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Progress reports

Geographical information science:
GeoComputation and nonstationarity
Peter M. Atkinson
Department of Geography, University of Southampton, Highfield, Southampton
SO17 1BJ, UK

I Introduction

In the previous report on geographical information science (GIS) I chose to concentrate
on a single theme: uncertainty and geostatistics (Atkinson, 1999). In this report, I also
focus on a single theme: nonstationary geostatistics. I have chosen to present this theme
within the context of GeoComputation, which I describe first.

There has been a recent surge of interest in GeoComputation in geographical and
related circles (for example, Longley et al., 1998; Atkinson and Martin, 2000a; Openshaw
and Abrahart, 2000). The term ‘GeoComputation’ was introduced to the wider geo-
graphical analysis community in 1996 when Abrahart organized and ran the first
International Conference on GeoComputation at the University of Leeds (Openshaw
and Abrahart, 1996). The conference was a resounding success and has been repeated
every year since: at the University of Otago, New Zealand, in 1997, the University of
Bristol in 1998 and Mary Washington College, Frederiksberg, Virginia, USA, in 1999.
The 2000 conference was hosted once again by Abrahart at the University of Greenwich.
This year’s conference will be held in Brisbane, Australia.

The conference series has had a large impact on the geographical analysis and GIS
communities. For example, the GeoComputation conferences have resulted in several
journal special issues (Table 1). The proliferation of literature resulting from and related
to the series, and the promotion of GeoComputation by its various supporters, has
meant that GeoComputation is now much more than a conference series. However,
there remains much uncertainty about and speculation on what GeoComputation really
is. 

The GeoComputation conference series has a homepage (http://www.
ashville.demon.co.uk/geocomp/) which provides a definition of GeoComputation, as
well as the aims of the conference series, information about previous and forthcoming
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112 Geographical information science: GeoComputation and nonstationarity

conferences, details of the GeoComputation email list and the make-up of the
International Steering Committee. The definition of GeoComputation given on the
homepage is a version of Gahegan’s (1999) guest editorial of Transactions in GIS (Table
1). This editorial emphasizes the enabling technology and defines four significant
advances in computer science that have enabled GeoComputation:

1) Computer architecture and design (i.e., parallel processing).
2) Search, classification, prediction and modelling (e.g., artificial neural networks).
3) Knowledge discovery (i.e., data mining tools).
4) Visualization (e.g., replacement of statistical summaries with graphics).

This view of GeoComputation as enabled by technology is similar to the view of
astronomy enabled by the telescope (MacMillan, 1998). 

Longley (1998) describes GeoComputation, emphasizing data mining and data visu-
alization, but particularly dynamic spatial modelling as described by Burrough (1998)
in the same book and by Burrough and McDonnell (1998). Dynamic spatial modelling
is also known as distributed spatial process modelling, and encompasses cellular
automata and numerical approaches. Within physical geography, cellular approaches
have been applied for some time, typically in hydrology (e.g., Kirkby et al., 1987). More
recently, Aitkenhead et al. (1999) modelled the dynamics of water within the soil using
cellular automata. Bates et al. (1998) coupled a cellular model of flood dynamics with
remotely sensed imagery; a concept that has enormous potential (Curran et al., 1999).
Coulthard et al. (1998) investigated the importance of spatial resolution on the cellular
approach. Numerical approaches to spatial dynamic modelling typically involve some
system for the solution of partial differential equations. The most popular examples of
this type of model are the finite element and finite difference schemes. Hardy et al.
(2000) modelled suspended sediment deposition using a 2-D finite element scheme,
while Lane et al. (1999) compared 2-D and 3-D computational fluid dynamics
approaches to modelling river channel dynamics. Hardy et al. (1999) considered the
importance of spatial resolution for hydraulic models of floodplain environments.

Couclelis (1998), also in Longley et al. (1998), provides a thought-provoking
discussion of GeoComputation in the context of its geographical and, in particular, GIS

Table 1 GeoComputation conferences and related publications

Conference Year Publication Guest editor

Leeds, UK 1996 Computers and Geosciences (1998) 24 (4) D. Unwin
Transactions in GIS (1999) 3 (3) M. Gahegan

Otago, NZ 1997 CEUS (1998) 22 (1) W. Macmillan

Bristol, UK 1998 CEUS (1998) 22 (2) P. Longley
Hydrological Processes (2000), in press
Geocomputation: a primer (1998) P. Longley et al.

