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Performance evaluation of spatial interpolation methods in the
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Abstract. This study aims to investigate the robustness of some spatial
interpolation methods (SIM) in the presence of noisy data. SIM are used in
different contexts such as the identification of hot-spots in brown fields, Geo-
graphical Information Systems (GIS), remote sensing and visualization/shape
re-construction. In all contexts, the correct representation of a given surface is
crucial. For instance, in a site characterization context identifying hot-spots, all
contaminated areas should be determined in order to minimize health hazards in
human use after the reclamation of the site. Here, we conduct a numerical survey
on the performance of four spatial interpolation techniques using eight mathemat-
ical functions to represent domain-independent surfaces. Furthermore, we also
investigate the effects of different sampling patterns on the performance of SIM.

1. Introduction
Interpolation techniques are utilized in many contexts including the identification

of contaminated zones in potentially contaminated sites, and image re-construction
or visualization, e.g. medical imaging, remotely sensed satellite imagery, identification
of mining resources, topographical mapping and Geographical Information Systems
(GIS) or Digital Elevation Modelling (DEM) (USGS 1987, Hutchinson 1997). Based
on the specific area in which they are used, these methods are called ‘geostatistical
tools’, ‘GIS methods’, or ‘DEM’. The most general term for these methods is ‘Spatial
Interpolation Methods (SIM)’ and their major assumption is that spatially closer
locations are more likely to have similar observation values than those which are
far apart. Foley and Hagen (1994) provide a survey on the scientific fields where
SIM are used.

SIM are procedures for estimating the value of characteristics at unsampled
locations within a given area in which observations exist and they are used to provide
contours for displaying data graphically (DEM); to estimate some property of the
surface at a given location (mining); to visualize surfaces of human organs in clinical
investigation; and, to aid the spatial decision making process in detecting hot-spots
(environmental assessment).
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SIM are conventional techniques used in these contexts, and they basically
construct surfaces from point observations. Yet, there are uncertainties about these
re-constructed surfaces due to the fact that the observed points give an indication
about the surface’s character at their corresponding locations, but not about the
whole surface. In these methods, it is usually assumed that the value of a data point
is valid for the area covered by the grid in which it lies. Among some of the problems
encountered by SIM users are: (i) different interpolation algorithms yield different
contours from the same data; (ii) depending on the algorithm used to contour data,
the raw data are not necessarily honoured; (iii) small areas with many peak attribute
levels are difficult to model using these algorithms due to their smoothing effects
(Wingle 1992, Henley and Watson 1997).

A further handicap in representing surfaces is the existence of noise in the
observed values. For example, in the clinical investigation of human tissues, the
reliability of the data measurements obtained by ultrasound may be reduced due
poor intensity contrast, speckle and shadow regions (Carr 1996); in airborne data
there may be many physical factors affecting the quality of the measurements; in
environmental investigations sampling errors (often, duplicate samples taken from
same location result in different observation values) resulting from the sampling
methodology dominate laboratory analysis errors. Consequently, a realistic perform-
ance investigation should involve data with noise. Therefore, we carry out experi-
ments where data are distorted by additive white noise as is the case in many
applications (e.g. Rauth and Ströhmer 1998). In order to demonstrate the effectiveness
of the four SIM considered here, that is, multi-quadratic radial basis function, kriging,
minimum curvature, and Shepherd’s inverse distance method, we utilize mathematical
functions to represent surfaces. We evaluate performance according to the abso-
lute error between the true value of the given function and its corresponding
interpolated value.

