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ABSTRACT: Census enumerations are usually packaged in irregularly shaped geographical 
regions. Interior values can be interpolated for such regions, without specification of “control 
points,” by using an analogy to elliptical partial differential equations. A solution procedure is 
suggested, using finite difference methods with classical boundary conditions. In order to 
estimate densities, an additional nonnegativity condition is required. Smooth contour maps, 
which satisfy the volume preserving and nonnegativity constraints, illustrate the method using 
actual geographical data. It is suggested that the procedure may be used to convert observations 
from one bureaucratic partitioning of a geographical area to another. 
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1. INTRODUCTION 
 

The objective of this article is to clarify procedures for the preparation of a smooth map of a 
geographical distribution under the constraint that the original data arrive packaged in discrete 
collection regions. The latter situation is quite common in practice. One can, for example, obtain 
aggregate counts of individuals by state. From these data one might like to know how population 
density, a continuous quantity, varies over the particular portion of the earth. The assumption 
usually made is that the density within any individual reporting region is a constant, and it is 
implicitly asserted that this is optimal given that one lacks information to the contrary. For a 
single isolated region this assumption appears plausible, but for an interconnected set of regions 
it seems dubious. A common fact of geography is that places influence each other. This mutual 
influence of places can be interpreted mathematically, and one can exploit this geographical 
structure in order to enhance statements about places on the basis of a familiarity with events at 
nearby places. 
 The initial assumption is that there exists a density function, call it Z(x, y), which is 
nonnegative and has a finite value for every location x, y in the domain of concern. As a matter 
of notation, I distinguish among the several regions by the use of a single subscript. Thus Ri 
means the ith region, Hi denotes the value observed in this region, and Ai is the area of the region 
in square kilometers. The data regions are conveniently defined by polygons with a finite number 
of vertices using geographical coordinates. Thus the boundaries of the 3,077 counties of the 
contiguous United States can be described by 46,142 ordered latitude and longitude pairs, 
available on less than two meters of magnetic tape. The state boundaries are well described by 
15,296 points. The value observed in each region is assumed to be a count or enumeration; Hi is 
therefore a nonnegative finite integer. The density function to be found must have the pycno-
phylactic (mass preserving) property defined by 

ΙΙZ(x, y)dxdy = Hi 
for all regions. The ellipsoidal shape of the earth is here ignored, and I assume an equal area map 
projection. 
 One function that exactly matches the requirements is the uniform density, Z(x, y) = Hi /Ai if 
the location x, y is in Hi. Such a function is shown in the accompanying perspective diagram 
(Figure A), where the regions are states and the observations are numbers of people resident in 



each state on a particular day. Diagrams of this type are usually referred to as bivariate 
histograms. It is apparent that a contour map of this function would not be smooth. Nor do 
adjacent regions influence each other in the construction. My objective is to obtain a smooth 
density function, representable by contours. 
 

2. PREVIOUS WORK 
 

There is cartographic literature on this topic, for example, Robinson and Sale (1969, pp. 141-
170), in which the resulting diagrams are known as isopleth maps. The method of construction of 
such maps was outlined in 1845 by Lalanne as follows (Robinson 1971): 
 

“Suppose, in effect, that one partitions the territory of a country into a large number of 
sufficiently small parts so that it would provide a division as extensive as the communes of 
France; that at the centre of each of these divisions one raises a vertical, proportional to the 
specific population, or in other words, to the number of inhabitants per square kilometre in 
the territory of the commune in question; that one joins the extremities of all these verticals 
with a continuously curved surface, and finally one projects on a map, at a convenient scale, 
the contours traced on that surface which correspond to equidistant integral elevations: One 
will thus have lines of equal specific population and one will be able to observe the series of 
points along which the population is 30, 40, 50, …, 100 inhabitants per square kilometre.” 

 
The first population density isopleth map known was made in this manner by Ravn and 

