ‘tried and true’ a model is, the better!) but
transparency, manipulability, and the inclusion of key ‘policy variables’ are especially
important. Clearly, research models can have significant policy implications (as is the
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case with the global climate models developed in the past decade) just as policy models
can make original contributions to the science of environmental modeling. The next two
sections will help clarify these points. Section 2 discusses the characteristics and aspects
of environmental models while section 3 focuses on the systems and sub-systems that are
the objects of modeling. Starting with the key role of GIS, section 4 extends the
discussion to the contribution of geocomputation to both research and policy-oriented
environmental modeling. Finally, section 5 concludes with the brief review of the
accomplishments and future challenges of the field.

2 The nature of environmental modeling

2.1 Characteristics of environmental models

Environmental models make up a distinct family different from other classes of models in
either the natural or the social sciences. They tend to be data-intensive, cross-disciplinary,
dynamic and complex. They often integrate subsystems from several different domains
without the support of widely accepted theoretical frameworks to lend credibility to the
attempted synthesis. Needing to have explicit spatial as well as temporal dimensions
increases their complexity. They depend on data of very variable quality gleaned from a
wide variety of sources. As a result, they face issues of uncertainty and fuzziness to a
greater extent than either traditional natural science models, which deal with more
homogeneous, usually ‘cleaner’ data sets, or than social science models, which often aim
at producing qualitative rather than strictly quantitative results. Moreover, because of
their direct or indirect policy implications, environmental models don’t have the right to
be wrong!

2.2 Facets of environmental modeling:

Clearly environmental modeling presents special challenges. Distinguishing the wheat
from the chaff is not always easy. This is why it is all the more important for model
builders to be aware of the different paradigms and approaches that underlie the wide
variety of environmental models competing for attention and funding these days. This
section outlines a general framework to help put such models in perspective and to help
recognize the strengths and weaknesses of each. It is based on Smyth’s  (1998)
framework for general geographic modeling adapted to the environmental domain.

According to Smyth (1998, p. 192) it is convenient to think of the modeled world as a
microworld defined by an ontology consisting of contents, spatial structure, temporal
structure, ‘physics’ (rules of behavior), and rules of inference or logic. The notion of an
artificial world or microworld, borrowed from AI, is useful for reminding us both that
models are not the real thing, and that they need to be internally consistent. A closed
microworld is autonomous in that the behaviors within it are completely specified
through its initial definition without further reference to the external world. A traditional
cellular automaton model (see section 3.2.2 below) is a good example: once the initial
conditions, neighborhood template, and transition rules have been specified, the model
will enfold all its possible behavior independently of anything external. Other closed
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microworlds well known to geographers are the classic models of location and land use
proposed by Christaller, von Thuenen and Weber. Similarly, ecologists are well familiar
with simple predator-prey models that work out the evolution of interdependent
populations within predetermined environments. Most environmental models however
correspond to open microworlds, admitting elements, relationships, causation, and spatio-
temporal and logical structure from outside of their ontological specification (Smyth
1998 p. 193). More commonly these are referred to as open systems though this
terminology is less clear about the fact that it is the model, rather than the part of the
world modeled, that is ‘open’. Once the ontology of a model has been clarified it must
then be expressed in a formal system which will eventually be translated into a
computational model and a concrete implementation.

The first things defining the ontology of an environmental model are the entities within it.
For example, in an integrated urban-environmental model, the entities may be roads,
built-up areas, different categories of land uses, streams, slopes, bodies of water, forests,
wildlife populations, and the like. These will most conveniently be modeled as objects
though other representations are possible. Entities primarily have an identity on the basis
of which their other aspects can be defined. Relevant aspects of entities include: versions
(alternative descriptions that may indicate uncertainty as to some properties of an entity:
which western boundary of this urban area is the correct one for 1990?); class
membership (about which there may be confusion: is that patch pine or spruce forest?);
alternatives regarding the attributes and spatial and temporal descriptions of these
entities; and the structures and configurations (e.g., hierarchies of different kinds) that
may relate the different entities in an ontology.  Anderson classes of land use/land cover
are a well known such hierarchy whereby classes are subdivided into more and more
detailed categories (‘aggregation hierarchy’). Another kind of hierarchy binds together
elements that compose a whole. For example, an ecosystem can be decomposed into its
constituent entities (forest, grassland, water bodies, soils, animal and plant species, etc.).

