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Phaedon C. Kyriakidis

A Geostatistical Framework for 
Area-to-Point Spatial Interpolation

The spatial prediction of point values from areal data of the same attribute is ad-
dressed within the general geostatistical framework of change of support; the term
support refers to the domain informed by each datum or unknown value. It is demon-
strated that the proposed geostatistical framework can explicitly and consistently ac-
count for the support differences between the available areal data and the
sought-after point predictions. In particular, it is proved that appropriate modeling of
all area-to-area and area-to-point covariances required by the geostatistical frame-
work yields coherent (mass-preserving or pycnophylactic) predictions. In other
words, the areal average (or areal total) of point predictions within any arbitrary area
informed by an areal-average (or areal-total) datum is equal to that particular datum.
In addition, the proposed geostatistical framework offers the unique advantage of
providing a measure of the reliability (standard error) of each point prediction. It is
also demonstrated that several existing approaches for area-to-point interpolation can
be viewed within this geostatistical framework. More precisely, it is shown that (i) the
choropleth map case corresponds to the geostatistical solution under the assumption
of spatial independence at the point support level; (ii) several forms of kernel smooth-
ing can be regarded as alternative (albeit sometimes incoherent) implementations of
the geostatistical approach; and (iii) Tobler’s smooth pycnophylactic interpolation, on
a quasi-infinite domain without non-negativity constraints, corresponds to the geosta-
tistical solution when the semivariogram model adopted at the point support level is
identified to the free-space Green’s functions (linear in 1-D or logarithmic in 2-D) of
Poisson’s partial differential equation. In lieu of a formal case study, several 1-D
examples are given to illustrate pertinent concepts.

1. INTRODUCTION

Going from one spatial support (domain informed by each measurement or un-
known value) to another is of critical importance to numerous scientific disciplines.
Coarse spatial resolution predictions of general circulation models, for example, need
to be downscaled to the watershed level (or even finer in the case of spatially distrib-
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uted models) for hydrologic impact assessment studies. Similarly, socioeconomic vari-
ables reported on census tracts need to be downscaled to smaller regions for detailed
modeling. Scaling issues continue to be a critical and vibrant research topic in Geog-
raphy; a recent review of such issues and some of their geostatistical solutions can be
found in Atkinson and Tate (2000).

Area-to-point interpolation is a particular case of change of support, whereby areal
data are used to predict point values; these points need not lie on a regular grid or
comprise a surface. For a recent comprehensive review of existing approaches for
change of support, see Gotway and Young (2002). Alternatively, area-to-point inter-
polation can be viewed as a special case of areal interpolation (Haining 2003),
whereby both source data and target values pertain to the same spatial attribute and
are defined respectively over areal units and points. Routine applications of area-to-
point interpolation in geography (Lam 1983), however, tend to ignore several critical
issues: (i) the explicit account of the different supports of the areal data and sought-
after point predictions, for example, the areal data are often incorrectly collapsed into
their respective polygon centroids; (ii) the coherence of predictions, for example, the
areal average of point predictions within any area comprising an areal average datum,
should be equal to that datum (if the latter is assumed error free); and (iii) the uncer-
tainty in the resulting point predictions. 

The geostatistical framework for area-to-point prediction presented in this paper is a
special case of the original development of Kriging, which was formulated as the spatial
prediction of an areal value using available areal data of the same or different variable
(Matheron 1971; Journel and Huijbregts 1978; Gotway and Young 2002). Most geosta-
tistical textbooks and applications regarding change of support, however, address only
the problem of point-to-area interpolation via the use of block Kriging (Isaaks and Sri-
vastava 1989; Cressie 1993; Wackernagel 1995; Goovaerts 1997). This is partially a con-
sequence of the mining practice, where most of the original geostatistical developments
were made. In such applications, the mineral content of blocks of ore is predicted from
point support core data, that is, mining applications call for point-to-area interpola-
tion and rarely (if ever) for the reverse procedure of area-to-point interpolation. 

In this work, the applicability of the general geostatistical framework for address-
ing the area-to-point spatial interpolation problem is demonstrated. Only the case of
a single variable is treated here; the use of auxiliary predictor variables is not ad-
dressed (although it is possible). Several of the little known, but extremely important,
characteristics of this framework are show-cased, namely that the resulting point pre-
dictions are coherent, and several existing methods for area-to-point spatial interpo-
lation can be formulated in terms of the geostatistical framework. Such methods
include choropleth mapping, several forms of kernel smoothing (Brillinger 1990;
Brillinger 1994; Bracken and Martin 1989; Martin 1996), and smooth pycnophylactic
interpolation (Tobler, 1979) on a quasi-infinite domain without non-negativity con-
straints. In addition, the geostatistical framework has the unique advantage of yield-
ing a measure of the reliability (uncertainty) associated with each point prediction.

Kelsall and Wakefield (2002) also adopted area-to-point Kriging in a lognormal set-
ting for estimating the underlying (latent) relative risk surface of disease incidences.
In that work, however, the coherence of the resulting area-to-point predictions is not
demonstrated, and no connections are established with existing methods of area-to-
point spatial interpolation. In addition, the resulting predictions are not guaranteed
to be coherent due to precisely the nonlinearity of the logarithmic transformation in-
volved in lognormal Kriging. Another approach that explicitly honors the coherence
(or mass-balance) constraint is the multiresolution, autoregressive, tree-structured
model of Huang, Cressie, and Garbosek (2002). As noted in Gotway and Young
(2002), however, the basic algorithm used for prediction in multiscale tree models
implicitly dictates the covariance at any particular scale, as well as across scales. In
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addition, because two neighboring points may lie in different supports, the correla-
tion function at the point level may show unrealistic “blocky” artifacts. 

Viewed within the comprehensive review of change of support issues provided by
Gotway and Young (2002), this paper fills in an important gap: the identification of
formal links between choropleth mapping, several forms of kernel smoothing, and To-
bler’s Laplacian smooth pycnophylactic interpolation. In particular, this work clarifies
two subtle (but extremely important for geographical research) points made in the re-
view of Gotway and Young (2002). The first one pertains to the assumption underlying
choropleth mapping, which entails that the target variable is evenly distributed within
any source unit (Gotway and Young 2002, p. 643). In Section 5.1, it is shown that this
assumption is a consequence of another (and more important) prior assumption: that
of lack of spatial correlation at the point support level. In a geographical context, it is
much more difficult to accept the latter assumption, than the assumption of constant
target (point) values within a source (areal) unit. The second issue pertains to the par-
tially incorrect statement that both Brillinger’s kernel smoothing and Tobler’s pycno-
phylactic interpolation assume that the areal data are spatially uncorrelated (Gotway
and Young 2002, p. 643). In Sections 5.2 and 5.3, it is shown that only Brillinger’s
method, not Tobler’s, implicitly invokes such an assumption. 

In the next section, the geostatistical framework for area-to-point interpolation is
presented, and in Section 3, it is demonstrated that the resulting point predictions are
coherent. In Section 4, the smoothness of the area-to-point predictions is linked to
the point covariance model adopted for Kriging. In Section 5, it is shown that various
existing methods for area-to-point interpolation, namely choropleth mapping, kernel
smoothing, and pycnophylactic interpolation with Laplacian smoothing (on a quasi-
infinite domain without non-negativity constraints) yield the same point predictions
with those obtained using the geostatistical framework if one assumes particular types
of point covariance models. In Section 6, the problem of inferring a point covariance
model from the available areal data is briefly addressed, and in Section 7 some con-
clusions are drawn. 

2 GEOSTATISTICAL PREDICTION OF POINT VALUES FROMAREAL DATA 

Let z(s) denote the true (unknown) point support value at a location with coordi-
nate vector s within a study domain D. In the geostatistical framework, the set of all
point support values {z(s), s ∈ D} is viewed as a joint realization (outcome) of a col-
lection of spatially correlated random variables (RVs) {Z(s), s ∈ D}, or in short a real-
ization of a random function (RF), e.g., Cressie (1993). 

In this work, I consider the case of an intrinsically stationary RF model, with a con-
stant but unknown mean: E{Z(s)} � mZ, ∀s ∈ D. The semivariogram γZ(h) �
1–2 Var{[Z(s�h) � Z(s)]} and covariance CZ(h) � E{[Z(s�h) � mZ][Z(s) � mZ]} be-
tween any two RVs Z(s) and Z(s�h) at two locations s and s�h separated by a vector
h depend only on the modulus and possibly orientation of that vector. The semivari-
ogram γZ(h) is a richer tool for quatifying spatial correlation than the covariance
CZ(h), because it is defined even in situations where the covariance CZ(h) is not, that
is, even if Var{Z(s)} → ∞. For a finite variance Var{Z(s)} � CZ(0), the covariance and
the semivariogram are linked by CZ(h) � CZ(0) � γZ(h). 