2. Brief descriptions of SIM considered in this study
Here we investigate the performance of four conventional SIM used in the above-

mentioned contexts. (Please note that the following references indicating the use of
the four SIM are just samples, and far from being exhaustive.) The first interpolator
that is considered here, radial basis functions (Hardy 1990, Powel 1992), are utilized
in many areas including satellite image re-construction (Fogel 1997), ultrasound
imaging (Carr 1996, Rohling et al. 1998) and cranioplasty. The second technique,
kriging, is a well-known geostatistical technique utilized in geosciences such as
mining (Isaaks and Srivastava 1989, Henley and Watson 1997, Deutsch and Journel
1998), GIS (Oliver and Webster 1990, Rosenbaum and Soderstrom 1996), and in
environmental site characterization (Zirschky and Harris 1986, US Army Corps of
Engineers, 1997, UK DoE, 1994). The third method considered here is the minimum
curvature method, which was first proposed to contour geophysical data (Briggs
1974). The minimum curvature interpolator is a commonly used geostatistical tech-
nique. The last method, Shepherd’s inverse distance method, is a widely used surface
fitting technique utilized in all of the above-mentioned contexts including image
warping (Ruprecht and Muller 1995).

2.1. Radial basis functions
Radial basis functions (RBF) constitute the basis for a nonlinear transformation

of a given input vector, z
i
µRd . Here, z

i
are the observed locations within the surface.
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Their observed values are denoted by f (z
i
). These functions are characterized by the

fact that the relation between the value to be interpolated decreases monotonically
with the distance from a central point (an observed data point).

The principle of a radial basis function derives from the theory of functional
approximation. We consider a real valued function f , such that f : Rd�R. Given
the distinct set of points {z

i
µRd : i=1, 2, . . ., n} and their functional values { f (z

i
):

i=1, 2, . . ., n}, the unknown function f is to be approximated by another real valued
function s: Rd�R.

RBF approximations are of the form

s(z)=∑
n

i=1
l
i
w( |z−z

i
| )+p

m
(z) zµRd , l

i
µR (1)

where p
m

is a polynomial of a low degree m, w( . ): R+�R is a function of the
Euclidean distance between each sample data z

i
, and the given location z to be

interpolated. Thus, the radial basis function s is a linear combination of translates
of radially symmetric functions and a low degree polynomial. The coefficients l

i
are

also unknown and have to be computed. If the space of all the polynomials of degree
at most m in d variables is denoted by pd

m
, then the coefficients l

i
of the approximation

s( . ) and the coefficients of the polynomial p
m
(z) are determined by requiring that s( . )

satisfy the following interpolation conditions,

s(z
i
)= f (z

i
), for all i=1, 2, . . . , n (2)

and the side conditions,

∑
n

i=1
l
i
q(z
i
)=0 for all qµpd

m
(3)

where q(z
i
) denotes a multivariate polynomial of degree m. These side conditions

enforce that the data span the space Rd , in order to constrain the polynomial pm (z).
Usually a function w( . ) which has its maximum at a distance of zero is used. The

popular choices of w( . ) employed are linear, Gaussian, multi-quadratic, and
thin-plate splines functions (Powel 1992).

The choice of w( . ) is determined by the dimension of the problem d, the inter-
polation conditions and the desired properties of the interpolant. Table 1 specifies
conditions for various radial basis interpolants. Here, we choose the multi-quadratic
RBF because it is reported to provide excellent results in image re-construction
(Fogel 1997).

2.2. Kriging
Kriging (originated by Krige (1951) and developed by Matheron (1971)) is a

popular interpolation method used by practitioners in various fields, such as mining,

Table 1. Conditions imposed on data for various radial basis interpolants.

w Spatial dimension d Polynomial degree m Restriction on data

Linear any 1 data not coplanar
Thin-plate 2 1 data not colinear
Gaussian any – none
Multi-quadratic any – none
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Table 2. Performance of four sampling patterns using the kriging interpolation method.

Noise-Free Additive Gaussian Noise

Kriging pattern Herringbone Grid Linear Circular Herringbone Grid Linear Circular

Average error 7.60 6.20 10.97 18.45 92.50 101.18 111.16 99.75
SD 10.39 8.77 23.06 46.21 73.68 71.82 79.44 76.92

geographical mapping, and environmental assessment of sites. The idea is to consider
all observations as a realization of a random spatial process. The following constitute
the steps taken prior to generate the interpolated grid by kriging.

Initially, the spatial variability is analysed and expressed by a function called
variogram, c, which can be estimated from the data according to the following
semi-variance equation:

c(h)= ∑
i, jµH

[ f (z
i
)− f (z

j
)]2/2N(h) (4)

where N(h) is the number of observations separated by a distance h, and H is the
set of observations h distance apart.