What entities will be included in an environmental model will depend to some extent on
its intended principal use, i.e. research or policy support. A policy-oriented model must
involve entities and attributes of entities that can be manipulated by policy makers
(‘policy variables’). For example a slope cannot be manipulated but a road network can;
the age of a tree stand cannot be manipulated but its acreage can; and so on. A good
policy model will include policy variables that have a significant effect on the behavior of
the model. Observing how the microworld is affected by manipulating these variables can
give decision makers insights into how to act in the real world. Such requirements for
practically ‘useful’ variables do not apply to models developed primarily for research
purposes where description, explanation or prediction are the main goals.

The spatial and temporal structure of geographic models in general has been the subject
of considerable research (Egenhofer and Golledge 1998). Several kinds of
conceptualizations and frameworks have been proposed for both space and time. Of
special interest to the present discussion is the fact that environmental models typically
consist of several different modules or subsystems, each based on its own spatial and
temporal framework. Problems may arise when these frameworks are very different and
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perhaps inconsistent with one another in terms of scale, metricity, topological structure,
reference frame, and other such properties.

The physics of a microworld are the rules of evolution of entities and of interaction
between or among entities that determine what can happen within it: they govern the
possible behaviors of a model. These rules may be expressed mathematically, e.g. in the
form of differential or difference equations, or computationally, in the form of ‘if-then’
statements and other such specifications. In a physical model the physics (no quotation
marks) are literally based on actual physical theory (e.g., fluid dynamics, mechanics,
electromagnetism, or the theory of chemical interactions) but in most other cases (and
models) the term is to be understood metaphorically. Environmental models often include
modules or sub-models backed by the rigor of physical theory but being strongly cross-
disciplinary and synthetic, environmental science (and modeling) is by and large a
theory-poor domain. This means that a typical environmental model will mix together
several kinds of ‘physics’ (with quotation marks), some based on causal hypotheses (A
appears to cause B), some on statistical regularities (A is statistically associated with B),
others on empirical rules of thumb (when A, usually B), others still on arbitrary rules of
behavior specified by the modeler (if A is the case, then do B). Combining such a variety
of partial ‘physics’ into a whole free of internal contradictions is a delicate task for which
few guidelines exist, and which becomes more challenging as the aspects to be brought
together are drawn from domains more remote from one another. Thus it is one thing to
integrate a sub-model of rainfall with one of runoff to determine flooding potential in an
area, and quite another to combine a model of job growth and one of species extinction
into a framework for exploring the environmental effects of urban development.

The logic of a microworld completes Smyth’s (1998) pentad of a model’s ontology. This
is what allows new facts to be deduced about a microworld from a given configuration. In
the case of mathematical models the logic is indistinguishable from the physics as they
are both implicit in the formalisms used. In the case of simulation models however the
two are distinct. For example, the logic may include default rules to help decide what will
happen in situations where behavior is under-determined (e.g., in case of a tie), or to help
determine which aspects of a microworld must be changed in order to eventually reach a
configuration with specific properties. The latter kind of question is particularly pertinent
in policy-oriented models where the interest is not just in possible futures but also in
desirable ones, and in the means necessary to reach these.  Several formal logics have
been developed that in principle can provide rich enough inference mechanisms for
environmental simulation models. Most of these are quite complex however and not yet
widely used (Worboys 1995).  There will be an increasing need to study the logics of
environmental modeling microworlds as more models are developed integrating
drastically different kinds of processes (e.g., socioeconomic and physical). Formal
modeling theories such those by Zeigler (1976), Casti (1997) can greatly assist the
development of logically coherent environmental microworlds, as can the closely related
perspective of systems theory, briefly discussed in section 3.1 below.