published in 1857 (Robinson 1971). Thus the method of construction currently in use has not 
changed in more than 100 years. The value Hi /Ai is assigned to the geographical center of each 
of the regions, and the isopleths are drawn as if these values were isolated spot heights taken 
from a topographic surface. The mass-preserving property is generally not mentioned, an 
exception being Schmid and MacCannell (1955), who assert that this method yields 
approximately correct volumes. This latter idea perhaps stems from the conjecture that if the 
density in each region is linear, Zi = ai + bix + ciy, with x, y in Ri and Zi ∃ 0 in Ri then the 
pycnophylactic condition is satisfied under arbitrary rigid “tiltings” of the plane Zi about the 
geographic center of gravity, when this location is assigned the fixed density Hi /Ai. An isopycnic 
map could be made from such a piecewise linear density function, but it would consist of straight 
contour lines with jumps at the boundaries between polygons. Probably the most common 
technique is to connect centroids by a triangulation and then to construct a tent like surface from 
the observations Hi /Ai. For details see Schmid and MacCannell (1955). The first derivatives of 
the resulting contour maps have discontinuities along the triangulation lines instead of at the 
polygon edges. One might minimize these kinks, but it seems more attractive to search for a 
continuous and everywhere differentiable density function. Brooks and Carruthers (1953, pp. 
162-165) do consider mass preservation, but they treat the unnatural case in which the polygons 
are rectangular in shape and do not recognize that more than one mass preserving function can 
exist. Interpolation and contouring from values given at point locations is a much studied 
problem (for reviews, see Crain 1970; Schumaker 1976; Lawson 1978; Tobler 1979), but this 
literature is largely irrelevant to the present discussion. 

Nordbeck and Rystedt (1970) cover the case in which individual people are directly observed 
at coordinate locations. A rectangular kernel - the “floating grid” of Schmid and MacCannell 
(1955) - is then used to obtain a continuous and differentiable density function (also see Degani 



and Porter 1977). This is just an elementary version of techniques described in the statistical 
literature (e.g., Rosenblat 1956; Parzen 1962; Bartlett 1963; Cacaullos 1966) to obtain empirical 
probability densities and takes advantage of the fact that in Sweden data are often publicly 
available with the geographical coordinates of individual houses. When attempting to estimate 
geographical population densities on the basis of direct observations of individuals, one should 
base the kernel on empirical evidence describing the activity fields of people as given by 
Hägerstrand (1957, 1967) for example, rather than simply assume convenient mathematical 
forms for these kernels. One should also recognize that these geographical fields are neither 
spatially homogeneous nor isotropic. In the present instance we do not have observations on 
individuals, only spatial aggregates. Thus the task is closer in spirit to the visual information 
processing problem of enhancing a picture that has been blurred by aggregation within spatial 
regions, as discussed by Harmon and Julez (1973) for square polygons. Thus the problem 
considered is to attempt to produce smooth maps directly from the aggregate data. 
 

3. AN APPROACH 
 The following visualization may be helpful. Imagine that Figure A consists of blocks of 
clay, each state being represented by a different color, and that the masses of clay are 
proportional to population. We now wish to sculpt this surface until it is perfectly smooth, but 
without allowing any clay to move from one state to another and without removing or adding any 
clay. This physical picture is a reasonable approximation to the mathematical method proposed. 
The real analytical difficulty seems to lie in describing realistic geographical polygons such as 
Florida, Michigan, and Cape Cod, all with prespecified mathematical basis functions. 
Geographical regions are frequently made up of several disjoint pieces, islands, or are multiply 
connected, containing lakes. “Cuts,” sets of zero measure, are used in the polygon definitions. 
These practical considerations make it difficult to apply directly the elegant histospline technique 
of Boneva, Kendall, and Stefanov (1971) or the extension by Schoenberg (1973), both of which 
work so well for simple rectangular polygons. A solution for regular polygons is of little 
geographical importance. Because of these mathematical difficulties, an approximate numerical 
approach is proposed. One can use a system of finite elements (Prenter 1974; Mitchell and Wait 
1977), or one can superimpose a fine mesh of equally spaced points over the domain and 
approximate a solution at these mesh points. I have adopted the latter approach. The fineness of 
the lattice must be sufficient to ensure that every polygonal region is represented by at least one, 
and preferably several, mesh points. Improved rules for the choice of the mesh size would be 
helpful. 
 After finding the density values at the superimposed lattice of points, using the method 
described in the following paragraphs, a density map can be drawn. The values at the lattice 
points are labeled zij,where the double subscripts i and j represent the row and column indices for 
the lattice, and the notation Zk is used if the lattice point i, j is in region k. The pycnophylactic 
condition can then be enforced by requiring that the Riemann sum  