The above experimental variogram is used to construct a theoretical one by
applying linear least squares method and thus estimating the parameters of the
theoretical variogram. There are several models that can be used for the theoretical
variogram: Gaussian, exponential, spherical and linear. (After preliminary experi-
ments, here, the linear variogram is selected, because no significant differences exist
in the performances of the linear variogram and the other three variogram types.)
Given the theoretical variogram the question is how can the value of an unobserved
location be predicted based on n observed values. Kriging deals with finding the
best linear unbiased predictor.

The mathematics of kriging is described in detail by Deutsch and Journel (1998).
The kriging algorithm provides a minimum error variance of any unsampled value.
Contouring a grid of kriging estimates is the traditional mapping application of
kriging which tends to smooth out details and extreme values of the original dataset.

Consider the unbiased estimate f (z) from neighbouring data values f (z
i
),

i=1.. .n. The model f (z) is stationary with mean m and covariance C(h). The
covariance is related to the semi-variogram by the following expression:

2c(h)=Var[ f (z
i
+h)− f (z

i
)]=0.5[C(0)−C(h)] for all z

i
(5)

where C(0) is the stationary variance. In its simplest form, also known as simple
kriging, the algorithm considers the following linear estimator.

f ∞
n

i=1
(z)=∑ l

i
(z) f (z

i
)+[1−∑l

i
(z)]m (6)

where f ∞ is the linear regression estimator and m is the known mean value. The
simple kriging weights l

i
(z) are determined to minimize the error variance also called

‘estimation variance’(Luenberger 1969).
The minimized estimation variance or kriging variance is

s2 (z)=C(0)−∑
n

i=1
l
i
(z)C(z−z

i
)�0 (7)
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The latter minimization results in the following normal equations from which the
optimal weights l

j
(z) are calculated.

∑
n

j=1
l
j
(z)C(z

j
−z
i
)=C(z−z

i
), for all i=1.. .n (8)

There are several versions of kriging resulting in different topologies. All of them are
elaborations on a basic generalized regression algorithm and the corresponding
estimator. Here, ordinary kriging (OK) which relaxes the constraint of the stationary
mean, is selected for the experimentation. OK, where the sum of the weights is equal
to 1, is the most commonly used variant of the simple kriging algorithm described
above. OK allows building an estimator that does not require prior knowledge of
the stationary mean m which is replaced by its location-dependent estimate. Hence,
the mean value m is filtered out since S

j
l
j
(z)=1. OK amounts to re-estimating the

mean m as used in the simple kriging expression at each new location z=(x, y). Thus,
it is a non-stationary algorithm in the sense that it corresponds to a non-stationary
model with varying mean and stationary covariance.

2.3. Minimum curvature
The minimum curvature method has first been proposed by Briggs (1974) for

automatic contouring of geophysical data. Here, a two-dimensional cubic spline is
employed to fit the data by solving the corresponding difference equations with the
objective of keeping the total squared curvature minimum. The interpolated surface
generated by minimum curvature is analogous to a thin linearly elastic plate passing
through each of the data values with a minimum amount of bending. Minimum
curvature generates the smoothest possible surface while attempting to honour the
data as close as possible, but it is not an exact interpolator and replaces the
observation value by the interpolated value should they fall upon the same location.

For d=2, the curvature is obtained in terms of the observation point values
f (x
i
, y
j
), i=1 .. . I; j=1 .. . J, where I and J are the numbers of grids in the x- and

y-directions. The curvature depends on the regular grid spacing of observations h.
The total squared curvature C=S

i
S
j
C(x
i
, y
j
)2 , where

C(x
i
, y
j
)=[ f (x

i
, y
j+1 )+ f (xi , yj−1 )+ f (xi−1 , yj )+ f (xi+1 , yj )−4 f (x

i
, y
j
)]/h2 (9)

Here, f ( . ) denotes the observed value if its arguments, x and y, coincide with
locations of observed data, else, it represents a cubic polynomial within which the
coordinates of the point to be interpolated are substituted.