Smyth’s model specification sequence involves, in addition to the choice of an ontology
(1), the following steps: (2), expression of the ontology in a formal system; (3),
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development of a computational model of the formal system; (4), realization of the
computational model in a concrete implementation (Smyth 1998, p. 204). These topics
are explicated in detail in other chapters of this book and will not be further discussed
here. As we will see in section 4 recent computational advances have largely blurred the
distinctions among the steps of this sequence. Logically however all these aspects remain
a necessary part of modeling even if they do not constitute explicit, separate steps.

3 Complex environmental systems

3.1 System theory: philosophy and key concepts

In this section the emphasis shifts from the model to the system modeled. This is a subtle
change of focus since ‘the system’ is itself a kind of model: we model an environmental
system that is a representation of some part of the real world. The word ‘system’ goes
back to the ancient Greeks and literally means something that hangs (or stands) together.
In its modern scientific usage a system is something made up of a set of elements and
relations among these elements. This may sound vague but in fact many systems can be
defined very precisely by families of differential or difference equations where the
variables are the elements and the relations are defined by the mathematical operations on
the variables. More generally the elements of a system are the entities in a microworld’s
ontology and these are connected to one another through relations of causation, influence,
or dependence that together determine the physics of that microworld. Positive and
negative feedback, stimulus and response, activation, inhibition, and so on are more
specific terms for different kinds of relationships in a system, usually quantifiable. These,
along with characterizations of behavior such as self-organization, steady state,
instability, oscillation, emergence, and chaos have become an integral part of the system
modeler’s vocabulary. What is less well known is that these technical terms have strong
philosophical underpinnings in the work of Ludwig von Bertalanffy (1968) dating from
the 1930’s. Being a theoretical biologist von Bertalanffy was aware of the limitations of
the reigning reductionist paradigm (i.e., the attempt to reduce all scientific explanation to
physical laws) in helping describe and explain living things. His General System Theory,
composed of system science, system technology, system philosophy, and system
epistemology, was proposed as a new way of thinking about, or paradigm for, the kinds
of complex phenomena that biologists and other modern scientists in both the natural and
the social sciences were studying. Von Bertalanffy’s key insight was that there are laws
of systems qua systems, in the abstract, regardless of the domain (economics,
engineering, ecology, biology, physics, sociology, and so on) from which particular
applications may be drawn. This was a highly ambitious program aiming at unifying all
science under the systems paradigm. That integrated environmental modeling is possible
at all is evidence of the basic correctness of general system theory’s key premise – that
systems behave like systems no matter what they are made of. A number of broad
methodological concepts such as systems thinking, the systems approach, the systems
perspective, etc. have been derived from principles of General System Theory. Their
proponents make fine distinctions between them that need not concern us here.
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Wilson (1981) following Weaver distinguishes three basic classes of systems. Simple
systems have few components and few variables (e.g., the solar system) and are studied
with the traditional methods of classical physics. Systems of disorganized complexity
have very large numbers of components and variables but the couplings between them
are either weak or random. Gases are typical examples of such systems which are studied
primarily with statistical methods: hence the field of statistical mechanics and theoretical
principles such as entropy maximization. The third class is that of systems of organized
complexity. These systems too have large numbers of components but there are multiple
couplings and interactions among them that need to be considered explicitly. In these
systems, ‘the whole is more than the sum of the parts’, meaning that their properties
cannot be deduced from an understanding of their components. These systems of
organized complexity are the ones the systems paradigm is specifically concerned with.
Research into complex systems of all sorts has flourished in the second half of the 20th

century and has stimulated the interest in the study of environmental systems, which
provide some of the most challenging examples of complex systems known.

There are two complementary methodological and theoretical approaches to the study of
complex systems. The first is the top down approach, exemplified by systems analysis
and systems dynamics. The second is the bottom-up approach, emphasized in complexity
theory. Both are directly relevant to environmental modeling and are briefly outlined
below.