Frederiksberg, USA 1999 CEUS (2000) 24 (5) D. Caldwell
Computers and Geosciences (2001), in press

Note: CEUS – Computers, Environment and Urban Systems.
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antecedents. Couclelis covers a broad range of subject matter, but most relevant to the
present discussion is the view of GeoComputation as separate from mathematical and
statistical approaches and, in particular, from quantitative geography. While certain
aspects of GeoComputation such as visualization are less amenable to mathematical
description, this is not generally the case. Moreover, any computational solution has its
roots in mathematics and can be described by mathematical means. I would argue that
a large part of GeoComputation is the successful implementation of appropriate (i.e.,
geographical) mathematics to geographical problems. 

A slightly different view is provided by Openshaw (1998). Openshaw has done most
to initiate, develop and promote GeoComputation. In my view, Openshaw’s argument
is essentially a reaction against classical statistical methods that are clearly not
applicable to spatial data where the assumption of data independence (lack of statistical
correlation) is invalid. The message could be interpreted as follows (after Atkinson and
Martin, 2000b). Do not:

1) apply classical statistics to geographical data as though they were statistically
independent;

2) ‘generalize out’ the geography with stationary models (e.g., spatially constant mean
or variogram); and

3) rely on model-based statistics for inference when the power of the computer can let
spatial data speak for themselves.

These are compelling arguments for geographers, whose very discipline is concerned
with variation across space. Why, as geographers, would we want to throw away the
geography? However, it is important to realize that this ‘call to geographers’ to be more
geographical does not imply that there is no place for (e.g., statistical) models in
geography. The geographically weighted regression (GWR) developed by Brunsdon et
al. (1996) is a good example of a statistical approach (linear regression) being adapted
to emphasize the geography. Similarly, in the field of dynamic spatial modelling,
analytical and stochastic approaches very much fit in with Openshaw’s view. 

There are many strands of GeoComputation, such as visualization of spatial data (see
Kraak and MacEachren, 1999; Fuhrmann et al., 2000), spatial data mining and dynamic
spatial models (see, for example, the titles of keynote lectures given at recent
GeoComputation conferences – Tables 2 and 3). All these subjects have one important
common thread: they involve the application of geographical tools to geographical
problems. The essence of GeoComputation is, thus, that geographical tools are applied
in place of inappropriate aspatial tools (for example, borrowed from other disciplines). 

In the end, GeoComputation will be defined by what GeoComputation researchers
do. This ‘bottom-up’ view is also taken by Ehlen and co-workers in their keynote
address at GeoComputation 2000 (Table 3). Ehlen and co-workers used computer
algorithms to deconstruct the language used in the papers of past GeoComputation
conferences to describe and define GeoComputation. For the purposes of this article, I
have chosen to concentrate on one theme that fits well within the framework of
GeoComputation: nonstationary modelling. Following my own interests, I have chosen
to review nonstationary approaches from a geostatistical perspective.
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114 Geographical information science: GeoComputation and nonstationarity

II Nonstationary geostatistics

A central decision made in traditional geostatistics is to model the spatial structure in
the variable of interest with a stationary covariance function or variogram. Stationary in
this context means that the covariance function, defined as a parameter of the random
function model, is invariant with location x. Importantly, the term ‘stationary’ refers
only to the model and not to the data. There is no such thing as a stationary data set
(Myers, 1989). Moreover, we cannot test for stationarity (Journel, 1996). 

Geostatistics has, to my mind, always been eminently suitable for application in
physical geography. It allows local optimal interpolation and simulation of spatial
variables – tasks that are found frequently in physical geography. However,
geographers have been slow to adopt geostatistical approaches, and one possible
reason for this is the dependence on a stationary covariance function. Recent geostatis-
tical applications in which nonstationary models have been applied should, thus, be of
interest to proponents of GeoComputation. I first introduce the random function model
and basic geostatistical concepts to facilitate interpretation of the nonstationary
modelling that follows. 