Let vk � vsk denote the support of the k-th areal datum with centroid at location sk
and otherwise arbitrary shape, size, and orientation. It should be stressed that sup-
port centroids are used here solely for indexing purposes; an areal datum is never col-
lapsed into its support centroid. The measure (length in 1-D, area in 2-D, volume in
3-D) of that support is denoted as �vk�. The k-th observed areal datum z̄(vk) is defined
as the average of all point values within support vk:
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(1)

where, in the discrete case, Pk denotes the number of points within support vk. The
above definition constitutes a regularization (averaging) of point z-values by the
support vk. 

In the geostatistical framework, the K observed areal data {z̄(vk), k � 1,…,K} are
also viewed as a joint realization of K RVs {Z–(vk), k � 1,…,K}, since any areal datum is
defined as the arithmetic average (an equally weighted linear combination) of point
support values, which themselves are viewed as outcomes of point RVs. The mean
and covariance of the areal data can be readily derived from those of the point sup-
port values, provided the latter are known (Gotway and Young 2002; Matheron 1971;
Journel and Huijbregts 1978; Cressie 1993; Chilès and Delfiner 1999). In what fol-
lows, I assume knowledge of the stationary point covariance CZ(h), or equivalently of
the stationary point semi- variogram γZ(h), in order to consistently derive all area-to-
area and area-to-point covariance terms required by area-to-point Kriging (see here-
after). This latter consistent covariance modeling is precisely what guarantees the
coherence of the resulting point predictions. In Section 6, I describe possible ap-
proaches for estimating this point covariance model CZ(h) from areal data, which it-
self is a nontrivial problem. In Section 4, I illustrate how the choice of a particular
point support co-variance model CZ(h) affects the spatial distribution (or smooth-
ness) of the resulting area-to-point Kriging predictions. 

The objective of area-to-point spatial interpolation is to predict any unknown point
value z(s) using the K areal data {z̄(vk), k � 1,…,K}. In this paper, I consider the case
of disjointed areal supports, i.e., vk ∩ vl � ∅. The prediction locations are arbitrary,
that is, they need not comprise a regular grid and they can lie inside or outside any
areal support vk (see Figure 1).

The predicted point value z∗(s) is expressed as a weighted linear combination of
the available K areal data comprising the (K 
 1) data vector z̄ � [z̄(vk), k � 1,…,K]′: 
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FIG. 1: Configuration example for an area-to-point spatial interpolation problem. Prediction locations
are marked with crosses and discretization locations with open circles.



where λs � [λs(vk), k � 1,…,K]′ denotes a location-specific (K 
 1) vector of weights,
whose k-th entry λs(vk) is the weight assigned to the k-th areal datum z̄(vk) for predic-
tion at location s. Since the stationary point mean mZ is unknown, one has to intro-
duce a constraint on the weights to ensure unbiasedness (as in the point-to-point
prediction case):

(3)

where 1K � [1,…,1]′ denotes a (K 
 1) vector of unit entries. 
The vector λs of K weights that yield the minimum prediction error variance

among all constrained weighted linear combinations of areal data is obtained per
solution of the system of normal equations, also termed area-to-point Ordinary
Kriging (OK) system: 

(4)

where χs denotes a location-specific Lagrange multiplier that accounts for the unit
sum constraint on the weights. 

Term C–Z(vk, vl) of equation (4) denotes the (regularized) covariance between any
two areal RVs Z–(vk) and Z–(vl):

(5)

where CZ(si � sj) is the point covariance between any two discretization locations si ∈
vk and sj ∈ vl, and Pk , Pl denote the respective number of points discretizing the two
supports vk and vl (see Figure 2). In words, the covariance C–Z(vk, vl) between any two
areal supports vk and vl is the average of point covariance values CZ(s � s′) corre-
sponding to vectors s � s′ formed by all possible pairs of points s ∈ vk and s′ ∈ vl.
Note that in this work, when the prime superscript accompanies a coordinate vector,
e.g., s′, it denotes another coordinate vector, not transposition. If the areal data were
incorrectly collapsed into their respective centroids, then term C–Z(vk, vl) of equation
(4) would be replaced by CZ(sk � sl), as in the point-to-point OK case. 

Similarly, term C–Z(s,vk) of equation (4) denotes the (regularized) covariance be-
tween any point RV Z(s) and any areal RV Z–(vk): 

(6)
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where CZ(s � si) is the point covariance between the prediction location s and any
discretization location si ∈ vk, see Figure 3. In words, the covariance C–Z(s,vk) between
any support vk and any point s is the average of point covariance values CZ(s � s′) cor-
responding to vectors s � s′ formed by all possible pairs of points s and s′ ∈ vk. If
again the areal data were incorrectly collapsed into their respective centroids, then
term C–Z(s,vk) of equation (4) would be replaced by CZ(s � sk), as in the point-to-point
OK case. 

The area-to-point OK system of equation (4) can be written more compactly in
matrix form as:

(7)

where C– � [C–Z(vk, vl), k � 1,…,K, l � 1,…,K] denotes the (K 
 K) matrix of area-to-
area covariances, and c̄ s � [C–Z(s,vk), k � 1,…,K]′ denotes the (K 
 1) location-
specific vector of area-to-point covariances. 

If and only if: (i) the matrix C– is positive definite, a requirement that is ensured if
all entries C–Z(vk, vl) of that matrix are evaluated via equation (5) using a positive defi-
nite point covariance function CZ(h), and (ii) no datum support coincides with any
other, that is, if vk � vl, ∀k,l, then the above system has a unique solution: 

(8)

Note that when prediction is performed at P locations {sp,p � 1,…,P}, a different
system of the form of equation (4) must be solved at each prediction location sp, be-
cause the corresponding area-to-point covariance vector c̄p � c̄sp changes from one
location sp to another. 
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FIG. 2: Example of an area-to-area covariance calculation, based on four discretization points in support
vk, and two discretization points in support vl; dashed lines represent vectors si � sj, for which point co-
variance values CZ(si � sj) are evaluated.



The resulting OK minimum prediction error variance σ2
E(s) at location s is: 

(9)

It should be noted that when area-to-point Kriging is performed at a support cen-
troid, for example, when s � sk, the resulting prediction error variance σ2

E(sk) of
equation (9) is not the same as that obtained by point-to-point Kriging, because pre-
cisely the areal datum z̄(vk) is not collapsed into its centroid. For the same reason, the
area-to-point Kriging prediction z∗(sk) of equation (2) at a support centroid sk is not
the same as that obtained by point-to-point Kriging. 

Characteristics of Area-to-Point Kriging

• Area-to-point Kriging is a special case of the more general development of Krig-
ing, which was originally formulated as the spatial prediction of an areal value
z̄(vs) using available areal data of the same or different variable (Matheron 1971;
Journel and Huijbregts 1978); see also Gotway and Young (2002). In this case,
the left-hand-side matrix of the Kriging system of equation (7) would be still
populated with area-to-area covariance values C–Z(vk, vl), since the available data
are defined over areal units. The right-hand-side vector of that system, however,
would contain area-to-area covariance values C–Z(vs, vk) for any pair of prediction
and data supports. In the case of area-to-point Kriging, one needs to replace the
elements of the right-hand-side vector of that system by area-to-point covari-
ance values C–Z(s, vk), since now the unknown represents a point value and the
known data areal measurements. All the above modifications, as well as equa-
tions (5) and (6), are direct consequences of the bilinearity of the covariance op-
erator (Anderson 1958). On the computational side, accurate approximations of
C–Z(vk, vl) and C–Z(s, vk) by their discrete counterparts can be obtained using nu-
merical integration rules, such as Gaussian quadrature (Journel and Huijbregts
1978; Carr and Palmer 1993).
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FIG. 3: Example of an area-to-point covariance calculation, based on four discretization points in sup-
port vk ; dashed lines represent vectors s � si, for which point covariance values CZ(s � si) are evaluated.



• In the case of unequal data supports vk � vl, the area-to-area (data-to-data) co-
variance matrix C– is non-stationary, for example, its diagonal elements are differ-
ent: C– kk � Var{Z–(vk)} � Var{Z–(vl)} � C– ll. Another example of nonstationarity
includes the case of two pairs of supports {vk,vl} and {vk′,vl′}, for which centroid-
to-centroid distances �sk � sl� and �sk′ � sl′� are equal. Equation (6) entails that
C–Z(vk, vl) � C–Z(vk′, vl′), unless all four supports have the same size, shape, and
orientation. Similarly, in the case of unequal data supports, the area-to-point co-
variance is nonstationary. Consider, for example, the case of two pairs of points
and supports {s,vk} and {s′,vl}, for which the point-to-centroid distances �s � sk�
and �s′ � sl� are equal. Equation (6) entails that C–Z(s,vk) � C–Z(s′,vl), unless sup-
ports vk and vl have the same size, shape, and orientation.  