3.2 Environmental phenomena and complex systems

3.2.1   The top-down approach: decompose and conquer

More familiar than General System Theory is systems analysis, one of the many fields
under von Bertalanffy’s original paradigm. Systems analysis gained prominence after
World War II primarily through the spectacular successes of engineering disciplines in
building and controlling very complicated systems, from guided missiles to computers.
At the same time systems analysis and the closely related field of operations research
were being applied to ‘soft’ fields such as planning, management, and the modeling of
human decision making. The possibility to apply the same basic concepts and methods to
natural, engineered and social systems was thus practically established. An excellent
though somewhat dated introduction to systems analysis for environmental scientists,
addressing both natural and social systems, can be found in Wilson (1981). More abstract
but still readable expositions of systems theory and systems analysis are found in Casti
(1989) and a variety of other sources.

The basic principle behind systems analysis is that complex systems or problems can be
decomposed into simpler sub-systems (or sub-problems), which themselves may be
subdivided into even simpler sub-sub-systems, until a level is reached where the
component parts may be treated as elementary. This approach differs substantially from
reductionism in that the focus is not on the elementary components but on the
relationships among components and assemblies of components at and between the levels
of the (de)composition hierarchy. For example, in an ecological model, a spatial-scale
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decomposition may consider the interactions of individual organisms within patches at
one level, and of populations in an ecosystem at another level, the ecosystem being much
more than a sum of ecological patches.  (By contrast, in a reductionist ontology, the focus
would be on aggregation hierarchies that allow properties of entities at one level to be
generalized into properties of groups of these entities). Systems analysis may be static,
clarifying the internal structure of a complex system, or dynamic, seeking to derive
forecasts regarding future system behavior. This latter case is embodied in the paradigm
of systems dynamics.

The history of modeling large-scale systems dynamics began in the sixties with the
publication of Forrester’s series of three, increasingly ambitious simulation models:
Industrial Dynamics, Urban Dynamics, and World Dynamics (Forrester 1975). The latter
is one of the earliest integrated environmental models developed, bringing together global
population growth, agricultural food production, industrial production, pollution, etc.
(however, World Dynamics was not a spatial model). Each of these models consisted of
several major coupled subsystems, which in turn included large numbers of linked
components. Forrester’s models were heavily criticized at the time but made some lasting
contributions to complex systems research. Of particular relevance to environmental
modeling was the demonstration that complex dynamic models of integrated systems
could be built with the same basic techniques and vocabulary used in modeling a variety
of physical systems, thus opening the way for the integration of social and natural science
modeling. Coupled system models in the tradition of Forrester’s are still routinely used.
The widely popular modeling platform STELLA is a direct implementation of
Forrester’s approach and several texts are available to teach related methods (see Odum
and Odum 2000)

Most systems dynamics models represent phenomena in analogy with complicated
hydrological cascading systems, where flows (of matter, energy, animals, people,
money…) move between storage compartments within which these quantities are created
or transformed. Storage compartments are connected to one another through the flows
which are resolved into outputs (quantities flowing out of one compartment) and inputs
(quantities flowing into another). Most such models assume an external compartment
representing the ‘environment’ of the model, i.e. the rest of the world within which the
system studied is embedded and where some of the flows originate and end (‘open’
systems). In physical systems the transfer and storage of mass and energy is governed by
two groups of physical laws: laws of conservation and laws of transport (also called
process and flow laws). The logic is the same for social and ecological systems although
there are no corresponding rigorous laws of process or flow for these. Discrepancies in
the degree of reliability of physical, biological, and social-science model sub-models of
environmental system models constitute one of the challenges of integrated systems
modeling.

3.2.2 The bottom-up approach: complexity theory

Mathematically, complex systems are characterized by multiple non- linearities and
feedbacks. Physically, these formal properties are associated with active exchanges of
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matter, energy and information between systems and their environment. These
characteristics of complex systems often lead to phenomena such as self-organization,
chaos, adaptation, emergence, lock-in, bifurcating trajectories, and other types of
surprising and unexpected behaviors unknown to classical science. In the late 20th century
a ‘new’ science of complexity developed around the study of these interesting types of
dynamics. The ‘new’ science of complexity and its hallmark phenomenon, chaos,
produced a long series of articles and books that captured the imagination of scientists
and lay people alike (Waldrop 1992). The Santa Fe Institute was founded in 1984 by an
interdisciplinary group of high-flying scientists to foster theoretical research into complex
systems. The ‘complexity theory’ paradigm pioneered by the Santa Fe Institute has led to
some very elegant mathematical work, to a large volume of interesting publications and
to the definition of a new field (artificial life), but has also been criticized as a rather
hollow intellectual fad (Horgan 1995). Just how relevant is complexity theory to
environmental modeling?