The local coefficients of the cubic polynomial are calculated by minimizing the
total squared curvature C where the partial derivatives of C with respect to f (x

i
, y
j
)

are set to zero. The resulting equations determine a set of relations between neigh-
bouring locations and they are solved to identify the coefficients of the cubic polyno-
mial. If one of the vertices does not coincide with an observation, then additional
difference equations are used for the missing vertex. The resulting system of equations
are then solved iteratively.

2.4. Shepherd’s inverse distance method
In the inverse distance method, the value of a point to be interpolated is calculated

by taking the weighted average of neighbouring observations. The weight of each
observation is a function of the inverse of the Euclidean distance between the
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observation and the interpolated location. In general terms, the interpolated value
is expressed as follows.

∑
i
[ f (z
i
)d
i
−p]/∑

i
d
i
−p (10)

where p is a power selected by the user, and d
i
is the Euclidean distance between

observation i and the location of the interpolated point. The higher the value of p
is, the larger the effect of the closer points become. Here, we employ the conventional
value of two for the parameter p. If the sum of the weights is equal to one and if an
interpolated value takes the value of an observation in case of coincident coordinates,
then inverse distance method can be classified as an exact interpolator.

3. The test functions
Eight test functions are devised to illustrate various possible characteristics of

hypothetical surface patterns on which the performance of SIM are to be evaluated.
Initially, SIM are utilized to approximate the behaviours of the original forms of
the functions based on a given number of sample data. (Here, 196 samples are
collected.) Then, the surface of each function is distorted with additive Gaussian
noise (noise is generated in proportion to the range of function values pertaining to
196 data) and the performances of SIM are re-evaluated.

The three-dimensional images of the test functions are provided in Appendix A
(figures A1–A8). The first test function represents a plateau type of surface where
sharp falls occur near the corners. The second, third, fourth and the fifth test functions
(see figures A2–A5) are generated according to the scheme described in Stuckman
(1988). The forth function represents very sharp stepwise changes of attribute level
whereas the fifth one involves stepwise changes of smaller magnitudes, thus presenting
a smoother surface. The second one (figure A2) is again a discontinuous function
where changes are relatively smoother except at one corner of the site. Furthermore,
when the steps of the second function are removed, a very slightly undulating function
(figure A3) results. The sixth test function is a symmetric function with very frequent
changes in attribute levels achieved over small distances. The seventh function has
a trend in attribute level and a relatively lower number of extremities. On the
opposite hand, the eight one has many extremities in between which there lie plateaus
and valleys.

4. The sampling patterns
We implement the following four different sampling patterns: herringbone, regular

grid, linear type and circular sampling (see figure 1).
The herringbone sampling pattern (Ferguson 1992) can be generated from a unit

Figure 1. Four sampling patterns.
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square grid by offsetting data points one quarter of a unit from the centre of the
grid, in the x- and y-coordinates in a systematically alternating manner. Thus, each
area unit includes one observation. The number of area units is hence equal to the
number of observations to be made on the given surface. It is claimed to be quite
efficient in the contaminated zone detection context (UK DoE, 1994).

The regular grid sampling pattern is generated by dividing the surface into a
number of rectangular units and placing one observation at the centre of each such
unit. The regular grid provides a uniform cover over the surface.

The linear sampling pattern is generated by placing observations on k parallel
equidistant lines drawn across the surface. These lines divide the surface into equidist-
ant cross-sections and each makes an angle of 45° with the x-axis. The first line
contains a single observation while the second one contains two observations. In
this manner, the number of observations on each line becomes equivalent to its
index until k/2 lines are drawn. Then, the number of observations in each succeeding
line decreases by one. Hence, given a fixed number of observations, n, the number
of equidistant lines to be drawn in parallel can be calculated easily.

In the circular sampling pattern, the first observation is placed at the geometric
centre of the surface. Similar to the linear pattern, one more observation is added
to each additional circle drawn around the centre of the surface. However, in order
to eliminate aligned positions, the first observation on each circle is offset by a given
degree from the last observation placed on the previous circle. The degree of offsetting
is computed by dividing 360° by the number of circles to be drawn.