• The expressions for area-to-point OK prediction, OK system, and OK prediction
error variance, equations (2) through (9), are completely general. They can ac-
commodate different point covariance models CZ(h), for example, exponential
or linear decay, including or not a white noise component and nested structures
each possibly with its own anisotropy; and arbitrary and possibly partially over-
lapping areal data supports vk and vl. In addition, the area-to-point OK weights,
and the resulting prediction error variance account for: (i) the statistical distance
between any areal datum z̄(vk) and the prediction location s, via C–Z(s,vk); (ii) the
relative redundancy (clustering) of any two areal data pairs z̄(vk) and z̄(vl), which
accounts for the geometry of their configuration (including their size, shape, and
orientation), via C–Z(vk, vl); and (iii) the type of spatial correlation of the point
support values, that is, the functional form of the point covariance model CZ(h).
The Lagrange parameter χs represents a penalty on the prediction error vari-
ance due to lack of knowledge of the true point support mean mZ.

• In analogy to classical point-to-point Kriging, the area-to-point OK predictor
Z∗(s) is the Best (in the least squares sense) Linear Unbiased Predictor (BLUP).
The area-to-point OK variance σ2

E(s) is homoscedastic, that is, it does not de-
pend on the actual areal data values, but only on the relative geometry (configu-
ration) of their supports via the area-to-point covariances C–Z(s,vk) and the
weights λs(vk). In the multivariate Gaussian case, the area-to-point OK predic-
tion and variance coincide with the conditional mean E{Z(s)� z̄} and variance
Var{Z(s)� z̄} of the point RV Z(s) given the K areal data.

• Strictly speaking, equations (2) through (9) constitute a co-Kriging procedure,
whereby areal z̄-data are used to predict point z-values. Since the two variables
are functionally related per equation (1), both the auto-covariance of the areal
data, that is, the area-to-area covariance C–Z(vk, vl), as well as the cross-covariance
between the areal data and the point values—the area-to-point covariance
C–Z(s,vk)—are completely specified in terms of the point covariance model CZ(h);
see equations (5) and (6). 

In the general nonstationary case, whereby the z-mean is a function of monomials
of spatial coordinates, or more generally a function of auxiliary variables, one needs to
impose additional constraints on the weights (Matheron 1971; Journel and Huijbregts
1978; Cressie 1993; Gotway and Young 2002). In this paper I only focus on the in-
trinsic stationary case whereby second-order stationarity applies to the increments of
the z-process. All the derivations presented in this paper generalize in a straightfor-
ward manner to the nonstationary case. 

3. COHERENCE OF AREA-TO-POINT KRIGING PREDICTIONS 

Coherence is a term used in geostatistics to characterize interpolation procedures
that satisfy constraints expressed as linear combinations of data; see, for example,
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Chilès and Delfiner (1999). Along the same lines, I adopt the term coherence in this
paper to describe the fact that the areal-average of the resulting area-to-point OK
predictions within a datum support vk is equal to the corresponding areal datum z̄(vk).
In what follows, I prove the coherence property of the area-to-point OK predictions
using the dual form of Ordinary Kriging, in short DOK (Matheron 1971; Davis and
Grivet 1984; Cressie 1993; Chilès and Delfiner 1999). The coherence proof given in
this paper builds upon, and generalizes, the results of Journel (1999). 

Using equation (8), the OK prediction of equation (2) can also be written as:

from which the DOK prediction is derived as: 

(10)

where ω � [ω(vk), k � 1,…,K]′ is a (K 
 1) vector of location-independent DOK
weights, whose k-th entry ω(vk) is the DOK weight assigned to the (area-to-point) co-
variance C–Z(s,vk) between the k-th support vk and the prediction location s; the term
ψ denotes a location-independent Lagrange multiplier. 

The DOK system of equations simply emerges as the system that defines the vec-
tor of DOK weights ω and the Lagrange multiplier ψ:

(11)

whose solution yields: 

(12)

It should be stressed that the DOK system of equation (11) is independent of the
prediction location s, that is, the DOK system needs to be solved once for prediction
at all points within the entire study region. This entails that the DOK vector of
weights ω is also independent of the prediction location s, hence the use of notation
ω instead of ωs, and ω(vk) instead of ωs(vk). The DOK prediction z∗(s) of equation
(10) is then computed via a simple functional evaluation of the entries C–Z(s,vk) of the
corresponding vector c̄ s. When all the K areal data are used for interpolation, or,
when performing Kriging with a global neighborhood, computing the set of all DOK
predictions at all prediction locations is extremely fast. Essentially, the dual form of
Kriging is implicitly adopted by most software for geostatistical interpolation using a
global neighborhood, since inversion of the left-hand-side matrix of equation (7) is
typically performed once for all prediction locations. 
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The interpretation of the DOK equations is left for the next section, where the
smoothness of the resulting DOK predictions is addressed. It suffices to say here that
one can treat the DOK formalism as an alternative but strictly equivalent way of ex-
pressing the OK prediction of equation (2). Most importantly, the dual form of Krig-
ing allows a straightforward demonstration of the coherence of DOK predictions. 

Consider now the areal average of the point DOK predictions 1––
�vk�

∫s∈vk
z∗(s) ds within

the support vk of the k-th areal datum z̄(vk), and rewrite the DOK point prediction of
equation (10) at any location s as z∗(s) � ∑K

l�1ω(vl)C
–

Z(s,vl) � ψ. It readily follows that: 

The integral  1––
�vk�

∫s∈vk
C–Z(s,vl) ds of the area-to-point covariance C–Z(s,vl) over the

support vk is none other than the area-to-area covariance C–Z(vk, vl). Hence, the above
equation becomes

which is the left-hand-side term of the top equation of the DOK system, see equation
(11). 

The right-hand-side of that DOK system is precisely the k-th datum value z̄(vk),
which entails exact reproduction of that k-th areal datum: 

This proves the coherence characteristic of area-to-point Kriging when used for in-
terpolation: the mean (or sum) of point OK predictions within any areal datum sup-
port identifies the corresponding areal-average (or areal-total) datum. In the case of
predicting point density values from areal density data, the area-to-point Kriging pre-
dictions satisfy the pycnophylactic constraint. 

The above proof can be modified (Kyriakidis and Yoo 2004) to account for data de-
fined as other forms of linear combinations of point values, for example, areal data
expressed as convolutions of point values (spatial averaging being a special case of
convolution) or point data pertaining to spatial derivatives (differentiation being an-
other form of convolution). The Kriging-derived point predictions will satisfy any lin-
ear constraint, provided that the latter is included as a datum in the expression of the
Kriging prediction and in the Kriging system, and that its covariance with the sought-
after predictions is consistently modeled based on the functional definition of that
constraint. Since a point datum is a special case of an areal datum whose support col-
lapses to a point, the above derivations also hold for the case where a subset of the K
available data is defined on a point support. This entails that one can account for
known point values in conjunction with areal data using the geostatistical framework.
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Such point data could be obtained from GIS coverages or from ground surveys, for
example, zero population density values over water bodies or high altitude regions. In
all cases, the consideration of additional point values does not alter the coherence
property of the predicted surface with respect to the available areal data. 

It should be stressed that in the above derivations there was no explicit specifica-
tion of the type (e.g., exponential or spherical) or the parameters (e.g., range or rela-
tive nugget) of the point covariance model CZ(h): the coherence property of
area-to-point Kriging is independent of the particular point covariance model
adopted for prediction and is always satisfied as long as the area-to-area and area-to-
point covariance values are derived consistently from the point covariance model. In
what follows, I illustrate the dependence of the smoothness of the resulting point
predictions on the particular covariance model CZ(h) adopted for interpolation. 

4. SMOOTHNESS OF AREA-TO-POINT KRIGING PREDICTIONS 

The dual Kriging formalism allows a very informative investigation of the smooth-
ness properties of DOK, and equivalently OK. The case of point-to-point DOK pre-
diction is considered first, in order to illustrate the differences with area-to-point
DOK prediction. The former case corresponds to the usual practice of collapsing the
areal data into their support centroids. It should be noted here that point-to-point
predictions obtained by Kriging are equivalent to those obtained by splines and radial
basis functions under certain point covariance models CZ(h). This equivalence of pre-
dictions has been demonstrated long ago and discussed in many references (Math-
eron 1981; Dubrule 1983; Davis and Grivet 1984; Myers 1987; Wahba 1990; Cressie
1993). 

Assume for a moment that the areal data have been collapsed into their respective
support centroids, and hence are incorrectly considered as point support data. The
DOK point prediction z∗(s) at any location s from K available data z � [z(sk), k �
1,…,K]′ is derived as a special case of equation (10): 

(13)

where η � [η(sk), k � 1,…,K]′ is a (K 
 1) vector of DOK weights, whose k-th entry
η(sk) is the weight assigned to the k-th covariance term CZ(s � sk), and cs denotes the
(K 
 1) vector of point-to-point covariance values whose k-th entry CZ(s � sk) is the
point covariance between the prediction location s and the k-th support centroid sk.
The K weights and the Lagrange multiplier in the point-to-point DOK case are not
the same as those in the area-to-point DOK case, hence the different notation. 