There is little doubt that the environmental sciences deal with systems that are very
complex by any definition. Unpredictable outcomes, major consequences of relatively
small disturbances, unanticipated side effects, the fragility of large environmental
systems or, conversely, the robustness of others that appear very delicate, all provide
empirical evidence of complex systems behavior. Examples of self-organization abound
in the natural world: grains of sand forming crescent-shaped dunes; birds flying in
triangular formations; surface runoff converging to a few discrete channels. Phillips
(1999) distinguishes eleven distinct kinds of self-organization that are relevant to
landscapes, which may be further aggregated into two broad categories: those that tend to
create order and regularity in the landscape, and those that result in greater diversity and
differentiation. On the other hand, outside physics and the laboratory, there are not that
many empirical examples of some of the ‘sexier’ aspects of complex systems behavior
(in particular chaos) in environmental systems. For example, the wide fluctuations of
animal populations in landscapes were earlier seen as a striking case of chaos in action.
But as Zimmer (1999) reports, citing a well-known ecologist, “there is no unequivocal
evidence for the existence of chaotic dynamics in any natural population”.  Indeed natural
systems are often found to totter ‘on the brink on chaos’ without quite plunging into it – a
sign of Mother Nature’s resiliency, if not wisdom, in the face of constant perturbations
and assaults.

Very often the interesting dynamics of complex systems are the macro-scale outcomes of
simple interactions among micro-level system components. Neural networks are well
known examples of complex structures capable of highly organized behavior resulting
from the parallel operation of large numbers of interconnected neurons. When the micro-
level interactions are restricted to neighboring elements, the resulting system is
intrinsically spatial and under appropriate conditions it will produce spatial organization
at the macro-level: molecules in a solution yielding regular patterns on the surface of the
liquid, pigment activators and inhibitors creating stripes or dots on animal skins,
segregated neighborhoods unexpectedly arising from simple preferences of individuals
for particular levels of racial mix among their immediate neighbors. Cellular automata
(CA) are a well known class of complex systems models that embody that principle,
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generating macro-scale spatial patterns in a gridded space through the parallel operation
of micro-scale rules involving local neighbors (Wolfram 1984; Wolfram 1986). CA
models have become increasingly popular with environmental modelers because of their
direct compatibility with raster GIS, their ability to make use of detailed spatial data, and
their conceptual simplicity, which contrasts with the extreme diversity and complexity of
the patterns they are capable of generating. CA models have proven equally suitable for
the simulation of physical and social spatial processes, and are thus particularly well
suited for integrated environmental modeling (White and Engelen 1997; Clarke and
Gaydos 1998).

Agent-based simulation is a more recent development in complexity theory that also
involves generating complex macro-scale behavior through modeling micro-scale
interactions. ‘Agents’ are interacting entities that may be sentient (people, animals,
organizations…) or non-sentient (any kind of physical or computational objects) and their
interactions may or may not be in space. As in CA models (and unlike neural net models)
interactions among agents can be based on arbitrarily complex rules. Unlike CA, where
the interacting elements are localized cells, interacting agents may be mobile in space,
thus providing a straightforward, intuitive way of modeling actually moving organisms or
other objects. Applications are already appearing in the environmental modeling domain,
such as the simulation of the impacts of visitors on wildland settings by Gimblett et al.,
(1999).