5. Distorting function values by additive white noise
The noise that is added to original function values of observations is generated

as follows. A number of observation locations are generated across the site area
according to a given sampling pattern and their corresponding function values are
calculated. Then, the range, R, of function values over the whole sample set is
determined. A normal additive noise is randomly generated with mean zero and
standard deviation equal to 0.1R.

That is, for any location z
i
, the distorted observation f (z

i
) is given by,

f ∞(z
i
)= f (z

i
)+e
i

for i=1, 2, . . . n (11)

where e
i
~N(0, 0.1R) and n is the number of location points generated.

The interpolation error, IE
i
, is taken as the absolute difference between the

interpolated value, and f (z
i
).

6. An example demonstrating the distortion caused by additive white noise
The test function depicted in figure A1 is used to demonstrate the distortion of

the surface’s shape caused by white noise. In figure 2 the contours of the function
are shown. In figure 3(a)–(d), the surfaces interpolated by kriging using the four
sampling methods are given. The last set of four contours (figure 3(e)–(h)) are the
corresponding interpolated surfaces when noise is added to the data. Table 2 provides
the average and standard deviation of the interpolation errors, IE

i
obtained by the

four sampling patterns using the Kriging interpolation method (50×50 grid).
Although the regular grid pattern provides the minimum average absolute value, its
performance in the presence of noise is intolerable (see figure 3(b) and ( f )). When
the data are noise-free, 81% of the interpolation errors are within 1% of the function’s
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Table 3. Interpolation error results for function 1.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 7.604 6.207 10.974 18.452 10.809 92.500 101.182 111.156 99.747 101.146
SD 10.389 8.768 23.060 46.215 22.108 73.681 71.826 79.443 76.916 75.467

Minimum curvature
Avg 12.531 10.349 10.749 23.228 14.214 112.269 118.024 130.308 137.974 124.644
SD 12.879 10.411 15.516 52.605 22.853 87.204 81.299 99.885 100.721 92.277

Radial basis
Avg 5.115 4.653 8.340 14.281 8.097 115.803 116.245 122.636 116.366 117.762
SD 9.007 7.762 19.756 39.194 18.930 85.587 82.221 90.150 84.241 85.550

Shepard’s
Avg 106.365 105.189 99.005 140.480 112.760 124.143 120.540 118.540 152.478 128.925
SD 63.320 61.871 68.546 122.868 79.151 77.758 79.782 89.217 168.602 103.840

Sample avg 32.904 31.600 32.267 49.110 36.470 111.179 113.998 120.660 126.641 118.119
Sample SD 23.899 22.203 31.719 65.220 35.760 81.058 78.782 89.674 107.620 89.283
Range 1811.65 1604.70 1494.80 2144.94 1764.022 1909.87 1528.52 1591.52 2203.83 1808.435
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Table 4. Interpolation error results for function 2.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 1.647 1.714 1.672 1.742 1.694 2.152 2.244 2.251 2.417 2.266
SD 2.233 2.591 2.756 3.209 2.697 2.382 2.501 2.652 3.636 2.793

Minimum curvature
Avg 1.763 1.722 1.692 2.300 1.869 2.643 2.470 2.617 2.817 2.637
SD 2.346 2.623 2.659 3.953 2.895 2.463 2.396 2.992 4.214 3.016

Radial basis
Avg 1.658 1.732 1.600 1.888 1.720 2.399 2.456 2.381 2.755 2.498
SD 2.335 2.672 2.721 3.185 2.728 2.400 2.420 2.696 3.863 2.845

Shepard’s
Avg 2.924 2.956 2.825 3.178 2.971 3.278 3.278 2.942 3.330 3.207
SD 2.707 2.974 2.486 3.214 2.845 2.618 2.982 2.512 3.432 2.886

