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Fractal Enhancement of
Cartographic Line Detail

Geoffrey H. Dutton

ABSTRACT. In plane geometry curves have a dimension of exactly 1 and no width. In nature, all
curvilinear features have width, and most have dimension greater than 1, but less than 2. Many
phenomena, such as coastlines, have the same "look," even when viewed at greatly varying scales. The
former property is called "fractional dimensionality," and the latter is called "self similarity." Curves
digitized from maps may be analyzed to obtain measures of these properties, and knowledge of them
can be used to manipulate the shape of cartographic objects. An algorithm is described which enhances the
detail of digitized curves by altering their dimensionality in parametrically controlled, self-similar
fashion. Illustrations show boundaries processed by the algorithm.

Measuring and Modelling
Irregularity in Nature

Only in the mind and works of man do
straight lines exist. Rarely does Nature
rule with a straightedge, and even these
lines are rough, seldom extending very
far. But surrounded by rectilinear arti-
facts, it is understandable why humans
try to measure and model the world with
Euclidean precepts. Frustration in mak-
ing certain measurements and in model-
ling many natural forms can be attrib-
uted to this view of space itself, in which
distance between two given points is
assumed to be Pythagorean.

Suppose one is surveying a section of
coastline and wants to calculate its length
accurately and map it. A series of closely-
spaced sightings must be made at the
high-water mark. The cumulative dis-
tance along these points can then be
accurately computed, and it is invariably
greater than the crow's-flight distance
spanning the stretch of coast. Fig. IA
represents the profile of a fictitious coast-
line. Its surveyed approximation is plot-
ted in Fig. IB, and the crow's-flight version of
it is shown in Fig. 1C. A greater
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number of sightings yields a closer
approximation to actual length and
shape, even though the rate of increase of
length slows.

This lesson in approximation has
several morals. One is that surveyors run
into a real law of diminishing returns
when trying for centimeter accuracies in
the lengths of complicated boundaries.
Another is that the difficulty, hence the
probable error, in measuring coastlines
and the like varies from place to place. In
Fig. 1A, it is obvious that there is much
more irregularity in the lower part of the
coast than in the upper part. This may be
due to the former being composed of rock
outcroppings and the latter being a sandy
beach. But in trying to express this quali-
tative difference quantitatively, one finds
scientific vocabulary confusing and inad-
equate. Literature in geography and
image processing abounds with indices
that characterize the shapes of point sets
and linear and areal features (Stoddard,
1965; Boyce and Clark, 1964; Bunge,
1961; Boots, 1972). However, to para-
phrase Pavlidis (1978), these indices are
destructive of information and provide
neither a general linguistic model nor a
measure suitable to allow manipulation of
cartographic detail. One wishes for a
measure of geometric complexity and
irregularity that is as general as that of
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Fig. 1. A coastline and its approximations: (A) the original coastline, (B) segmented
approximation. (C) original coastline with superimposed trend line.

entropy in thermodynamics. Fortunately,
foundations for such a vocabulary and for
such measures have been developed.
Irregularity as Fractional
Dimensionality and Self Similarity

A suitably general approach to quan-
tifying the complexity of irregular forms,
and one that directly confronts the dilem-
mas of Euclidean measurement, is that of
Mandelbrot (1977). The phenomena that
he addresses-natural forms arising from
forces such as turbulence, curdling,
Brownian motion, and erosion-have at
all scales two related properties, self simi-
larity and fractional dimensionality. Self
similarity means that a portion of an
object when isolated and enlarged exhib-
its the same characteristic complexity as
the object as a whole. The shapes revealed
may be highly irregular, and none may be
exactly alike, but they will have the same
kind of irregularity over a wide range of
scales. Fractional dimensionality means
that the Euclidean dimension that
normally characterizes a form (1 for
lines, 2 for areas, 3 for volumes)
represents only the integer part of the true
dimension of the form, which is a fraction.'

Mandelbrot treats dimension as a
continuum, in which the integer Euclid-
ean dimensions merely represent limiting
cases of topological genera, unlikely to
occur in nature. Thus the coastline in Fig.
1A might have an approximate overall
dimensionality of 1.2, but its two dissimi

lar subsections have different structure
and dimensionality. The more irregular
lower portion may have a dimension of
nearly 1.3, while the smoother upper part
may be of a lower dimension, less than
1.1. There is only one version of the coast
that has a dimensrionality of exactly I (its
Euclidean dimensionality), and that is
the trendline shown in Fig. 1C.