Critics of complexity theory point out that the wide variety of surprising behavior
exhibited by mathematical and computational complex system models is rarely found in
the empirical world. The criticism is primarily directed at the ‘bottom up’ paradigm
which tends to produce especially skittish models, very sensitive to initial conditions and
to small variations in the interaction rules. Real-world populations rarely crash and then
explode chaotically, local interaction rules are rarely as simple as these models would
have it, landscapes don’t easily jump from one state of organization to the next, neither
natural nor social systems tend to get into runaway positive feedback loops, and
‘emergence’ seems to be just what the current model cannot explain. In other words,
there is much more stability in the real world than complexity theory would have us
think. Some authors contrast ‘model complexity’ (or ‘model chaos’) to actual system
complexity (Malanson 1999), and Goldenfeld (1999) warns researchers ‘not to model
bulldozers with quarks’. The issue here is that there is a right level or levels of
description for every phenomenon that must be judiciously chosen for the model to work.
This is one of the many lessons that modelers are learning from complexity theory. There
are several other lessons: that nature can produce complex structures even in simple
situations, and can obey simple principles even in complex situations; that each complex
system is different so that similar-looking systems may develop in very different ways
(Goldenfeld 1999). Even though we may never enjoy the intellectual comfort of scientific
laws when modeling complex environmental systems, complexity theory has made us
more aware of the subtlety, diversity, and interconnectedness of the phenomena we study,
and has contributed many powerful concepts, modeling approaches and techniques.
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4 Environmental modeling and geocomputation: modeling ‘with’ the computer

Modeling ‘without’ the computer is inconceivable in the environmental domain these
days, except perhaps when developing abstract conceptual models. In many ways the
computer has made environmental modeling possible, and not just because of computing
in its original, number crunching sense. In this data-dominated age GIS has given
modelers the possibility to handle arbitrarily detailed data at any spatial scale and is
unquestionably a major driver behind the current blossoming of environmental analysis
and modeling. Statistical, mathematical, graphics and visualization software has
complemented the increasingly sophisticated capabilities of commercial GIS, providing
additional power to modelers and literally new ways of looking at data. But modeling
‘with’ the computer means something more than that.

In section 2 computation was mentioned as a separate stage that is reached late in the
development of a model, after the real modeling work has been completed. This view is
less and less tenable as the computer increasingly becomes an integral component of the
modeling of complex systems and processes instead of a tool for handling data and
solving equations. More and more, computer simulation replaces analytic model
development as the systems modeled become larger, more integrated and more complex.
Step 2 of Smyth’s (1998) sequence in particular, the formalization of the model’s
ontology, tends to be merged with step 3, the computational expression of the model.
Formal languages such as Haskell and Gofer have been developed that are at the same
time algebras and computer languages. Map algebra (Tomlin 1991) and image algebra
(Ritter, Wilson, and Davidson 1990), which are formalisms operating on spatial elements
as the variables, have been extended into dynamic spatial modeling languages such as
PCRaster (Burrough 1998). In addition, graphical, icon-based model construction
environments are attracting increasing attention (Maxwell and Costanza 1997) and in
simple forms even begin to be available bundled with commercial GIS software (e.g.,
ESRI’s ModelBuilder available with ArcView Spatial Analyst 2.0). More generally
computer visualization has substituted the advanced pattern-recognizing capabilities of
the human eye-brain system for much of the deductive work that characterizes traditional
scientific analysis. All these developments aim at making environmental modeling easier,
more widely available, and more of a collaborative enterprise than it could ever be under
the traditional approach.

Just as the logical steps of model building are being compacted and merged, the
distinction made in traditional model ontologies between entities, relationships, physics,
and logic is becoming less and less sharp with the growing popularity of object-oriented
languages and their recent extensions. In this approach objects are defined in terms of the
possible and allowable behaviors of the corresponding real-world entities. Object-
orientation, with its emphasis on representing quasi-autonomous units within models and
submodels, facilitates a bottom-up approach to complex system modeling and especially
favors agent-based simulation. Indeed, object-orientation has been loosely defined as “the
software modeling and development disciplines that make it easy to construct complex
systems out of individual components” (Khoshafian 1993). Further developments
currently underway in Internet-oriented computer languages are likely to affect modeling
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practices even further. XML (Extended Markup Language) and its derivatives for
example are considered especially well suited for sharing and handling geographic data
over the Internet, opening up the possibility for environmental models that are not just
dynamic, but are themselves dynamically evolving with the contributions of modelers
‘anywhere, any time’ (Lowe 2000).