∆x∆y ΣkZk= Hk, 
is preserved, where ∆x and ∆y represent the lattice spacing. This method of accumulating 
densities is appropriate if one displays the resulting values in discrete form on a line printer or 
otherwise as a grey scale image. But to display isopycnic lines as contours, the values zij should 
be regarded as a sampling of the function Z(x, y). Constructing contours from a lattice is usually 
done by using linear interpolation (Cottafava and LeMoli 1969) so that the trapezoidal rule 
should be used to enforce the volume condition. This has a curious consequence. If all the 



regions satisfy the pycnophylactic constraint and all lattice points also satisfy the nonnegativity 
constraint, zij ∃ 0, then the lattice points immediately adjacent to a region of zero content must 
have zero density. Otherwise, because the contribution of each lattice point depends on how 
rapidly the surface slopes toward the neighbors, there is a small wedge of volume into the region 
of zero content. A somewhat similar effect, of opposite sign, was observed by Boneva et al. and 
becomes even more troublesome if Simpson’s rule, or more refined methods (Davis and 
Rabinowitz 1967), are used for the quadrature. The effect can be lessened by the introduction of 
interregional boundary points between the nodes of the mesh. As a practical matter, the lattice is 
assumed fine and the effect is small; thus the crudest form of integration suffices. 
 A smooth function, intuitively, is one that has few oscillations, or on which neighboring points 
have similar values, or one that has a small rate of change in all directions. Adopting this last 
definition, in which the partial derivatives are small, it is natural to minimize the sum of the 
squares of these partial derivatives, that is, minimize ΙΙ[(Μz/Μx)2 + (Μz/Μy)2]dxdx. This 
equation is known as Dirichlet’s integral and has been studied extensively. Without the 
pycnophylactic and nonnegativity constraints, the minimum is given by Laplace’s equation 
(Kantorovich and Krylov 1958, pp. 246 et seq.): Μ2z/Μx2 + Μ2z/Μy2 = 0. The lattice 
approximation to this last equation requires that the value at any lattice point approach the 
average of its neighbors. An even stronger condition requires that the averages of overlapping 
neighborhoods be similar to each other, or that some higher order of partial derivative at each 
point has the same value as the average of the neighboring partial derivatives of the identical 
order. If the derivatives are smooth, then the function must certainly be smooth. Thus one might 
be led to a minimization of the linearized version of the curvature of the surface Z(x, y), that is, 
simplifying somewhat (cf. Weinstock 1974; Aleksandrov, Kolmogorov, and Lavrent’ev 1969), 
minimize   
  ΙΙ[Μ2z/Μx2 + Μ2z/Μy2]2dxdy 
Without the present constraints the solution to this problem yields the biharmonic equation: 
  Μ4z/Μx4+ 2 Μ4z/Μx2Μy2  + Μz4/Μy4 = 0, 
which is often treated as providing a minimization of energy in the linearized theory of elasticity 
(Birkhoff and Garabedian 1961; Briggs 1974). This does not exhaust the possible definitions of 
smoothness; Birkhoff and DeBoor (1965) give another. Perhaps more important one should 
observe that these minimizations are all in mean square and over the entire domain of interest. 
They do not require that the maximum departure from smoothness at any particular point be 
minimized. The present approach is similar. Reasoning by analogy, either the Laplacian or the 
biharmonic equation can be taken as the basic smoothness criterion, and then it requires only a 
slight modification in order to incorporate the pycnophylactic constraint (see Appendix). 
 

5. THE COMPUTATIONAL STEPS 
The continuous solution to Dirichlet’s equation involves subtle mathematical difficulties 

(Folland 1976), but these are not of concern here since the finite difference versions, in which 
one replaces the derivatives by difference expressions such as 

  Μ2z/Μx2 = (Zi,j+1 - 2 Zi,j   +  Zi,j-1 ) / ∆x2 ,  
are not subject to these difficulties (Epstein 1962, p. 200). For a square lattice the finite 
difference approximations to Laplace’s equation and to the biharmonic equation are simple and 
well known (Forsythe and Wasow 1960; Wachspress 1966; Birkoff 1972; Ketter and Prawel 
1972). The computer solution generally proceeds by iteration; for these elliptical partial 
differential equations extensive discussions of convergence and stability can be found in the 