Sample Avg 1.998 2.031 1.948 2.277 2.063 2.618 2.612 2.548 2.830 2.652
Sample SD 2.405 2.715 2.656 3.390 2.792 2.466 2.575 2.713 3.786 2.885
Range 49.45 48.69 47.52 49.84 48.873 47.81 47.72 47.91 49.06017 48.125
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Table 5. Interpolation error results for function 3.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 0.073 0.059 0.106 0.329 0.142 1.735 1.731 1.886 2.155 1.877
SD 0.106 0.077 0.228 0.816 0.307 1.409 1.437 1.525 2.153 1.631

Minimum curvature
Avg 0.287 0.291 0.283 0.362 0.306 2.195 2.292 2.188 2.598 2.318
SD 0.319 0.319 0.352 0.593 0.396 1.809 1.743 1.931 2.434 1.979

Radial basis
Avg 0.042 0.039 0.082 0.236 0.100 2.201 2.069 2.153 2.582 2.251
SD 0.083 0.082 0.187 0.669 0.255 1.587 1.692 1.688 2.103 1.767

Shepard’s
Avg 2.483 2.547 2.407 3.421 2.714 3.175 3.109 2.951 4.098 3.333
SD 1.933 1.932 1.792 3.608 2.316 2.223 2.133 2.050 5.040 2.861

Sample avg 0.721 0.734 0.719 1.087 0.815 2.326 2.300 2.294 2.858 2.445
Sample SD 0.610 0.603 0.640 1.422 0.818 1.757 1.751 1.798 2.932 2.060
Range 73.11 66.22 69.87 72.77 70.491 72.24 67.22 68.20 77.75827 71.355
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Table 6. Interpolation error results for function 4.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 0.126 0.125 0.154 0.151 0.139 0.168 0.171 0.214 0.197 0.187
SD 0.138 0.155 0.225 0.192 0.178 0.134 0.154 0.235 0.213 0.184

Minimum curvature
Avg 0.126 0.133 0.191 0.161 0.153 0.176 0.185 0.235 0.223 0.205
SD 0.139 0.148 0.251 0.209 0.187 0.140 0.158 0.254 0.230 0.196

Radial basis
Avg 0.126 0.125 0.170 0.155 0.144 0.167 0.179 0.220 0.219 0.196
SD 0.133 0.142 0.205 0.192 0.168 0.144 0.160 0.232 0.238 0.194

Shepard’s
Avg 0.215 0.205 0.225 0.239 0.221 0.234 0.227 0.253 0.264 0.245
SD 0.159 0.165 0.228 0.207 0.190 0.158 0.159 0.212 0.191 0.180

Sample Avg 0.148 0.147 0.185 0.177 0.164 0.186 0.190 0.231 0.226 0.208
Sample SD 0.142 0.152 0.227 0.200 0.180 0.144 0.158 0.233 0.218 0.188
Range 2.04 2.13 2.01 2.05 2.058 2.14 2.00 2.03 2.1085915 2.069
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Table 7. Interpolation error results for function 5.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 0.649 0.610 0.612 0.760 0.658 0.950 0.958 1.009 1.149 1.017
SD 0.779 0.835 0.798 1.066 0.869 0.857 0.913 0.816 1.150 0.934

Minimum curvature
Avg 0.671 0.695 0.727 1.016 0.777 1.161 1.157 1.175 1.511 1.251
SD 0.858 0.895 0.852 1.561 1.042 0.941 0.998 1.045 1.511 1.124

Radial basis
Avg 0.641 0.678 0.596 0.840 0.689 1.024 1.089 1.088 1.301 1.126
SD 0.808 0.763 0.763 1.048 0.846 0.909 0.918 0.927 1.216 0.993

Shepard’s
Avg 1.121 1.015 1.067 1.436 1.160 1.273 1.202 1.161 1.532 1.292
SD 0.963 0.803 0.800 1.135 0.925 0.975 0.889 0.875 1.178 0.979

Sample avg 0.770 0.749 0.751 1.013 0.821 1.102 1.101 1.108 1.373 1.171
Sample SD 0.852 0.824 0.803 1.203 0.920 0.920 0.929 0.916 1.264 1.007
Range 13.37 9.72 9.92 14.45 11.864 13.62 10.48 9.92 14.3122 12.085
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Table 8. Interpolation error results for function 6.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 5.008 4.492 4.829 5.029 4.840 10.722 9.844 10.441 11.045 10.513
SD 4.191 4.144 4.028 4.566 4.232 8.016 8.322 7.791 8.720 8.212