The vector η of K weights is derived per solution of the point-to-point DOK sys-
tem, a special case of equation (11):  

(14)

where C � [CZ(sk � sl), k � 1,…,K, l � 1,…,K] denotes the (K 
 K) matrix of point-
to-point covariances between any two support centroids sk and sl. 
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Note that if the prediction location s coincides with the k-th support centroid sk,
then z∗(sk) � z(sk), ∀k, no matter the point covariance model CZ(h). This is the well-
known data exactitude characteristic of Kriging: the interpolated surface (or profile in
1D) “passes” through the sample data points. 

In other words, the DOK point-to-point prediction z∗(s) of equation (13) can be re-
garded as a weighted linear combination of K interpolation functions, namely the K
point-to-point covariances {CZ(s � sk), k � 1,…,K} of vector cs. The weights are the
decorrelated (declustered) K point data values of vector C�1z, which can also be in-
terpreted as the projection of the data onto the vector space spanned by the eigen-
vectors of the covariance matrix C. The physical analogy behind the DOK predictions
is that of potential interpolation: the potential at any location s generated by K point
electrical charges (sources) at the sample locations (in this case the K decorrelated
point data values {z(sk), k � 1,…,K}) is a weighted linear combination of K potential
functions (in this case the K point-to-point covariances {CZ(s � sk), k � 1,…,K}) eval-
uated at these K locations. The same interpretation can be adopted for the case of
area-to-point prediction, with a point sample datum z(sk) being now replaced by an
areal-averaged datum z̄(vk), and the point-to-point covariance function CZ(s � sk), or
kernel, being now replaced by the area-to-point covariance function C–Z(s,vk), or reg-
ularized kernel. 

If prediction is performed at P locations {sp,p � 1,…,P} using the vector z of K
point support data, the (P 
 1) vector of point DOK predictions z∗ � [z∗(sp),p �
1,…,P]′ is written as in Equation (14),

(15)

where 1P denotes a (P 
 1) vector of unit entries, and Q � [CZ(sp,sk), p � 1,…,P,k �
1,…,K] is a (P 
 K) matrix of point-to-point covariance values: 

where the p-th row of matrix Q is the vector c′p � [CZ(sp� sk), k � 1,…,K] of point
covariance values between the p-th prediction location sp and all K support centroids,
while the k-th column of matrix Q is the vector [CZ(sp� sk), p � 1,…,P]′ of point co-
variance values between all P prediction locations and the k-th support centroid sk. 

To illustrate the influence of the covariance model on the shape of the predicted
profiles, I consider a transect of P � 100 equally spaced prediction locations 
{sp,p � 1,…,100}, and K � 2 point support data z(s30) � 20 and z(s70) � 30 at the
30th and 70th points along that transect. The spacing between any two prediction
locations is one distance unit. Four different covariance models are considered in 
this example: (i) an exponential covariance with practical range 10 distance units: 

; (ii) an exponential covariance with practical range 40 CZ s s
s s

� � �
�′( ) ′

exp � �3
10

Q

s s

s s

s s

s s

s s

s s

s s

s s�

�

�

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

Z

Z p

Z P

Z k

Z p k

Z P k

Z K

Z p K

Z

( )

( )

( )

( )

( )

( )

( )

( )

(

1 1

1

1

1 1

�

�

�
�

�

�
�

�











































 ss sP K� )













































z Q 1 Q 1
C 1
1

z∗ 







 ′



















� �

�

[ ] [ ]P P
K

K

ηη
ξ 0 0

1

270 / Geographical Analysis



distance units: ; (iii) a Gaussian covariance with prac-

tical range 40 distance units: ; and (iv) an exponential

covariance with practical range 40 distance units plus a significant (50%) relative

nugget effect: , where δss′ is the Kronecker

δ, defined as δss′ � 1 if s � s′, and δss′ � 0 if s � s′. 
The resulting covariance kernels [CZ(sp� s30), p � 1,…,P]′ and [CZ(sp� s70), p �

1,…,P]′ for the four different covariance models, that is, the resulting two columns of
matrix Q, are plotted in Figure 4. The difference between the various covariance ker-
nels is easily appreciated. All covariance kernels attain a maximum of one, CZ(0) � 1,
even in the case of a 0.5 relative nugget effect (Figure 4d) where that maximum is at-
tained with a sharp discontinuity. Note that in the case of the exponential covariance
kernel with a practical range of 10 units (Figure 4a), the two sample point data are
uncorrelated (for all practical purposes). In other words, the two kernels do not over-
lap (strictly speaking, they do so, but they have quasi-zero values at the region of
overlap). 

The corresponding four profiles of DOK predictions computed via equation (15)
for the four different covariance models considered above, are shown in Figure 5.
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FIG. 4: Point covariance kernels [CZ(sp � sk), p � 1,…,100]′ corresponding to four different covariance
models, evaluated at K � 2 sample locations s30 (filled circles) and s70 (open circles). 



Clearly, the shape of the covariance model is of paramount importance for the shape
of the resulting predicted profiles. All profiles “pass” through the sample data values
at the sample locations (i.e., z∗(sk) � z(sk), ∀k). In the presence of a large nugget ef-
fect, however, this sample data reproduction is achieved via a sharp discontinuity in
the predicted profile (Figure 5d). In the absence of a nugget effect, the resulting pro-
file gets smoother as the range of the covariance kernel increases; compare Figures
5a and 5b. For the same range, the shape of the covariance kernel near the origin dic-
tates the shape of the resulting predicted profile: for the exponential covariance case,
the predicted profile at the vicinity of the data locations is more linear (less smooth)
than that obtained via a Gaussian covariance; compare Figures 5b and 5c. 

If, on the other hand, area-to-point prediction is performed at P locations {sp,p �
1,…,P} using the vector z̄ of K areal-average data, the (P 
 1) vector of area-to-point
DOK predictions z∗ � [z∗(sp),p � 1,…,P]′ is written as in equation (11)

(16)

where Q– � [C–Z(sp,vk), p � 1,…,P,k � 1,…,K] is a (P 
 K) matrix of area-to-point co-
variance values: 
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FIG. 5: Four different profiles (dotted lines) of DOK point-to-point predictions at P � 100 transect lo-
cations resulting from the four different point covariance kernels of figure 4 using the K � 2 point support
sample data z(s30) � 20 and z(s70) � 30 (open circles).



where the p-th row of matrix Q– is the vector c̄′p � [C–Z(sp,vk), k � 1,…,K] of area-to-
point covariance values between the p-th prediction location sp and all K supports,
while the k-th column of matrix Q– is the vector [C–Z(sp,vk), p � 1,…,P]′ of area-to-
point covariance values between all P prediction locations and the k-th support vk. 

To illustrate the influence of the regularized covariance kernels on the shape of the
predicted profiles, I consider again P � 100 equally spaced prediction locations {sp,p
� 1,…,100} along a 1D transect. Now the available data consist of K � 2 areal-aver-
age measurements z̄(v1) � 20 and z̄(v2) � 30 of unequal support. The support v1 is
centered at location s30 and is a line segment of length �v1� � 21 units, whereas the
support v2 is centered at location s70 and is a line segment of length �v2� � 11 units.
The same four covariance models considered above are also used for this example.
The resulting regularized covariance kernels [C–Z(sp,v1), p � 1,…,P]′ and [C–Z(sp,v2), 
p � 1,…,P]′ for the four different covariance models, that is, the resulting two
columns of matrix Q– , are plotted in Figure 6. 

The differences between the original covariance kernels (Figure 4) and the regu-
larized ones (Figure 6) are evident. In general, all regularized kernels do not reach a
maximum of one, that is, their peaks are lower than those of the kernels in Figure 4.
The difference in these peaks is a function of the support size and the covariance
model: for a given plot, the kernel on the left is regularized by a larger support (�v1� �
21) than the kernel on the right (�v2� � 11). All regularized kernels appear much
smoother than their original counterparts, with the exception of the kernels in Figure
6c for which the differences are minimal: regularization of covariance kernels with
parabolic shape at the origin and large range (with respect to the extent of the sup-
port) yields regularized kernels that are similar to their original counterparts. This is
due to the fact that averaging now includes very similar point covariance values (es-
pecially near the origin). 

One of the most pronounced changes is that of the regularized kernels of Figure 6a
with respect to those of Figure 4a: regularization of covariance kernels with linear
shape at the origin and small range (with respect to the extent of the support) yields
regularized kernels with nonlinear shape at the origin that are much smoother and
less peaked than their original counterparts. Another important difference is that
found between Figure 6d and Figure 4d: the nugget effect in the original kernels is
reduced in their regularized counterparts. This reduction of the point support nugget
effect due to regularization depends on the relative magnitude of that nugget effect
and on the size (and shape) of the support. The regularized kernels, however, are still
discontinuous; that discontinuity has now “migrated” at separation distances s � si
equal to the size of the support vk. Note that si denotes a discretization location; see
equation (6). 