Computation is thus taking a life of its own in environmental modeling, increasingly
driving rather than just supporting modeling efforts. Some may view this as a regrettable
development that threatens to distance environmental modeling from proper scientific
practice – except that, of course, similar developments are taking place to a greater or
lesser extent in practically all areas of science. Researchers in the spatial sciences are
converging around the notion of geocomputation, a novel concept whose definition keeps
evolving just as its subject matter does (Longley et al. 1998; Couclelis 1998a). Originally
no more than a diverse grab-bag of computational techniques, geocomputation eventually
came to be identified with GIS practice for some people, but now seems to have acquired
an identity of its own as the convergence of computer science, geography, information
science, mathematics and statistics. Once its theoretical potential is fully unfolded
geocomputation may become synonymous with the computational theory of complex
spatiotemporal processes (Couclelis 1998b). If that’s the case environmental modeling
will surely become geocomputation’s proudest application field and may benefit
immeasurably from a formal convergence of all the relevant technical fields.

5 Conclusion

These are heady days for environmental modeling. The talent and the money are there,
we’re drowning in environmental data, the growing wonders of geocomputation keep us
on our toes, big problems await our wisdom for their solution, and the policy makers may
for once be listening! There are things we already do very well, and there are things we
will need to do even better. Summing up such a vast, multi-faceted, fast moving field is
too much of a challenge for any single person to undertake, but here are some points to
take home from the discussion in this chapter.

First, environmental modeling is primarily an applied field addressing problems that are
directly or indirectly of considerable societal importance. Environmental models need to
be policy-relevant. This does not mean that we are expected to build ‘answer machines’
but rather, that our models must be good enough to be taken seriously in the policy
process. Speaking from experience King and Kraemer (1993), p. 356) list three roles a
model must play in a policy context: A model should clarify the issues in a debate; it
must be able to enforce a discipline of analysis and discourse among stakeholders; and it
must provide an interesting form of ‘advice’, primarily in the form of what not to do --
since no politician in his or her right mind will ever simply do what is suggested by a
model. The properties a good policy model needs to have been known since the time of
Lee (1973) and his ‘requiem to large-scale models’: transparency, robustness, reasonable
data needs, appropriate spatio-temporal resolution, and the inclusion of enough key
policy variables to allow for some of the really interesting policy questions to be
explored.
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Second, the fact that environmental modeling is primarily an applied field does not
exonerate it from the need to be theoretically well grounded. It is all too easy to write and
calibrate simulation models that do neat things on a computer screen but have an
underlying ontology less plausible than that of a computer game. Since it is extremely
unlikely that we will ever have a ‘theory of everything’ in the environmental domain we
must get better at piecing together the wide array of partial theories (some highly
respected and reliable, others very controversial and unreliable) contributed by the
physical, biological, technological and social sub-fields of the environmental sciences.
Integrated environmental modeling is more than a matter of opting for integrated rather
than coupled models: rather, it has to do with making sure that the patchwork of
concepts, ontologies, approaches, laws, rules of thumb, degrees of confidence and spatio-
temporal structures that may come together within a single framework, respects the
strengths and weaknesses of each part and yields a whole that logically hangs together
(Couclelis and Liu 2000). Formal theories of modeling and someday soon perhaps a more
mature science of geocomputation should provide the foundation for scientifically
rigorous environmental models. These will help put back together the world we tried to
understand by pulling it apart into smaller and smaller sub-disciplinary pieces, thus
fulfilling von Bertalanffy’s vision of science unified though system theory.

Citing King and Kraemer (1993) once again (who paraphrase Dickens), “the Spirit of
Modeling produces the shadows of what Might be, only. No one knows what Will be.”
How true. Illuminating the shadows of what Might be is what environmental modeling is
all about.
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