This difference in dimensionality is
quantified in Fig. 2. On this graph the
abscissa symbolizes the number of sight-
ings (or line segments) used to approxi-
mate the entire coast (top curve) and its
lower (middle curve) and upper (bottom
curve) portions. The values read from the

Fig. 2. Dependence of length on fractal
limensionality and scale of measurement.
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ordinate represent the measured length
yielded by a specified number of segmen-
tations. The upper coast, being straighter
(of lower dimension), requires fewer
approximations to minimize equally its
rate of increase. The lower coast, having
greater dimensionality, cannot be as
closely approximated with as few sight-
ings. Its asymptotic rise is slower, and
covers a greater range. The sum of these
two curves yields a curve for the entire
coast, the top one.

Fractal Forms in Cartography
Digitized map data resemble fractals

much more than they resemble (continu-
ous) functions which mathematicians
normally study. Although certain carto-
graphic objects, including both bounda-
ries and terrain, can be approximated
using real functions, e.g., trigonometric
series, the difficulty remains of repre-
senting nonperiodic map features as well as
ones that are not single-valued, i.e.,
places where curves reverse direction.
Furthermore, fractal curves, such as
coastlines, can have islands, whose number
and size distribution varies with fractal
dimensionality (Mandelbrot, 1977, p. 45).
Given these similarities, perhaps it is
possible to subject strings of coordinates
describing lines on maps' to algorithms
that modify them according to fractal
criteria. Why, for instance, cannot details
be inserted into a chain of coordinates to
resemble the features already there? Why
cannot digitized features be made more
prominent, as well as smoothed away?
Seeing no reason why such methods
should not be explored as cartographic
technique, the author has developed
several algorithms in such an attempt.
The procedure described below is the
latest of these, but it is by no means the
only possible approach to fractalizing
map data, nor the only use of fractal
theory in spatial analysis.

Physical and natural science deal with
many fractal phenomena, and the appli-
cation of fractal concepts to geography
has only just begun. Examples of such
analyses abound in Mandelbrot's essay,

which is only incidentally concerned with
cartography. What follows, then, de-
scribes an experimental procedure for
transforming digitized curves fractally, or
fractalizing them in self-similar fashion. It
is intended to enlarge the repertoire of
geometric processing techniques for line
reduction and enhancement, a repertoire
that includes coordinate weeding, culling,
bandwidth filtering, and splining or arc-
substitution methods (Jenks, 1980; Mor-
rison, 1975; Douglas and Peucker, 1973;
Rhind, 1973; Ramer, 1972).

Parametric Fractalization of
Digitized Curves

Like splining, in which smooth, mathe-
matically-defined arcs are inserted in
place of one or more segments along a
chain, fractalizing can increase a chain's
total length. Unlike it and other methods
for coordinate reduction and chain
smoothing, fractalizing permits features to
be exaggerated and smaller-scale features
to be introduced into digitized curves, as
well as allowing features to be eliminated.
The exaggerations and additions are not
arbitrary forms introduced to the chain
but are caricatures and recursions of
forms already found there. Because the
procedure can be applied recursively, there
are geometric similarities between smaller
features introduced and larger features
already existing in cartographic lines.
Such enhancements of chains may not have
as regular an appearance as a chain
smoothing via arc-substitution, but they
may preserve more concretely the
qualities of the original chain. The
following describes the most recent
approach to fractalization, which
reconfigures chains to desired dimen-
sionality and detail.

As currently implemented, the proce-
dure is given a list of coordinates for an
input chain and returns a fractalized
version of it in a separate array, trans-
formed according to four parameters:

(1) a Sinuosity Dimension (SD) (
2) a Uniformity Coefficient (UC) (
3) a Straightness Tolerance (ST) (
4) a Smoothness Tolerance (SM)
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Fig. 3. Enhancement of a 13-point chain, showing the effects of varying SD.