literature (Parter 1965; Walsh and Young 1953; Young 1954). As can be seen in the technical 
appendix, the pycnophylactic version of the Dirichlet problem has a similar linear form, and 
similar behavior can be anticipated. This conjecture is reinforced by my computational 
experience to date. The non-negativity constraint is more challenging, and I have only an ad hoc 
rule for this ease. This seems to be a common problem in density estimation procedures (cf. 
Tapia and Thompson 1978). 
 My FORTRAN program begins by assigning the mean density Hi /Ai to each lattice point in Ri 
and then modifies this by a small amount to bring it closer to the value required by the governing 
partial differential equation, given as a relation between neighboring lattice points. The 
pycnophylactic condition is enforced by incrementing or decrementing all the densities within 
individual regions after each computation, subject to the condition zij ∃ 0. In the current computer 
implementation, three passes through the entire lattice are required. The first compares the lattice 
values against the chosen smoothness criterion and suggests the amount and direction of change 
to be applied at each point. The second pass modifies the suggested changes to enforce the 
pycnophylactic and nonnegativity constraints. Finally, adjustments are applied to the values at all 
lattice points. This ends one iteration, after which the mathematical sculpting is repeated. These 
iterations cease when all adjacent lattice points satisfy the smoothness criterion within some 
tolerance. Standard convergence-hastening techniques (Young 1962) should be investigated, 
although I have not done so. I have no doubt but that other improvements might also be made in 
the computational procedure. 
 The specific computer steps occur in two separate programs, as follows: 
 Step 0: Preprocessing: The N regions are described as polygons of a limited number of 
vertices. The map projection coordinates of these vertices and their sequential order are loaded 
into the program, and a lattice of equispaced points is then superimposed on this computer stored 
geographical map. Each lattice point is in turn tested against each polygon for inclusion until a 
match is found; a so-called “point-in-polygon” subroutine is used. 
 The result of this program is a set of lattice points, each labeled with the identification number 
(1 to N) of the region to which it belongs. Lattice points belonging to no region of interest are 
assigned the label N + 1. The boundaries between regions, and to the exogenous area, are thus 
described implicitly, as a change of label between adjacent lattice points. The boundary 
resolution is that of the lattice; standard techniques would allow this to be improved (Ketter and 
Prawel 1972, pp. 335-343). 
     The sequence that follows describes the second program that takes as input the lattice 
identifications, the populations by region, and an upper limit on the possible number of 
iterations. The phrase “for all lattice points” should be interpreted as meaning for all lattice 
points for which the label is N or less. Since each lattice point is identified by region, it is also 
possible to cumulate values for regions while processing lattice points. 
 Step 1: For all lattice points: Compute the adjustment for smoothness, 

    δij' = -zij + .25(zi,j+1 +  zi,j-1 +  zi+1,j  +  zi-1,j ) 
in the Laplacian case, underrelax δij = .25 δij' and store the cumulative adjustments for each 
region sk’ = 3kδij . A similar expression for δij' can be derived for the biharmonic equation and is 
incorporated in the program as an option. Values near the border are treated somewhat 
differently, as discussed in Section 6. 

Step 2: For each region: Compute a decrementing factor so that the average adjustment is zero 
sk =  -sk'/Ak 

Step 3: For all lattice points: Add the smoothing adjustment to the lattice value unless this 



would make the density negative, that is, if (zij + δij + sk) ∃ 0, then zij  Ζ zij + δij + sk. Next 
cumulate the resulting population for all the regions Hk' = 3k zk . 

Step 4: For each region: Compare the cumulated population with the initially given 
population, and save the average difference lk= (Hk — Hk')/Ak . This is necessary because of the 
nonnegativity constraint in step 3. 

Step 5: For all lattice points: Add the average population difference unless this would result in 
a negative population density, if (zij +lk) ∃ 0 then zij  Ζ zij + lk and assign any residual to the 
lattice points of that region that have not yet been examined, that is, if (zij + lk) < 0 , then increase 
lk in such a manner that the residual will be evenly distributed over the remaining lattice points in 
region k. 

Step 6: go to step 1 or stop. The stopping rules include exceeding an input number of 
iterations, or when all adjustments satisfy (δij')2   < ε where ε = .001. 
 This ends the computer algorithm, except for details of output. The treatment is nonstandard 
because of its inclusion of the pycnophylactic constraint in steps 2, 4, and 5 and because of the 
nonnegativity constraint in steps 3 and 5. Step 5 is not entirely satisfactory, but seems self-
correcting in the course of many iterations. In particular, it will not work at the last lattice point 
in a subregion. The small error is corrected by step 4 on the next iteration. The program also has 
an option to delete the nonnegativity constraint in cases for which a negative interpolated value 
is geographically meaningful. An example would be net migrations, some of which are positive 
and some of which are negative. 
 