The corresponding four profiles of DOK area-to-point predictions computed in
equation (16) for the four different covariance models considered above, are shown
in Figure 7. The shape of the regularized covariance kernel is again of paramount im-
portance for the shape of the resulting predicted profiles. All predicted profiles are
coherent, because the sample areal data are reproduced by construction, that is, 1/21
∑40

p�20 z∗(sp) � 20 � z̄(v1), and 1/11∑75
p�65 z∗(sp) � 30 � z̄(v2). 
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In the presence of a large nugget effect, the reproduction of the areal data is
achieved via a discontinuity in the predicted profile at the support boundaries (Figure
7d). Area-to-point interpolation yields point surfaces with sharper discontinuities at
support boundaries as the relative nugget of the point covariance model CZ(h) in-
creases (compare Figures 7b and 7d). At the limit, area-to-point interpolation in the
case of a pure nugget effect for CZ(h) yields the choropleth map; see section 5.1. In
the absence of a nugget effect, the resulting profile becomes smoother as the range of
the covariance kernel increases; compare Figures 7a and 7b. Note also that, in the
case of the Gaussian covariance kernel, the resulting area-to-point profile (Figure 7c)
is very similar to its point-to-point prediction counterpart (Figure 5c), with the very
important difference that the latter is not coherent with respect to the areal data (it is
coherent with respect to the point data). 

5. LINKS WITH OTHER AREA-TO-POINT SPATIAL INTERPOLATION METHODS 

In this section, I identify key links between the proposed geostatistical framework
and several existing approaches for area-to-point interpolation, namely choropleth
mapping, different forms of kernel smoothing, and pycnophylactic interpolation with
Laplacian smoothing, on a quasi-infinite domain without non-negativity constraints.
More precisely, I illustrate that the above methods invoke particular (implicit or ex-
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FIG. 6: Regularized covariance kernels [C
–

Z(sp,vk), p � 1,…,100]′ corresponding to four different point
covariance models. Regularization is performed by K � 2 supports: v1 with length �v1� � 21 centered at lo-
cation s30 (corresponding regularized kernel marked with filled circles), and v2 with length �v2� � 11 cen-
tered at location s70 (corresponding regularized kernel marked with open circles).



plicit) assumptions regarding the point covariance model CZ(h), and thus can be re-
garded as special cases (or particular implementations) of the proposed general geo-
statistical framework for area-to-point interpolation. 

Before proceeding, it is necessary to clarify some terms that often have different
meaning in geography and spatial statistics. Any method for area-to-point prediction
that reproduces the areal data at their supports is actually an interpolation method, in
analogy to methods of point-to-point prediction that reproduce the point support
sample data at their locations. Smoothing (or filtering) pertains to prediction methods
that do not satisfy such areal data constraints, in analogy to methods of point-to-point
prediction that do not reproduce the point support sample data at their locations. The
term smoothing, however, is often used in Geography to indicate: (i) changes in areal
values assimilated to point centroids, or (ii) elimination of the abrupt discontinuities
incurred by the choropleth map. None of these reasons, however, is linked to the
areal data constraint, which is precisely what should dictate the use of the qualifier in-
terpolation versus smoothing. 

5.1. The Choropleth Map Case 

The choropleth map is the simplest coherent method for area-to-point interpola-
tion, whereby any predicted value z∗(s) within the support vk of an areal-average
datum z̄(vk) is equal to that datum value. Although choropleth mapping is typically
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FIG. 7: Four different profiles (dotted lines) of area-to-point DOK predictions at P � 100 transect loca-
tions resulting from the four different regularized covariance kernels of figure 6 using the K � 2 areal-
average sample data z̄(v1) � 20 and z̄(v2) � 30; solid lines delineate the supports of the two areal data: v1
with length �v1� �21 centered at location s30, and v2 with length �v2� � 11 centered at location s70.



used as a visualization tool, it can be regarded as a special case of areal interpolation,
whereby the source data are defined on areal supports and the target data are point
values of the same variable. In many applications (including visualization), and in the
absence of other information on the spatial distribution of point values, choropleth
maps are used for inference purposes while acknowledging the pitfalls associated
with such an inference. In addition, it is not rare to advocate the use of choropleth
mapping under the assumption of constant point support attribute values within areal
supports. As it is shown in this section, this assumption is a consequence of another
assumption:  lack of spatial correlation at the point support level. 

Assume, for a moment, that the point support values are spatially uncorrelated, or
formally: 

(17)

which is the classical definition of the covariance of a white noise process with vari-
ance CZ(0), representing complete lack of spatial correlation (also termed pure
nugget effect in the geostatistical jargon). 

Recall from equation (6) that the area-to-point covariance C–Z(s,vl) between a point
s ∈ vk and a support vl is the average point covariance CZ(s � s′) between all possible
vectors formed by two points s ∈ vk and s′ ∈ vl. Under the assumption of spatial in-
dependence, and for disjointed supports, it follows that C–Z(s,vl) � 0, ∀l � k, since δss′
� 0, ∀s ∈ vk,s′ ∈ vl. In addition, the covariance C–Z(s,vk) between a point s ∈ vk and
the support vk can be expressed as: 

Recall from equation (5) that the area-to-area covariance C–Z(vk, vl) between two
supports vk and vl is the average point covariance CZ(s � s′) between all possible vec-
tors formed by two points s ∈ vk and s′ ∈ vl. Under the assumption of spatial inde-
pendence and for disjointed supports, it follows that C–Z(vk,vl) � 0, ∀k � l, since δss′ �
0, ∀s ∈ vk,s′ ∈ vl. In addition, the variance C–Z(vk,vk) of the k-th areal support vk can
be expressed as:

In summary, for the case of disjointed supports, the assumption of spatial indepen-
dence for the point support values yields the following area-to-point and area-to-area
covariances:
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Using the above expressions for the area-to-area covariance terms, the top relation
of the DOK system of equation (11) becomes

with the bottom relation ∑K
l�1 ω(vl) � 0 of the DOK system of equation (11) just

being used to solve for ψ. 
Using the above expressions for the area-to-point covariance terms, the DOK pre-

diction z∗(s) of equation (10) for any location s ∈ D becomes

From the last two equations, it is evident that z∗(s) � z̄(vk), ∀s ∈ vk, that is, the pre-
dicted values within any support vk are all equal to the corresponding areal-average
datum z̄(vk). Note that the above result does not depend on the variance CZ(0) of the
point support values. 

It has thus been shown that the choropleth map solution of the area-to-point inter-
polation problem can be viewed as a particular case of the geostatistical framework,
under the assumption of spatial independence regarding the point support values.
Evidently, this assumption of spatial independence at the point support level is rather
unrealistic. Consequently, choropleth mapping could be extremely misleading and
should be used (if at all) with utmost caution. 

5.2. The Kernel Smoothing Case and Its Variants 

In what follows, I illustrate the connections between the kernel smoothing method
of Brillinger (1990, 1994), as well as two closely related approaches suggested by
Bracken and Martin (1989) and Martin (1996), and the proposed geostatistical frame-
work. In particular, I demonstrate that Brillinger’s local weighting scheme can be
viewed as a particular (albeit incoherent) implementation of the proposed geostatisti-
cal approach. The original development of Brillinger’s method did not consider the
areal data constraint and was correctly termed a smoothing method. The motivation
for this method was the construction of contour lines from areal data for visual display
and exploratory data analysis. Brillinger’s method, however, has also been used for
spatial prediction and has been contrasted to Tobler’s pycnophylactic interpolation;
see, for example, Gotway and Young (2002). 

In this subsection, z̃(vk) denotes the integral (or sum in the discrete case) of all
point values z(s) in support vk:

Similarly, C̃Z(s,vk) denotes the total area-to-point covariance, that is, the sum of
point covariance values CZ(s � s′) between a prediction location s and all locations 
s′ ∈ vk:
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(18)

Finally, C̃Z(vk,vl) denotes the total area-to-area covariance, that is, the sum of the
point covariance values CZ(s � s′) between any two locations s ∈ vk and s′ ∈ vl:

(19)

Consider now the case of area-to-point Simple Kriging (SK) with K areal-total data
{z̃(vk), k � 1,…,K}, and a known stationary mean mZ � 0 (in this case, the mean m̃Z of
the areal data is also zero): 

(20)

where φs(vk) denotes the weight assigned to the k-th areal datum z̃(vk) for prediction
at location s. 

The corresponding system of normal equations (area-to-point SK system) is writ-
ten as

(21)

which is a variant of the area-to-point OK system of equation (4) with no constraint
on the weights. 

Brillinger (1990, 1994) proposed a smoothing scheme very similar to that of equa-
tions (20) and (21), which accounts explicitly for the support differences between the
available areal data and the point predictions, under the assumption of spatial inde-
pendence at the area level only. In other words, although the areal data are assumed
uncorrelated, that is, C̃Z(vk,vl) � 0, ∀k � l, they are still correlated with the point
values, that is, C̃Z(s,vk) � 0, even for locations s ∉ vk; it is very difficult, however, to
conceptualize a process that exhibits such a pattern of spatial correlation. A possible,
but very particular, scenario would correspond to a point covariance with a range that
does not exceed the extent of any support. In this case, all the areal covariance terms
would be zero, and the only nonzero area-to-point covariance term would be C̃Z(s,vk,
only for s ∈ vk.