The Sinuosity Dimension
The Sinuosity Dimension, SD, pre-

scribes the amount of waviness that
chains should possess after fractalization,
but is tempered by the Uniformity Coef-
ficient, discussed below. SD is a real
number between 1 (minimum sinuosity)
and 2 (maximum sinuosity), and specifies
a fractal dimension to characterize pro-
cessed chains.

Fig. 3 demonstrates the effect of vary-
ing SD from 1.1 to 1.9 in fractalizing a
13-point chain. Three iterations of frac-
talization were performed (second row),
followed by one of smoothing (third row).
The enhancements are overlaid with the
original chain in the fourth row. UC,
discussed below, is fixed at 1.0 in each of
the examples in Fig. 3.

Ignoring for the moment the effect of
UC, the algorithm works by moving along
a chain, relocating each vertex in the
general - direction of its angle bisector.
The movement forms a new angle which
will be the same at all vertices, as deter-
mined by SD. Since all vertices are poten-
tially subject to displacement, it is
geometrically necessary to introduce ad-
ditional vertices, which are located at the
midpoint of each segment along the
chain. These serve as fixed points, and
successive ones are connected to form
triangle bases, where the apex is the vertex
between these midpoints. To relocate
such an apex, it is necessary and
sufficient to know (a) the desired angle of
the apex, which SD implies, and (b) the
current proportions of its two legs. In

http://below.SD


Fig. 4. Effects of changing the number of iterations of fractalizing and smoothing.

order to maintain local self-similarity,
this proportion is constrained to be the
same after fractalizing as before. The
actual computations require solving trig-
onometric identities involving the law of
sines, law of cosines, and sums and differ-
ences of sines and cosines. The result is to
standardize all junctions at the angle
determined by SD and to introduce inter-
mediate vertices (at segment midpoints)
having unstandardized included angles.
This provides the degree of freedom needed
to standardize the original junctions.
Successive iterations of the procedure
will then standardize the angles at the
former midpoints, once again halving all
segments.

The effect of this, as the second row of
Fig. 3 shows, is to create rather mechani-
cal-looking chains. Such figures are not
very "cartographic," although they may
have certain stylistic uses in thematic
mapping. Their zigzags may be smoothed,
as in the third row of Fig. 3, to soften
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visual impact, and such post-processing
should be applied to chains thus fractal-
ized. Usually, however, the goal is not to
standardize the geometry of a chain but
to influence it in a self-similar fashion.
Therein lies the utility of the second
parameter, UC.

The results of varying the number of
iterations of both fractalizing and
smoothing is demonstrated in Fig. 4. In it
the same chain used in Fig. 3 is subjected to
combinations of zero to three fractali-
zations and zero to two smoothings. In
each case, SD - 1.7, UC = 1.0, SM = 0.0,
and ST = infinity. The effect of addi-
tional iterations generating smaller-scale
details is evident for fractalization, while
for smoothing, additional i terations
soften detail without really eliminating it.
The Uniformity Coefficient

Should extremely regular chains not be
desired, UC can he used to prevent their
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Fig. 5. Effects of uniformity (UC) and straightness (ST) on enhancement.

formation. This parameter specifies the
degree to which junctions may vary from
whatever angle SD specifies. When UC is
1 (its maximum), the dimensionality of a
fractalized chain is held constant at SD
throughout its length. When UC is zero,
the appearance of chains will be unaf-
fected by fractalizing them, although
they will gain extra coordinates at
segment midpoints. Given any value of
UC intermediate between 0 and 1, the
algorithm will displace vertices toward
their "standardized" positions through a
distance proportional to UC. That is, if
UC equals 0.5, a vertex will not be
displaced to the location giving it a local
dimensionality of SD but will be moved

only halfway towards that point. This
allows SD to influence the dimension of
chains without fully standardizing them.

UC also may be set to less than zero,
but not less than -1. When negative val-
ues are used, their effect is to exaggerate
junctions; rather than being displaced
toward a specific angle, they are dis-
placed in the opposite direction. The
different effects of the sign of UC are
illustrated in Figs. 5C and 5D. With nega-
tive values of UC, the farther from the
standardized location a vertex initially is,
the farther it will be displaced away from
it. Negative displacements can cause a
junction to reverse direction, should its
dimension initially be less than SD.
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Another possibility, depending on local
geometry, is that of introducing nonpla-
narities (crossing segments) into chains.
This is a particular hazard in the vicinity
of peninsulas, fjords, isthmuses, and
other narrow features. Many such non-
planarities, however, may be deleted by
subsequent application of smoothing,
which will be discussed below.