6. BOUNDARY CONDITIONS 
Since I am in effect solving an elliptical partial differential equation I must supply boundary 
conditions. Whatever value one assigns to the outside of the domain will affect the measure of 
smoothness near the edge, and this effect then propagates inward, as already recognized 
implicitly in some of the earlier literature (Schmid and MacCannell 1955). Two types of 
boundary specification are possible, and both are easily programmed for a digital computer, even 
for realistic geographical shapes. In the first instance, one can specify a numerical value for 
lattice points along the edge of the domain; this is known as the Dirichlet condition. All lattice 
points that fall outside the polygonal regions might, for example, be taken to be fixed at a density 
of zero when dealing with an area bounded by water. The other available type of boundary 
constraint requires the specification of the rate of change of the densities across the boundary, the 
so-called Neumann condition. Of course, one can mix these constraints depending on the 
information available for the exogenous geographical areas. A simple spatial rate of change 
condition applied at the boundary would assert that the gradient vanishes at the edge of the 
region, that is, Μz/Μn = 0, where n is the normal to the boundary of the domain. One would of 
course like the determination of the boundary condition to be a part of the mathematical 
specification, that is, what boundary condition yields the absolute minimum of the functional, 
subject to the constraints? This is the so-called “natural” boundary condition of classical 
mathematical physics (Kantorovich and Krylov 1958) and leads to Μz/Μn = 0. The interior 
densities cannot be determined in the approach adopted here until one specifies the boundary 
condition. The computer program allows a choice of either zero on the boundary or a zero 
gradient at the boundary. 
 

7. EXAMPLES 
 We are now ready to demonstrate with examples. The first two are such that the density is 



known to decline toward the edge of the domain. In all cases the pycnophylactic condition has 
been enforced by using Riemann sums. The first demonstration is a non geographic test and uses 
frequencies sampled from two overlapping bivariate normal distributions. The particular data 
were also used in the discussion following the paper by Boneva, Kendall, and Stefanov (1971) 
and thus provide a direct comparison to that work. The 98 observations are first aggregated into 
25 rectangular regions and then quantized to a 46 X 46 mesh, surrounded by an exogenous 
region one cell wide. Both the aggregation and lattice were chosen arbitrarily. Laplace’s equation 
was then approximated by using 200 iterations for this 48 X 48 mesh, at an approximate cost of 
$1 per 100 iterations. The contouring of the lattice uses only linear interpolation (Cottafava and 
LeMoli 1969). The two results, Figure C, demonstrate quite dramatically the difference between 
the alternate boundary conditions. The main shortcoming of my method in this example appears 
to be that the absence of observations in some cells is taken quite literally; the algorithm does not 
recognize the sampled nature of the data. Nevertheless, the two peaks are resolved, and the 
general agreement with the “correct” solution (cf. Boneva, Kendall, and Stefanov 1971, Fig. 3, p. 
47) is tolerable. 
 A second and more realistic example uses the 1970 population figures for the 18 census tracts 
covering Ann Arbor, a city of approximately 100,000 people. The conventional choropleth map 
and bivariate histogram for these data are shown in Figure D. The tracts are next approximated 
by a mesh (schematized in Figure E) arbitrarily chosen to be 68 X 71 in size. Two hundred 
iterations using the biharmoniic equation as the target and contouring by linear interpolation 
result in the density maps shown in Figures F and G. The effect of the alternate boundary 
conditions is not large in the interior of the region. 
 The data for the third and final demonstration are the 1970 populations by state for the 
contiguous United States. The densities have here been computed at the nodes of a 62 X 97 
mesh, this size being sufficient to assign four lattice points to the smallest state. Thus Figure A is 
converted into Figure H, where the resulting values are shown as maps of level curves. Two 
versions are presented, using alternate boundary conditions, of an approximation to the 
biharmonic equation. Since much of the United States is bordered by water, a Dirichlet condition 
of zero density was first used adjacent to the boundary. This procedure creates two peaks in 
California (sic) and sets most of Nevada to a zero density. It has also combined Miami and 
Atlanta, moved Chicago southward, and created a barrel-shaped density for Michigan. Use of the 
Neumann condition Μz/Μn = 0 allows the cities to move closer to the edge, where the density 
drops sharply to zero outside the United States, and seems to yield a better fit, at least to my a 
priori expectations. 
 