If one adopts the above assumptions, the solution of the above area-to-point SK
system yields the following K weights: 

and the area-to-point SK prediction of equation (20) becomes
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or, in words, only the areal datum z̃(vk) at support vk within which prediction is per-
formed is taken into account. 

The denominator C̃Z(vk,vk) and numerator C̃Z(s,vk) of the k-th weight φs(vk) are
related as

(22)

or, in words, the total (co)variance of the k-th support vk is the integral of the total
area-to-point covariance C̃Z(s,vk) within that support. 

If the integral ∫s∈vk
φs(vk) ds of all weights applied to the k-th areal datum were one,

then the resulting set of point predictions would be coherent, that is, the sum of the
predicted point values within any support vk would identify the corresponding areal-
total datum z̃(vk). Not all prediction locations, however, are located within the sup-
port vk, and consequently equation (22) holds only for a subset of prediction locations
{s ∈ vk}. In other words, the common denominator C̃Z(vk,vk) of each weight φs(vk) is
not equal to the sum of all numerator terms, that is, C̃Z(vk,vk) � ∫s∈vk

C̃Z(s,vk) ds, which
entails that the sum of the weights applied to the k-th areal datum is not equal to one. 

The above variant of kernel smoothing does not yield coherent predictions, due
precisely to the assumption of uncorrelated areal data, or, due to C̃Z(vk,vk) � 0, ∀k �
l. This assumption leads to a set of weights that do not satisfy the relation ∫s∈vk

φs(vk) 
ds � 1, which can be regarded as another way of ensuring the coherence of point
predictions. 

It has thus been shown that the kernel smoothing method of Brillinger (1990,
1994) can be viewed as a variant of the geostatistical approach, which does not yield
coherent predictions due to the inconsistent modeling of area-to-area and area-to-
point covariances (in particular due to the assumption of uncorrelated areal data). 

To ensure the coherence of point predictions Bracken and Martin (1989) proposed
to standardize the above weights so that they sum to one. Their approach, however,
assumes that the areal datum z̃(vk) can be collapsed to a point datum z(sk) typically lo-
cated at the centroid of support vk, and thus has the following shortcomings: (i) it in-
correctly associates an areal datum with a location; (ii) the support differences
between the data and sought-after predictions is not accounted for; (iii) the areal data
are assumed uncorrelated; and (iv) the predicted point values are rendered coherent
by a simple standardization of the resulting weights, which is not equivalent to solving
the theoretically correct Kriging system. In addition, since their method reproduces
the areal data, it should be termed kernel interpolation instead of kernel smoothing. 

In what follows, I investigate the proposal of Martin (1996) to truncate the covari-
ance kernel at the boundaries of each support vk. Note that, contrary to the original
approach of Martin (1996) that treats areal data as point data assigned to support cen-
troids (with all associated shortcomings mentioned above), the support differences
are hereafter correctly accounted for. 

Consider the case of adopting the following model of nonstationary spatial correla-
tion at the point support level: 

(23)C
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which is a rather unrealistic assumption because it entails that support boundaries are
essentially barriers. In most cases, however, this is not true, since such boundaries are
arbitrary and artificial. 

The above equation implies the following area-to-point covariance C̃Z(s,vk):

(24)

In light of this covariance structure, the area-to-point SK prediction of equation
(20) at any location s ∈ vk is written as

or, in words, only the areal datum z̃(vk) at support vk within which prediction is per-
formed is taken into account. 

Per equation (22), the denominator C̃Z(vk,vk) of each weight φs(vk) is a normaliza-
tion constant, independent of the prediction location s, which ensures that the inte-
gral of all weights applied to the k-th areal datum z̃(vk) equals one, or, ∫s∈vk

φs(vk) ds �
1. The truncation procedure thus ensures coherent point predictions. 

Recall, however, that (per the dual Kriging formalism) the interpolated surface is a
superposition of covariance functions, which entails that the discontinuous covari-
ance structure of equation (24) will induce discontinuities in the predicted point sur-
face at the boundaries of the K supports. The nonstationary covariance structure of
equation (24) should therefore be avoided if support boundaries are artificial and in-
teractions across areas are important to model. Since both conditions typically apply
in practice, I do not recommend this local truncation of the covariance kernel, which
yields coherent predictions at the expense of artifact discontinuities at the support
boundaries that call for rather adhoc procedures to correct them a posteriori. 

It has thus been shown that: the truncated area-to-point kernel smoothing method,
which is the theoretically correct interpretation of the approach proposed by Martin
(1996) can be viewed as a particular implementation of the geostatistical approach,
which yields coherent but discontinuous (at the support boundaries) predictions. 

5.3. The Case of Laplacian Smooth Pycnophylactic Interpolation 

Tobler (1979) proposed a method for area-to-point spatial interpolation, whereby
the smoothness of point support values is dictated by Laplace’s partial differential
equation (PDE) and some prescribed boundary conditions (BCs). In his method, To-
bler iteratively solves Laplace’s PDE based on the prescribed BCs via a finite differ-
ence approximation, under the constraint of non-negative point predictions z∗(s) � 0
and mass preservation ∫s∈vk

z∗(s) ds � z̃(vk). In what follows, I derive the particular
point support semivariogram types that are implictly associated with Tobler’s method.
In addition, I demonstrate that Tobler’s solution, on a quasi-infinite domain without
the non-negativity constraint, can be derived as a particular case of the proposed geo-
statistical framework. 

Assume that there is prior knowledge regarding the variable under study, which
dictates that the unknown true point support surface {z(s), s ∈ D} satisfies the 2-D
Poisson’s PDE. This time-independent PDE is widely used in electrostatic (potential)
theory, and is expressed as 
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(25)

where ∇2 denotes the linear differentiation operator, and f (s) denotes a spatially dis-
tributed source term. The homogeneous version of the above PDE, that is, with no
source term f(s) � 0, ∀s, is none other than Laplace’s equation. In this paper, I focus
on the free-space solution of Poisson’s equation, and consider a quasi-infinite domain
D with constant flux at its boundary: ∂z(s)/∂τ � 0, where τ denotes a unit vector per-
pendicular to the boundary of D, with outward direction. 

The solution to equation (25) in terms of linear operators is simply: 

where (∇2)�1 denotes the inverse of the differential operator, or the integral operator. 
Since integration can also be seen as a convolution operation, the above solution

can be defined as

(26)

where the convolution kernel G(s,s′) is the Green’s function associated with the dif-
ferential operator ∇2 (Greenberg 1971). 

The Green’s function is defined by the following relation: 

where δ(s � s′) denotes the Dirac delta function that satisfies ∫s′∈D δ(s � s′) ds′ � 1
and ∫s′∈D δ(s � s′) f(s′) ds′ � f(s). 

In the terminology of linear systems theory, the Green’s function is the impulse re-
sponse of the differential operator ∇2 to a unit source δ(s � s′) placed at location s. If
the solution to Poisson’s equation is interpreted as a potential field, then the Green’s
function quantifies the influence of a unit charge, or source, δ(s � s′) placed at loca-
tion s on any other point s′ in the domain. In the general case, the Green’s function is
nonstationary, hence the notation G(s,s′) instead of G(s � s′), because it depends on
the prescribed BCs. In other words, the influence of a unit point source δ(s � s′)
placed at location s on another location s′ is different when s′ is close to the domain
boundary than when it is not. From this view point, equation (26) states that the solu-
tion to Poisson’s equation is a superposition of elementary solutions given by the
product of Green’s functions G(s,s′) with the (nonunit) source term f (s′). 

It can be easily shown that (∇2)�1f(s) solves equation (25), since
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In the case of a quasi-infinite domain, the boundary conditions play no role, and
the (free-space) Green’s function is stationary, or G(s,s′) � G(s � s′). In addition, the
free-space Green’s function associated with the Laplacian operator ∇2 depends on
the dimensionality of the problem at hand (Greenberg 1971). In particular

• in 1-D, G(s,s′) � �s � s′�: the Green’s function is the Euclidean distance between
any two 1-D-coordinates;  

• in 2-D, G(s,s′) � 1–
2π log(�s � s′�): the Green’s function is the logarithm of the

Euclidean distance between any two 2-D-coordinate vectors; and  
• in 3-D, G(s,s′) � �1–

4π�s � s′��1: the Green’s function is the negative inverse
Euclidean distance between any two 3-D-coordinate vectors. 

It is necessary here to introduce the concept of a generalized covariance function
KZ(h) for an intrinsic RF model of order zero (IRF-0), that is, a RF with stationary in-
crements and a possibly unbounded (without sill) semivariogram γZ(h). The term
order zero implies that the trend component is a polynomial of order zero, that is, a
constant mZ; see Chilès and Delfiner (1999). In this case, the generalized covariance
is KZ(h) � A � γZ(h), where A is an arbitrary constant such that A � γZ(h) 	 0. In
other words, the generalized covariance of order zero is equal to �γZ(h) up to an ar-
bitrary constant. This arbitrary constant A in the definition of a generalized covari-
ance does not affect the solution of the DOK system of equation (14) or the DOK
prediction of equation (13), due to the zero sum constraint on the weights. 