Straightness and
Smoothing Tolerances

Due to the fact that the geometric
character of a chain may vary considera-
bly along its extent, as does the border
between Texas and Oklahoma, it is im-
portant to be able to preserve "straight"
features while modifying "curved" ones.
Without such control, enhancement
might introduce major shape alterations
where only minor ones were desired. Fig.
5B illustrates the perils of foregoing such
control in the case of Rhode Island. The "
straightness" parameter (ST) specifies the
maximum length of a segment allowed
to be modified. It therefore has units of
length that are in the coordinate metric of
chains being processed. Long segments
will be passed through without change
when their extent is greater than the value
specified for ST. This means that, for
enhancement to affect a vertex, both
segments that meet there must be less than
ST units in length.

In a similar but inverse fashion, the "
Smoothness Tolerance" specifies the
smallest segment allowed to be modified.
SM determines the fineness of detail
produced by fractalizing anywhere along a
chain. Detail may also be limited by
stopping the procedure after a fixed
number of iterations. Unlike ST, how-
ever, SM can and should be altered
depending on the scale at which chains
are to be displayed. Together, then, ST
and SM define the upper and lower limits
for the size of features subject to en-
hancement and thus constrain the overall
amount of added detail.

One application of the procedure will
nominally double the number of seg-
ments in each chain processed. Certain

vertices may not be transformed, how-
ever, given the two tolerance criteria, ST
and SM. Should SM be set relatively
close to ST, few vertices may be altered.
As ST is increased, however, longer
segments become candidates for altera-
tion, yielding larger geometric changes
and additional coordinates. As SM is
reduced, more detail will be introduced,
as shorter segments will be split.

Fig. 6 shows the sequence of operations
used to fractalize the coastline of New-
foundland. The original digitization, 6A,
having 158 points, is quite generalized,
but when analyzed using Richardson's
method (Mandelbrot, 1977, p. 32), it is
found to have a fractal dimensionality of
1.22.3 This chain was first fractalized
using SD = 1.3 and UC = 0.7. SM was set
to roughly 1 percent of the width of the
map window, and ST was set very large so
as not to affect the results. This produced
the chain in 6B, which has 302 points.
About 10 percent of these vertices were
eliminated by weeding out all segments
smaller than SM, yielding the chain
shown in 6C; this was then smoothed
once, raising the number of points to 534.
The final result is shown in 6D and has a
measured dimensionality of 1.22.
Smoothness

As stated earlier, the visual quality of
chains that have been fractalized may be
rather jagged, the degree of which
depends on SD and SM. Before plotting
chains, it is thus usually necessary to
smooth them, which does not appreciably
alter their dimensionality. The method
used is a form of splining, similar to the
technique developed by Chaikin (1974,
with comments by Riesenfeld, 1975).
Both are fast methods, but the author's is
a bit slower due to its capability to spline
to different curvatures.

The smoothing procedure is illustrated
in Fig. 7. During smoothing, each vertex
is literally "snipped off" the chain some-
where between the vertex and the mid-
points of the two segments that join at the
vertex. In Fig. 7, either one, two, or
four iterations of smoothing were used,
each with Roundness set at .25, .50, and

http://modified.SM
http://modified.SM
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Fig. 6. Stages in enhancing a rough outline of Newfoundland.

.75. SM and ST were set so as not to
affect the results. Chaikin's algorithm was
developed to rasterize smooth versions of
digitized lines; the author's version
similarly can produce a series of adjacent
raster coordinates if SM is set to a suitably
small value and the procedure is called
recursively.
Illustrated Examples