Minimum curvature
Avg 4.868 4.763 5.317 6.612 5.390 11.846 11.291 12.690 15.662 12.872
SD 4.402 4.391 5.480 6.344 5.154 9.352 8.730 10.990 15.111 11.046

Radial basis
Avg 4.926 4.928 4.856 5.608 5.080 12.322 11.989 11.613 13.225 12.287
SD 4.309 4.289 4.394 4.929 4.480 9.645 8.959 8.947 10.289 9.460

Shepard’s
Avg 4.819 4.786 4.669 5.005 4.820 8.373 8.374 8.072 8.811 8.407
SD 3.698 3.885 3.455 3.928 3.742 7.092 7.335 6.620 9.376 7.605

Sample avg 4.905 4.743 4.918 5.563 5.032 10.816 10.374 10.704 12.186 11.020
Sample SD 4.150 4.177 4.339 4.942 4.402 8.526 8.336 8.587 10.874 9.081
Range 26.92 26.83 25.42 27.83 26.748 27.02 27.91 27.19 28.28235 27.600
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Table 9. Interpolation error results for function 7.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 1.742 1.655 1.661 2.816 1.969 3.542 3.152 3.386 4.724 3.701
SD 2.001 1.781 2.029 4.347 2.539 2.747 2.422 2.784 5.256 3.302

Minimum curvature
Avg 1.406 1.272 1.389 2.644 1.678 3.775 3.492 3.895 5.246 4.102
SD 1.735 1.594 2.782 5.000 2.778 2.883 2.891 4.240 7.267 4.320

Radial basis
Avg 1.074 1.028 1.024 2.411 1.384 3.663 3.341 3.602 4.666 3.818
SD 1.364 1.343 1.678 4.057 2.110 2.544 2.652 2.925 4.739 3.215

Shepard’s
Avg 4.075 3.956 4.138 6.692 4.715 4.837 4.423 4.538 8.513 5.578
SD 4.524 4.340 4.696 10.581 6.035 4.546 4.101 4.593 13.617 6.714

Sample avg 2.074 1.977 2.053 3.641 2.436 3.954 3.602 3.855 5.787 4.300
Sample SD 2.406 2.264 2.796 5.996 3.366 3.180 3.017 3.635 7.720 4.388
Range 219.99 200.79 219.99 200.79 210.391 225.64 199.74 225.64 199.74 212.693
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Table 10. Interpolation error results for function 8.

Without Gaussian noise With Gaussian noise

Herringbone Grid Linear Circular Method avg Herringbone Grid Linear Circular Method avg

Kriging
Avg 0.191 0.195 0.172 0.290 0.212 0.315 0.291 0.337 0.405 0.337
SD 0.198 0.206 0.188 0.351 0.236 0.232 0.234 0.252 0.354 0.268

Minimum curvature
Avg 0.192 0.179 0.182 0.299 0.213 0.338 0.341 0.380 0.518 0.394
SD 0.216 0.204 0.224 0.477 0.280 0.305 0.265 0.290 0.631 0.373

Radial basis
Avg 0.174 0.170 0.159 0.271 0.194 0.342 0.313 0.366 0.431 0.363
SD 0.188 0.191 0.189 0.355 0.231 0.249 0.273 0.260 0.365 0.287

Shepard’s
Avg 0.300 0.275 0.304 0.368 0.312 0.355 0.359 0.376 0.437 0.382
SD 0.293 0.315 0.319 0.439 0.342 0.319 0.314 0.346 0.420 0.350
Sample avg 0.214 0.205 0.204 0.307 0.233 0.337 0.326 0.365 0.448 0.369
Sample SD 0.224 0.229 0.230 0.405 0.272 0.276 0.271 0.287 0.442 0.319
Range 5.37 5.15 4.89 5.82 5.308 5.54 5.22 5.04 6.000356 5.449
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Figure 2. The original contours of the function.

range over the defined domain. On the other hand, when noise is added, only 20%
of the errors fall within this range.