8. DISCUSSION 
 The example using the population of the United States is well suited to demonstrate some of 
the difficulties accompanying my approach. If one contemplates possible applications of the 
interpolated densities, it is imperative to ask whether these bear any resemblance to actual 
densities. In the present instance we also have available population by county and by finer 
geographical subdivisions. Suppose that the population density at a lattice point, assuming 
uniform densities within counties, is cij. Then we can make two comparisons, namely,  

ΣiΣj(cij  - zij)2 and ΣiΣj(cij - dij)2  , 
where dij = Hk /Ak denotes the density at a lattice point assuming uniform density within states, 
and zij is the smooth interpolated density. These comparison computations have not been 
performed, but a population “density” by county map is available (U.S. Department of the 



Interior 1970, p. 241). It is fairly obvious that the approach described is an improvement over the 
constant density assumption, and the method of squared deviations should in principle allow one 
to judge whether the use of information from adjacent polygons is beneficial. But there seems to 
be an infinite regress here, since the smooth interpolation can always be applied to the finest 
subdivision possible. It would always be assumed that one has used the most detailed data 
available. Thus it is common practice to supplement census enumerations by using aerial 
photographs. In effect this provides a redefinition of the polygonal areas and does not constitute 
a real change in the problem. Eventually one reaches the level of the individual objects, and the 
definition of density itself becomes fuzzy. The problem is quite similar to the deblurring of 
photographs, in that one is attempting to invert a local accumulation process (Rosenfeld and Kak 
1976, pp. 203-252). The amount of a priori information that one brings to such a situation 
decisively influences the quality of the result. And there seems to be no end to the possible 
additional detail that one might attempt to build into the algorithm. In the present instance the 
location of Chicago, say, might be specified by giving coordinates at which the density is to be a 
downward convex stationary point Μz/Μx = Μz/Μy = 0, Μ2z/Μx2  < 0, Μ2z/Μy2 < 0. Such 
additional information could easily be incorporated in a computer program. Another 
modification could be to allow the effect of transportation routes within the separate polygonal 
regions, allowing variable permeabilities in different directions. In the finite difference equations 
this would imply differential weighting of the neighbors, resulting in nonhomogeneous and 
anisotropic smoothing. These types of modifications are really too complicated to consider here, 
especially since it is not obvious that one would ever have the necessary empirical information. 
Perhaps one can discover a differential equation that describes geographical clusters of people, as 
suggested by Christaller’s (1966) central place theory, and use this as the target, rather than 
borrow equations from mathematical physics. Such an equation, being based on geographical 
theory, should capture more of the phenomena. 

A more frutiful set of variations, which I have not pursued, would seem to be along the 
following lines. One can assume that the original data contain some error. Then a modest amount 
of displacement of people from one region to adjacent regions might be allowed and an entropy 
function minimized (Frieden 1975; Pizer and Vetter 1968). Another variant would be to assume, 
or to estimate empirically, a spatial covariance structure for the interpolation (Kaula 1967) and 
then to incorporate this geographical autocorrelation in a procedure related to the method of 
Matheron (1971) or Moritz (1970). Alternately, the smoothing differential equation could be 
used as a target for a Monte Carlo simulation, assigning individuals to particular lattice points in 
a constrainedly random manner. Thus the different smoothness criteria could be interpreted as 
alternate ways of assigning occupancy probabilities to the lattice points (see Appendix). These 
several alternatives more closely resemble classical statistical density estimation in that a 
distribution of estimates would be obtained at each lattice point, rather than a single deterministic 
value. Such an attack would be of assistance in sampling situations, as already noted in the first 
example (Figure B and C). 
 

9. CONCLUSION 
The method described in this article allows the interpolation of values at a spatial mesh of 

arbitrary fineness from data given by irregular geographical polygons without any requirement 
for internal “control points” or “tent” functions. The isopycnic maps drawn from the mesh values 
are constructed to have the volume preserving property. A bivariate histogram can therefore be  
reconstructed exactly from the contour map simply by computing the “volume” under the 



contoured surface within the irregularly shaped polygon. This is sufficiently it important to be 
repeated: We can go from the contour map back to the original data! But the contours are not 
unique, and there is no way (short of a finer resolution in the original assembly of the data) to 
demonstrate the validity of the density at any particular point. The integrals over the original 
spatial packages are satisfied, and this result is as correct as possible for the conditions of the 
problem. Thus the mapping of the geographical arrangement of phenomena is improved. The 
critical assumption is that events in one geographical area influence those in adjacent areas. 
Concomitantly the great importance of events in exogenous regions translates into a necessity for 
the specification of boundary conditions. 
 The smooth volume-preserving density functions would also seem to offer an approach to the 
practical and frequently occurring problem of interconverting, or rendering compatible, data 
collected by different governmental agencies using completely distinct sets of geographical 
boundaries for the same part of the world (Markoff and Shapiro 1973; Crackel 1975; Ford 1976). 
One merely needs to reassign the lattice points, with their associated densities, to the alternate set 
of polygons. A simple addition over the lattice points contained in each new polygon then yields 
the approximate cumulant of the arrangement for that polygon. This result should provide a 
better conversion than one based on the less realistic assumption of constant densities within 
statistical data collection regions. 
 