To demonstrate fractalization in a
familiar context, a file of the contiguous U.
S. state boundaries and its enhancements
are presented in Figs. 8 through 18. These
figures are reproduced at four graphic
scales, roughly varying from 1:30,000,000
to 1:3,000,000, with views zooming from
the entire file to its north

west corner, the Puget Sound region.
Source data for these figures consist of

state boundaries extracted from the
County DIME File, distributed by the
U.S. Bureau of the Census. This extract
contains 11,541 points, but its resolution
varies due to inconsistencies in the source
maps originally used in digitizing. To
standardize its resolution and to generate a
suitably sparse representation with
which to test enhancement, the coordi-
nates were converted to miles on an
Alber's equal-area projection, and these
converted coordinates were then filtered,
using the Douglas-Peucker Bandwidth-
Tolerance Algorithm (Douglas and
Peucker, 1973), at a bandwidth of 2 mi.
This eliminated over 90 percent of the
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Fig. 7. Smoothing to different curvatures: the effect of varying Roundness for 1, 2, and 4
smoothings.

original detail, resulting in a U.S. state
boundary file having 1,055 points. As
drastic as this reduction is, when the
filtered file (Fig. 9) is compared to the
original (Fig. 8), only a few boundaries
appear noticeably degraded.

Under magnification, however, the
effects of filtering are quite apparent, as
Figs. 12, 14, and 16 reveal, especially in
comparison with Fig. 18, a 10x -magnifica-
tion of the unfiltered boundaries. Islands

disappear, peninsulas become triangles,
and sinuous channels and coasts simply
straighten. It is these faint suggestions of
shape that fractal enhancement then
attempts to rejuvenate in the remaining
figures.

The enhancements are displayed in
Figs. 10, 11, 13, 15, and 17, with increas-
ing scale. Figs. 10 and 13 display one
iteration of fractalization; Figs. 11 and 15,
two iterations; and Fig. 17, three itera
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Fig. 8. State boundaries extracted from U.S. County DIME File: full detail of 11,541
points.

Fig. 9. Filtered state boundaries: 1,055 points.
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Fig. 10. One fractalization and smoothing of state boundaries: 3,193 points.

Fig. 11. Two fractalizations and one smoothing of state boundaries: 6,042 points.
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Fig. 12. 2x zoom of Fig. 9 (filtered boundaries).
tions. All are then given one iteration of
smoothing. The parameters employed
were held constant: SD = 1.5; UC = 0.5;
SM = 0.1 mi.; ST = 50 mi.; Roundness = 0.
5. The value of 1.5 for SD (imposed fractal
dimensionality) is probably excessive,
even though UC at 0.5 tempers its effects
considerably. This tends to exag-
gerate the gross features still preserved in
the filtered file but clearly
demonstrates the results of
enhancement. Fig. 18, which contains
the full DIME File detail, provides the
standard against which enhancements
may be evaluated.
Precedents, Precautions,
Related Applications

The notion of reducing the number of
coordinates in a chain is generally under-
stood to be useful and appropriate in
storing and plotting digital maps. Very
few cartographers would argue that all
coordinates acquired through digitization
are necessarily accurate or should be used
in plotting. Fine detail often becomes
redundant or distracting, given certain

map scales, purposes, and plotting resolu-
tions, and may be eliminated by a variety of
line culling techniques. But when
mapmakers or map readers are presented
with algorithms that add or displace coor-
dinates, eyebrows rise. Somehow the
notion of creating detail seems arbitrary,
inappropriate, or untruthful. In careless
hands, it may be argued, such algorithms
can yield maps conveying a false sense of
reality.

But any map is an abstraction in which
phenomena are selected, generalized,
stylized, and emphasized by the map-
maker. A map is not even an abstraction
from reality, it is an abstraction of
ideas about reality (Robinson and Sale,
1969; Morrison, 1975). Both qualitative
and quantitative rules of thumb are
employed by cartographers in choosing
which features to include, where to place
them in relation to one another, what
symbols to employ, and how large each
should be. While their choices may be
highly informed, and a consistent set of
criteria can be inferred from a well-
conceived
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Fig. 13. 2x zoom of Fig. 10 (first enhancement).
map, rarely can a mapmaker or a map
reader formalize the criteria into rigorous
sets of rules, i.e., algorithms.

Sometimes cartographers must guess
intelligently where to place features on a
map, for example, when interpolating
isolines. Elevation control points may be
too sparse to define features known to
exist by the cartographer, such as ridge
lines and course lines. Mapmakers nev-
ertheless bend contours "uphill" when
crossing courses and "downhill" when
crossing ridges. Similarly, and even when
control points are. fairly dense, the "best"
track for a contour line crossing an area of
very low relief can become quite conjec-
tural. Small errors in spot elevations can
translate into quite visible horizontal
displacements of contours, making their
interpolation open to question.