By replacing the ordinary covariance CZ(h) with the generalized covariance KZ(h)
in the DOK prediction of equation (13), one can express that prediction in terms of
the point semivariogram model γZ(h):

where γZ(s � sk) denotes the semivariogram between the prediction location s and
any sample location sk. The DOK weights {η(sk),k � 1,…,K} and the Lagrange para-
meter ξ are obtained by solving the DOK system of equation (14), whereby the data-
to-data covariance term CZ(sk � sl) is replaced by the semivariogram term γZ(sk � sl).
The solution of this semivariogram-based system yields the same weights and La-
grange parameter as the DOK system of equation (14). 

The set of all point DOK predictions can be regarded as a discrete approximation
to the continuous solution of equation (26), with K point sources {η(sk),k � 1,…,K}
replacing the continuous source term f(s′), and the stationary point semivariogram
term γZ(s � sk) playing the role of the free-space Green’s function (Matheron 1971).

Indeed, if one applies the differential operator ∇2 to the DOK-predicted surface
{z∗(s), s ∈ D} of equation (13), the linearity of ∇2 entails

The DOK-predicted surface will therefore satisfy Poisson’s equation if the point
semivariogram function γZ(h) used for prediction is the free-space Green’s function
of the differential operator (Kitanidis 1999), that is, if γZ(s � sk) � G(sk � sl), and 
γZ(sk � sl) � G(s � sk), in which case
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which entails that the resulting DOK surface is harmonic at any location s ∈ D not
coinciding with a sample location sk, and exhibits K singularities at the K sample loca-
tions {sk,k � 1,…,K} where it attains the corresponding sample data values. Note that
in the 2-D and 3-D cases, the scale (variance) terms 1–

2π and 1–
4π appearing in the corre-

sponding free-space Green’s functions do not play any role for prediction, because
they cancel out in the DOK system. 

Indeed, it is well known (e.g., Chilès and Delfiner 1999) that Ordinary Kriging in
1-D with a linear semivariogram yields a perfect screening effect: only the two neigh-
boring samples located on either side of the prediction location receive non-zero
weights. In this case, the resulting interpolated profile is piecewise linear, that is, har-
monic at all unsampled locations. In addition, it can be shown through the application
of the divergence theorem that the above solution satisfies the constant flux condition
at the boundary of the domain (Kitanidis 1999). 

Finite domains with different shapes and various types of BCs could be also handled
analytically by modifying the free-space Green’s functions to become nonstationary,
via conformal mapping (Greenberg 1971). Such analytical modifications could be used
to construct non-stationary and permissible (conditionally negative definite) semi-
variogram models at the point support level. Alternatively, BCs could be handled as
values or known local derivatives within the geostatistical framework (Chilès and
Delfiner 1999). In addition, one can formally associate other types of smoothness cri-
teria with Green’s functions and covariance kernels (Hilgers 1976; Matheron 1981;
Wahba 1990; Smola, Schölkopf, and Müller 1998; Evgeniou, Pontil, and Poggio
2000), but the treatment of these issues is beyond the scope of this paper. 

In summary, I have shown that Tobler’s smoothness criterion implies the following
point support semivariogram models: linear in 1-D, logarithmic in 2-D, and negative
inverse distance in 3-D. It should be stressed that these particular semivariogram
models are parameter-free (apart from a multiplicative constant that cancels out in
the Kriging system). In other words, these semivariogram models need not be fitted
to any observations, for example, there is no range parameter that has to be adjusted
according to the areal data. This explains the fact that Tobler’s approach has been
used without paying much attention to inference: in this case, inference is tanta-
mount to the adoption of the method, that is, the assumption that the spatial distrib-
ution of point support values is governed by Poisson’s PDE. It is also interesting to
note that both the linear and logarithmic (or de Wijsian in the geostatistical jargon)
semivariogram models imply self-similarity and can be regarded as fractal models
(Chilès and Delfiner 1999). In particular, in 1-D, a linear semivariogram corresponds
to the process of Brownian motion (or Wiener-Lévy process). 

Going back to the case of area-to-point interpolation, the DOK prediction z∗(s) is
given by a modified (but equivalent) version of equation (10), written in terms of
semivariograms:

(27)

where γ–s � γ–Z(s,vk), k � 1,…,K]′ denotes the (K 
 1) location-specific vector of area-
to-point regularized semivariogram values between the prediction location s and any
areal support vk. 
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The corresponding DOK system of equations is also given by a modified (but
equivalent) version of equation (11), written in terms of regularized semivariograms: 

(28)

where Γ
–

� γ–Z(vk,vl), k � 1,…,K, l � 1,…,K] denotes the (K 
 K) matrix of area-to-
area semivariogram values between any two supports vk and vl. 

The DOK point surface computed via equations (27) and (28) is coherent, that is,
reproduces the areal average data, since the above equations are equivalent to equa-
tions (10) and (11), and harmonic only outside the support of each areal datum, that
is, the interpolated surface does not satisfy Poisson’s PDE at all points within the K
areal data supports (as opposed to the point-to-point prediction case where singular-
ities occur only at the K point sample locations). Note, however, that the interpolated
surface is the closest possible approximation to a harmonic surface, under the con-
straint of reproduction of the available areal-average data. 

In summary, I have shown that Tobler’s pycnophylactic interpolation with Lapla-
cian smoothing, on a quasi-infinite domain without non-negativity constraints, corre-
sponds to a particular solution of the geostatistical framework, whereby the
semivariogram model adopted at the point support level is identified to the free-
space Green’s function of the Laplace differential operator. 

It should be noted here that Tobler’s original approach calls for a regular grid of
prediction locations in order to apply the finite difference approximation, whereas in
the geostatistical framework the prediction locations can be arbitrarily specified. Sim-
ilarly, the recently developed variant of pycnophylactic interpolation using triangular
irregular (TIN) surface representation (Rase 2001) alleviates the regular grid restric-
tion of Tobler’s method. 

On the computational side, in the case of P prediction locations and K areal data,
Tobler’s approach calls for the inversion of a (P � K) 
 (P � K) matrix, whereas the
geostatistical framework calls for the inversion of a much smaller K 
 K matrix, and
can thus handle much larger problems without resorting to iterative system solvers.
When the number of areal data is large (K � 5000), the geostatistical solution would
call for the inversion of a large K 
 K matrix, which could be computationally
prohibitive. 

In such situations, one could perform DOK with moving local neighborhoods, thus
restricting the number of nearby areal data considered for prediction from K to K(s),
with K(s) �� K. This would avoid the inversion of a single large matrix C– to compute
the DOK weights; see equation (8). The extent of such neighborhoods is typically
identified to the range of the covariance model CZ(h). In DOK with moving local
neighborhoods, however, the area-to-area covariance matrix C– is location specific,
hence one would have to solve P local (but small) DOK systems, one per prediction
location s. The coherence of the resulting area-to-point predictions is still guaran-
teed, if one uses the same K(s) areal data to predict all the unknown values {z(s), s ∈
vk} at all locations s within any support vk. The above local DOK shortcut is tanta-
mount to an adaptive kernel smoothing procedure, whereby the covariance kernel re-
mains fixed (including its functional form and parameters), and only the number K(s)
of nearby areal data changes from one prediction location s to another. Note, how-
ever, that the equivalence between Kriging, splines, radial basis functions, and
pycnophylactic interpolation applies to the global (not the local) prediction scheme. 
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6. INFERENCE OF A POINT SUPPORT COVARIANCE MODEL 

Since it has been demonstrated that the common thread of most area-to-point in-
terpolation methods is the point covariance model CZ(h), and this model is a free
parameter in the proposed geostatistical framework; it behooves us to address the
issue of inferring such a point covariance model from the available areal data. As in
the point-to-point Kriging case, the particular point covariance model adopted will
have a major impact on the standard error of the resulting predictions, not so much
on the actual predictions themselves (Cressie 1993; Chilès and Delfiner 1999). 

Recall from equation (5) that the regularized covariance is computed from the
original point covariance CZ(h) via an arithmetic averaging (regularization) proce-
dure. Essentially, regularization of a point covariance model CZ(h) by a support vk is a
special case of double convolution of function CZ(h) with a weight function whose 
elements are all equal to  1––

�vk�
(Journel and Huijbregts 1978; Vanmarcke 1983; Chilès

and Delfiner 1999). Consequently, the inference of the point covariance from the
regularized one calls for the reverse procedure of deconvolution or deregularization.
More formally, this inference problem constitutes an underdetermined inverse prob-
lem (Menke 1989; Bertero and Boccacci 1998; Vogel 2002). 