 

APPENDIX 
1. An outline is given here to demonstrate the existence and uniqueness of the discrete Dirichlet 
problem with a pycnophylactic constraint. The approach is that suggested by Courant, Friedrichs, 
and Lewy (1928), to which the reader is referred for details and for a treatment of the boundary 
problem. For the sake of brevity the development here is given for only small examples, but 
there is no intrinsic difficulty in extension to larger problems. 

Assume first that the result of the analysis is to be a one-dimensional histogram, with n cells 
of equal width ∆ and heights Z. Then a measure of the smoothness of this histogram is the 
difference in heights between adjacent histogram bars, that is, Zj+1 - Zj. For the entire histogram a 
natural measure of smoothness is the cumulative square of these individual values  

                    n-1 
      To = 3    (Zj-1 - Zj)2. 
                                                                           n=1 

which is a discrete approximation to the one-dimensional Dirichlet integral  Ι(ΜZ/Μx)2dx  as  is 
easily seen if one sets ∆x = ∆ = 1 and uses the forward difference approximation ΜZ/Μxj  = (Zj+1 
- Zj). The pycnophylactic constraint requires that Σ Zk = Hi , k 0 Ri , for each region i. This is now 
added to the value to be minimized, using Lagrangian multipliers, 

                                                                  r 
                         T = To + 3 λi (Hi - 3 Zk),     k 0 Ri .  
                                                                          i=1  

Setting the partial derivatives of T with respect to each Z and each λ equal to zero yields a 
system of n + r linear equations, where n is the number of lattice points and r is the number of 
regions. The system is of rank n + r and thus has a unique solution.  

When n is nine and r is two, for example, the system is small enough to be written out 
explicitly. Thus, putting the first four lattice points in region one and the remaining five in region 
two, the system becomes 



 
1 -1 0 0 0 0 0 0 0 ½ 0  Z1  0 

-1 2 -1 0 0 0 0 0 0 ½ 0  Z2  0 
0 -1 2 -1 0 0 0 0 0 ½ 0  Z3  0 
0 0 -1 2 -1 0 0 0 0 ½ 0  Z4  0 
0 0 0 -1 2 -1 0 0 0 0 ½  Z5  0 
0 0 0 0 -1 2 -1 0 0 0 ½ * Z6 = 0 
0 0 0 0 0 -1 2 -1 0 0 ½  Z7  0 
0 0 0 0 0 0 -1 2 -1 0 ½  Z8  0 
0 0 0 0 0 0 0 -1 1 0 ½  Z9  0 
1 1 1 1 0 0 0 0 0 0 0  λ1  H1 
0 0 0 0 1 1 1 1 1 0 0  λ2  H2 

 
 

or CZ = H. The unique solution is Z = C-1H. In the present instance, if H, = 8 and H2 = 5 then, 
Zt = (2.20, 2.12, 1.96, 1.72, 1.39, 1.13, .93, .81, .74), T = .3254 . If H, = 5 and H2 = 8, then 
Zt = (1.18, 1.21, 1.26, 1.35, 1.46, 1.56, 1.62, 1.67, 1.69), T = .0401, where the t denotes the 
transpose. It is clear that C-1 is acting to distribute the population over the lattice points, and that 
C-1 depends on the geography of the problem but not on the specific values in the vector H. Thus 
this inverse need be calculated only once. But for the United States example given in the text it 
would be of larger size, involving 3,306 equations, which illustrates in part why iterative 
techniques are used to solve such sparse matrix systems. It also illustrates why I have used such a 
small example here. 
 The portion of C near the diagonal has the form 
  ….-1   2  -1.... 
This can be recognized as the coefficient form for the finite difference approximation to the one-
dimensional Laplacian, Μ2Z/Μx2  ≈  (Zj+1 - 2 Zj  + Zj-1) /∆2  aside from an unimportant change of 
sign. Thus it would have been possible to start directly from the Laplacian equation. 