Not only derivative map elements like
contour lines but visible features as well
must sometimes be approximated. For
example, in tracing a stream from an
aerial photograph, one may encounter
difficulty at locations where vegetation

obscures the stream channel. In such cases
the cartographer must rely on clues, such as
changes in topography and vegetation
type, to estimate best the course line.
Although the technique for line
generalization presented in this paper does
not attempt to infer shapes from
contextual data, it should be evident that
synthesis of detail is not foreign to car-
tography. It is both held to be legitimate
and practiced widely, but it should be
done with restraint and only when appro-
priate.

The ability to manipulate the fractal
dimensionality of cartographic objects is
perhaps more useful for thematic map-
ping than for other cartographic applica-
tions. Certainly maps used for navigation
or for displaying boundary surveys must
respect actual measurements as closely as
possible or practicable. For such purposes
there is no substitute for careful survey-
ing, drafting, and digitizing of features, and
the algorithmic addition and deletion of
coordinate data is done at some peril.
But thematic maps, in which boundary
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Fig. 14. 4x zoom of Fig. 9 (filtered boundaries).

data are principally a matrix for commu-
nicating other variables, can be enhanced
without great risk of conveying false
information. In such maps it is not the
location of boundaries that is of prime
concern but their appearance.

Although the author is not aware of
attempts elsewhere to enhance carto-
graphic lines using fractal methods, there
have been some uses reported which
synthesize and enhance digital terrain
models (Carpenter, 1981; Fournier and
Fussell, 1981). Both of these approaches
interpolate cells in elevation grids using
stochastic neighborhood operators. Such
synthesis of surfaces will no doubt be
eagerly exploited in flight and other envi-
ronmental simulation applications; not only
can they drastically reduce the bulk of a
terrain data base required for generating
realistic images, but such enhancement
algorithms can be easily built into
hardware, aiding real-time response.
Fractal surface enhancement may also
prove useful in generating specific tex-
tures for analytical hill shading.

Concluding Comments
There is no one "correct" or "best"

method of fractal enhancement. As stated
above, the approach presented here is but
one of about half a dozen trial algorithms,
and others have been outlined. Although
its mechanics are inherently rigid, its
parameters provide a good measure of
control over its results. In any case, its
sensitivity to local conditions could be
considerably improved upon. That is,
rather than imposing an often inappro-
priate fractal dimensionality at each point
along each chain in an entire file, local
dimensionality should be allowed to retain
its variability.

To achieve this, SD must become a variable,
although useful lower and upper limits
might be imposed. Likewise, UC can also
be locally determined. Local dimensionality,
however, has no specific value; it will vary
according to the extent of the locality
used to calculate it and is dependent on
the consistency, resolution, and
conditioning of coordinate data. But
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Fig. 15. 4x zoom of Fig. 11 (second enhancement).

Fig. 16. IOx zoom of Fig. 9 (filtered boundaries).
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Fig. 17. lOx zoom of third enhancement (3 fractalizations, l smoothing: c. 9,000 points).

Fig. 18, lOx zoom of original, unfiltered boundaries.
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without sensitivity to changes in their
structure, as Fig. 1 illustrates, enhance-
ment of boundaries may homogenize as
well as elaborate their shape.

Computer-assisted interactive the-
matic mapping is aided in two ways by
fractalizing techniques. First, mapmakers
can have easily-specified ways to control
the amount and kind of boundary detail
to be displayed. This is particularly
useful when a portion of a map is to be
enlarged; the limited detail of the bound-
ary file may be revealed, and without
enhancement the boundaries would look
crude, distracting from the thematic
message of the map. Second, the tech-
nique of generating self-similar detail lets
the enhancement be performed in a
consistent way and lessens the need for a
large, highly detailed data base (and the
expense of storing and processing it) just
for the few occasions when greater
amounts of detail may be needed. And
going beyond cartographic display, frac-
tal techniques may also enhance spatial
analysis methods; the abilities to measure
and manipulate the dimensionality of
chains may prove to facilitate the analytic
overlay of different coverages and the
automatic recognition of features and
classes of features.
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