7. Numerical experiments with SIM
The test functions provide our medium of experimentation. Observations are

made on the surface domains given for each function according to each of the four
sampling patterns described in figure 1. Interpolation is then applied to each function
in both cases where the original and the distorted observation values (196 data for
each function domain) are utilized as functional information. In tables 3–10 each
function’s interpolation error results are provided under four interpolation methods
and four sampling patterns. The performance of each SIM is measured in terms of
both absolute error and percentage error. However, percentage error details are not
given here due to space restrictions. The first two rows in each table indicate average
and standard deviation of the absolute difference of interpolated values from the
original function values. (The number of interpolated points is equal to 2500 resulting
from a 50×50 grid.) The numbers indicated under the column ‘method average’
provide the average results obtained by each method over the four sampling patterns.
The rows starting with ‘sample average’ indicate the average results of each sampling
pattern over four SIM. The third row under the ‘sample average’ provides the range
of the function values (over the 2500 interpolated locations) so that the reader can
compare average absolute errors against this range. The implementation of kriging
is carried out as follows. A linear variogram is used for all functions and sampling
patterns. Anisotropic effects are ignored since introducing directional effects on the
variogram may confound the effects of different sampling patterns on interpolation
results. Further, our experiments are conducted with no assumptions related to the
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Figure 3. Kriging. (a) Herringbone sampling pattern/noise-free, (b) grid sampling pattern/
noise-free, (c) linear sampling pattern/noise-free, (d) circular sampling pattern/noise-
free, (e) herringbone sampling pattern/with noise, ( f ) grid sampling pattern/with noise,
(g) linear sampling pattern/with noise, (h) circular sampling pattern/with noise.

functions used to simulate the site. Another parameter in kriging is the search
window. Since the number of data used is not large, all data are utilized in interpolat-
ing a location. The nugget effect is neglected in both noise-free and noise cases,
because it is assumed that no pre-determined information is available.
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When there is no Gaussian noise in the data, Shepherd’s method provides worst
performances except the third and sixth function.

The performance of minimum curvature is considerably superior to that of
Shepherd’s. However, it is the third SIM in terms of performance. The performance
of RBF is alternatingly the best or second best. At times kriging is slightly superior
to RBF. However, when RBF is superior to kriging, differences between the two
methods are considerable. RBF performs specifically well for smooth functions where
abrupt changes do not take place (e.g. functions 1, 3, 7). On the other hand, when
noise is included in the data kriging’s performance is superior to that of RBF. Thus,
kriging turns out to be more robust method against noise.

Considering the differences of sampling patterns (again excluding noise from
data), the circular sampling pattern is the worst because it does not cover the site
uniformly. The grid and linear patterns behave in a similar manner. The herringbone
pattern follows closely the latter two patterns. Consequently, in the noise-free case,
patterns covering uniformly cover the domain work better.

In the case where noise is included, the regular grid is again the best performing
sampling pattern and the linear pattern is a close second. The herringbone and
circular patterns share the worst performing position. Consequently, the regular grid
seems to be the most robust sampling pattern against white noise.

8. Conclusion
In this work we conduct experiments to assess the performance of spatial inter-

polation methods in the presence of noisy data and for sampling patterns: two
well-known sampling patterns as well as two novel ones introduced here.

The experiments are conducted on a test bed of eight mathematical functions
and it is observed that the simplest sampling pattern, namely, the regular grid, is the
most robust sampling pattern. Furthermore, among the four spatial interpolation
techniques tested here, kriging is the most robust one against noise whereas the
multi-quadratic RBF turns out to be the best technique when observations are
noise-free.
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Appendix: test functions
1.

Figure A1. Function 1.

2.

Figure A2. Function 2.

3.

Figure A3. Function 3.
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4.

Figure A4. Function 4.

5.

Figure A5. Function 5.

6.

Figure A6. Function 6.
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7.

Figure A7. Function 7.

8.

Figure A8. Function 8.
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