 A simple two-dimensional example can be obtained by arranging the lattice points in a 3 by 
3 array as follows: 

    1  1  1 
      1  2  2 
      2  2  2 
where the numbers refer to the regional assignment to the two regions. Subtracting and squaring 
neighboring cell heights yields  

                            I  J-1                                       I-1 J  

   To = 3 3 (Zi,j+1 - Zi,j)2 + 3 3 (Zi+1,j- Zi,j)2 , 
                           i=1j=1                                    i=1 j=1 

using row and column indices to distinguish between lattice points. I is the number of rows in the 
array, and J is the number of columns. Adding the pycnophylactic constraint gives   

              r  
                       T - To +  3 λi (Hi - 3 Zk  ) 
                                                                                  i=1             k 0 Ri   

Thus the coefficient matrix C becomes: 



 
-2 1 0 1 0 0 0 0 0 ½ 0

1 -3 1 0 0 0 0 0 0 ½ 0
0 1 -2 0 0 1 0 0 0 ½ 0
1 0 0 -3 1 0 1 0 0 ½ 0
0 1 0 1 -4 1 0 1 0 0 ½
0 0 1 0 1 -3 0 1 0 0 ½
0 0 0 1 0 0 -2 1 0 0 ½
0 0 0 0 1 0 1 -3 1 0 ½
0 0 0 0 0 1 0 1 -2 0 ½
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0
 
Taking H1 = 8 and H2 = 5 yields the solution 

 2.240     2.060     1.956 
 1.740     1.306     1.170 
 .996       .816       .711 
and T = 2.734. The module surrounding -4 near the center of C is recognized as the finite 
difference approximation to the two-dimensional Laplacian. Alternate arrangements of the nine 
lattice points would result in slightly different versions of C. By measuring the “height” of lattice 
points along the edge of the 3 by 3 region one can also include the boundary in the minimization 
problem. 

If some elements of H are negative, some histogram heights must also be negative. As 
indicated in the text, this may be meaningful geographically, but not for densities. Further, if, in 
the preceding examples H1 = 80 and H2 = 5, then Z contains negative numbers; there is as yet no 
nonnegativity constraint in the foregoing matrix equation. Such a constraint has been added to 
the computer program, as described in the body of the text. It should also be possible to solve 
this as a quadratic programming problem (Danzig 1963, pp. 490-497): Minimize T0, subject to  

3 Zk = Hi and Zk ∃ 0. 
k0Ri 
2. In the Monte Carlo assignment of densities to lattice points, I envision a process as 

follows. Compute pycnophylactic densities as before; multiply these by the lattice spacing to 
obtain persons rather than densities, and then divide the number at each lattice point by the total 
population of the region containing that lattice point. The sum of all the numbers within each 
separate region is then equal to one, and these numbers can then be considered as probabilities. 
Linearly order the lattice points within each region, and then cumulate the probabilities within this 
ordering. Now sample a uniformly distributed random number as many times as there are people 
within each region, and each time assign an individual to the lattice point whose value in the 
cumulative distribution contains the random number in its span. The resulting geographical 
arrangement of individuals will be stochastic rather than smooth even though it was generated 
from a smooth arrangement of probabilities. Thus the resulting contours will have a more realistic 
appearance while still satisfying the nonnegativity and pycnophylactic constraints. This also 
suggests a method of producing smooth dot maps. 
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COMMENT 

Nira Dyn, Grace Wahba, Wing-Hung Wong 
…(Several pages of comment omitted; relevant but lengthy) 
 

REJOINDER 
…(Several sections omitted) 
 
 The comments by Dyn, Wahba, and Wong specifically address only the formal minimization 
problem. This is important but it seems to me that other issues exist that might be addressed. For 
example, is “smoothness,” however defined, a reasonable condition to impose on geographical 
data? The question of the intrinsic meaning of density has also bothered me. What meaning can 
numerical convergence to a mathematical limit have, for example, when there is no unambiguous 
definition of density for the raw, nonaggregated data? Thus I would like to propose the 
following. Assume that one has “points” located interior to a bounded portion of a plane. About 
each point define a polygon that has the property that all locations in the polygon are closer to 
the point than to any of the other points (i.e., Thiessen polygons, cf. Boots and Getis 1978, pp. 
126-128). The generalization to higher dimensions seems to me to be immediate but not of 
geographical interest. Each such polygon will have a finite area. The reciprocal of this area gives 
the density associated locally with each point, and one can construct a bivariate histogram made 
up of these polygons and their “heights”. The pycnophylactic sculpting is now applied to this 
histogram to obtain the smooth distribution of densities. The result of applying the 
pycnophylactic sculpting to any other aggregate data should converge to the density obtained in 
this manner from the raw data, as the aggregation regions decrease in size. This definition of 
density avoids the kernel size, shape, weighting, and orientation problems of the more usual 
density estimation procedures and is applied to an enumeration rather than to a sample of data. 
Of course it substitutes for these a certain ambiguity introduced by alternate definitions of 
smoothness and of boundary conditions. But these would be constants in any one problem. 
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