In the case of equal data supports, �vk��constant, ∀k, the areal covariance is sta-
tionary and can be readily computed from the available areal data. In the general case
of unequal data supports, however, there is an important complication: the regular-
ized covariance C–Z(vk, vl) between any two areal data supports vk and vl is nonstation-
ary, and cannot be estimated from a single areal data realization. In other words, one
cannot simply assimilate the areal values to their respective support centroids and
then compute a sample covariance C–Z(vk � vl); that covariance calculation presup-
poses stationarity. If one ignores this important complication, and computes a
pseudo-stationary covariance C–Z(vk � vl) using support centroids, then there are var-
ious solutions to the inference problem; the term pseudo-stationary is used here to
distinguish between the actual nonstationary areal covariance C–Z(vk, vl) and the co-
variance C–Z(vk � vl) computed from, say, support centroids. 

One possible solution is to compute the pseudo-stationary covariance values 
C–Z(vk � vl), possibly fit a functional model to them, assume a constant support vk, and
perform deconvolution (Journel and Huijbregts 1978; Mockus 1998; Atkinson and
Martin 1999). That constant support can be (subjectively) chosen as the most often
repeated one; alternative definitions of an “average” support are also possible. Infer-
ence typically proceeds in an iterative fashion, whereby a parametric point covariance
function CZ(h;θ) is first postulated, and all regularized area-to-area covariance values
C–Z(vk, vl;θ) are calculated for all possible combinations of support pairs vk and vl.
Here θ denotes a vector of parameter values (e.g., range and sill) specifying the point
covariance model. The resulting regularized area-to-area covariance values are then
compared to the pre-computed, pseudo-stationary covariance values C–Z(vk � vl), and
a summary measure of their discrepancy is recorded. A new set of parameters for the
point covariance model is then proposed, and the entire procedure is repeated until
the above discrepancy is smaller than a predefined tolerance value. This procedure
can be also extended to account for uncertainty in the parameter vector θ using a hi-
erarchical Bayesian framework (Gelfand, Zhu, and Carlin 2001). 

A more general approach that does not rely on the computation of a pseudo-sta-
tionary covariance C–Z(vk � vl) would call for a prior classification of the shape and size
(and possibly orientation) of the available data supports. A genuine stationary covari-
ance could then be computed from each set of supports with similar size and shape,
and its deconvolution could be performed. Since several areal support covariances
would be calculated, based on the prior shape and size classification, there could be
more than one deconvolved covariance value for the same lag h. The resulting point
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covariance values should then be combined into a single, final value of the point sup-
port covariance CZ(h) for lag h. Last, a parametric covariance model should be fitted
to these combined covariance values to ensure positive definiteness. 

Alternatively, if one assumes that the point support values are multivariate Gauss-
ian, then the method of maximum likelihood (ML) could be used to infer a paramet-
ric point covariance model. In the multivariate Gaussian case, the likelihood p(z�θ) of
the point support values is written as (Mardia and Marshall 1984; Cressie 1993;
Pardo-Igúzquiza 1998):

where �Cθ� denotes the determinant of the point support covariance matrix (indexed
by the parameter vector θ), and mZ denotes a (K 
 1) vector of mean values for the
point support data. 

The estimated parameter vector θ∗ is the one that maximizes the probability of ob-
serving the particular combination z of K point values. The ML procedure involves it-
erative minimization of the negative loglikelihood (which is nonlinear in the
parameter θ), and thus becomes computationally very expensive for a large number
(K � 1000) of areal data. 

When only areal data are available, the above equation could be modified as

where �C– θ� denotes the determinant of the areal data-to-data covariance matrix (still
indexed by the parameter vector θ of the point covariance model), and m– Z denotes a
(K 
 1) vector of mean values for the areal data. The only difference with the point
support case, is that now the likelihood is defined with respect to the areal data,
which entails that the point support data vector z is replaced by z̄, the point mean
vector mZ is replaced by m– Z, and the point-to-point covariance matrix Cθ is replaced
by C– θ. 

The very important advantage of the ML procedure over the previously described
approaches is that no comparison is made between a proposed set of area-to-area co-
variance values C–Z(vk, vl;θ) and some pseudo-stationary covariance values C–Z(vk � vl).
The ML approach essentially circumvents the problem of calculating the areal data
covariance (which is nonstationary), but it relies heavily on the multivariate Gaussian
assumption.

7. DISCUSSION 

The geostatistical framework for area-to-point prediction presented in this paper
constitutes a general unifying framework for interpolating point values from available
areal data. It has been shown that this framework explicitly accounts for the different
data supports and their nonstationary spatial correlation, and it is coherent, that is,
yields point predictions that satisfy any linear areal-average or areal-total datum con-
straint. In addition, the proposed geostatistical framework allows an explicit investi-
gation of the links between various existing methods for area-to-point interpolation.
All such methods make specific implicit or explicit assumptions regarding the covari-
ance CZ(h) or semivariogram γZ(h) model of the point support values. In the choro-
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pleth map case, that point covariance model is assumed to be a pure nugget effect
(complete absence of spatial correlation), whereas in the case of kernel smoothing
that covariance model is none other than the kernel function adopted for interpola-
tion. In the case of Tobler’s pycnophylactic interpolation with Laplacian smoothing,
the point semivariogram model is linked to the smoothness criterion (or the shape of
the resulting harmonic surface) implied by Laplace’s equation, and it is linear in 1-D
and logarithmic in 2-D. 

The various existing methods for area-to-point interpolation differ in their degree
of flexibility with respect to the point covariance or semivariogram model: the choro-
pleth map and Tobler’s pycnophylactic interpolation specify implicitly (fix) that co-
variance model, thus excluding any possible user control over that model. On the one
hand, the kernel smoothing method allows for a user-specified kernel or equivalently
for a user-specified covariance model, but its current applications either do not ac-
count for the difference in data supports or do not yield coherent predictions. The
proposed geostatistical framework allows for a wide spectrum of parametric point co-
variance models by essentially leaving their functional form and their parameters un-
specified, while always ensuring the coherence of predictions. 

The most critical requirement for the geostatistical framework is the availability of
the point support covariance model. This requirement, however, is not a drawback,
but rather an advantage because it explicates the subjective decisions made at the
point support level by all existing methods for area-to-point interpolation. The very
attempt to infer a point covariance model, even in the rather futile case of unequal
areal data supports, is far more data-consistent than the arbitrary adoption of a kernel
or a smoothness criterion expressed in terms of partial derivatives. Of course, if there
exists physical justification dictating that the variable under study satisfies a particular
PDE, then this extremely valuable prior information should be incorporated in any
prediction endeavor. Since such information can also be expressed in terms of a point
covariance model, the geostatistical framework can easily cope with this situation,
and thus offers a flexible and more general alternative to existing area-to-point inter-
polation methods. The only restriction on the particular point covariance model
CZ(h) adopted for area-to-point interpolation is that of positive definiteness (or con-
ditional negative definiteness in the case of the semivariogram γZ(h)). In other words,
any arbitrary weighted linear combination of covariance values should yield a non-
negative variance. This condition is linked to the requirement that the covariance be
a permissible “distance” measure, and places restrictions on the types of functions
that can serve as point covariance models. For example, the tent function (also known
as triangular covariance model) suggested by Tobler (1999) is only positive definite in
1-D, and hence cannot be used for interpolation in two or three dimensions (Chilès
and Delfiner 1999). In short, one cannot adopt any arbitrary-shaped kernel as covari-
ance function without first ensuring that it is indeed positive definite. 

One of the most striking results of this paper is the derivation of the choropleth
map solution as a limiting case of the geostatistical framework under the rather unre-
alistic assumption of spatially uncorrelated point support values. The choropleth map
is sometimes advocated as a valuable representation of, say, population density sur-
faces, because such surfaces have indeed discontinuities that can coincide with sup-
port boundaries. It was shown, however, that the discontinuities induced in the
predicted point surface via the choropleth map are a result of the overwhelming con-
tribution of the nugget effect, that is, they are surface characteristics stemming from
second-order effects. Surface discontinuities, however, are first-order effects, and
they should always be treated and generated as such. In other words, attribute values
that change abruptly between valid (not artificial) zone boundaries should be mod-
eled as the consequence of a nonstationary mean component, and not as the artifact
of the unrealistic assumption of spatially uncorrelated point values. One should first

Phaedon C. Kyriakidis / 287



and foremost strive to assess the fidelity of zone boundaries and then incorporate
them as first-order effects in area-to-point interpolation. 

Future research endeavors should be directed towards: (i) handling areal data de-
fined as arbitrary (linear or nonlinear) combinations of point values; (ii) developing
and testing methods for inferring a point support covariance model from available
areal data; (iii) incorporating observed data of the same variable at the point support
level, such as boundary conditions or sets of known-valued locations comprising geo-
graphical features; (iv) incorporating additional covariates at the areal or point sup-
port level; (v) accounting for error-prone areal data that do not warrant exact
reproduction; (vi) generating alternative synthetic realizations of point support values
using stochastic simulation subject to the above data constraints; and (vii) accounting
for non-Gaussian data. For ongoing research in items (i), (iii), and (vi), the reader is
referred to Kyriakidis and Yoo (2004). 
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