Table 2 Keynote speakers at GeoComputation 1999

Speaker Title

G. Kucera Pluralism in spatial information systems

D. Landgrebe Information extraction principles for hyperspectral data

A. MacEachren Exploring geo-data spaces – the search for meaning 

M. Oliver Investigating the spatial variation of radon in soil geostatistically 

I. Turton Geographical data mining: key design issues

R. White High resolution integrated modelling of the spatial dynamics of urban and
regional systems

Table 3 Keynote speakers at GeoComputation 2000

First author Title

F. Rohlf Geometric morphometrics and visualizations of statistical analyses of shape 

M. Batty Visualization in GeoComputation

M. Gahegan Geovista Studio: a geocomputational workbench

G. Tucker The pitter-pat of tiny raindrops: applications of dynamic landscape modelling
in geomorphology, flood hydrology, and archaeology

J. Ehlen The semantics of geocomputation
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1 The random function model

The most important distinction to make in geostatistics is that between model and data.
A first step in most geostatistical analyses consists of estimating some function such as
the covariance function or, more commonly, the variogram (hereafter I refer to the
variogram) to describe the spatial variation in a region of interest. This variogram must
be obtained from sample data (referred to as an experimental variogram). To use the
experimental variogram to infer further information about the region of interest (e.g., to
predict spatially some unobserved value), generally, we need to adopt some formal
model of the spatial variation. Most commonly, the random function (RF) model is
used. The variogram is then defined as a parameter of this RF model and may, itself,
comprise several parameters. To estimate the variogram function (defined as a
parameter) from the experimental variogram it is necessary to fit some continuous
mathematical function to the experimental values. Then, the fitted function estimates the
RF model parameter. 

Let us define a continuous random variable (RV) Z(x0) at location x0 as fully charac-
terized by the cumulative distribution function (cdf) which gives the probability that
Z(x0) is no greater than a given threshold z: 

F (x0; z) = Prob{Z(x0) ≤ z} ∀ z (1)

An RF is then a set of RVs arranged spatially such that their interdependence may be
expressed as a function of separating distance. The α = 1, 2, . . . n RVs Z(xα ) may be fully
characterized by the n-variate or n-point cdf:

F (x1, . . . , xn ; z1, . . . , zn ) = Prob{Z(x1) ≤ z1 , . . . , Z(xn ) ≤ zn} ∀ z (2)

Equation 2, defined for any choice of n and any location xα , is known as the spatial law
of the RF Z(xα ). For most geostatistical applications we do not need the entire spatial
law, and can restrict our analysis to the one- and two-point cdfs, the covariance
function, autocorrelation function and variogram. 

For continuous variables, the experimental semivariance is defined as half the
average squared difference between values separated by a given lag h, where h is a
vector in both distance and direction. Thus, the experimental variogram γ(h) may be
obtained from =1, 2, . . . , P(h) pairs of observations {z(x), z(x + h)} at locations {x, x + h}
separated by a fixed lag h:

1
P(h)

γ(h) = ∑[z(xα ) – z(xα + h)]2 (3)
2P(h)

α=1

Where the RVs which constitute the RF Z(x) are not independent it should be possible
to predict spatially one value, say Z(x0), from neighbouring data using techniques such
as kriging. 
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2 Spatially nonstationary mean

For most traditional geostatistical applications, for example, mining and petroleum
geology, data are expensive. Thus, the number of data available to estimate the
variogram and predict spatially is often limited to about 100 (mining) or less (petroleum
geology), depending on the application. Where data are sufficient (e.g., around 100), it
may be possible to model a locally varying mean with a nonstationary model of the
mean, termed a trend (or drift). Much early geostatistical research was devoted to
developing methods for modelling a locally varying mean using trends, and these are
discussed below. 

All kriging algorithms are variants of the least squares regression predictor
(Goovaerts, 1997):

n(V)

Ẑ(V) – m(V) =∑λα(V)[Z(xα ) – m(xα)] (4)
α=1

where λα are the weights applied to data z(xα) interpreted as realizations of the RV
Z(xα), and m(V) and m(xα) are the means of the RVs Z(V) and Z(xα). In practice,
prediction is achieved using only the n(V) point or quasi-point data z(xα) at locations xα
within a local neighbourhood W(V).

The actual type of kriging predictor adopted varies depending on the model
adopted for the RF. In general, the RF can be decomposed into two components as
follows:

Z(V) = R(V) + m(V) (5)

where R(V) is modelled as having zero mean or expectation and its variation is
modelled using the variogram. The component m(V) is the mean of the RF Z(V) and
this can be modelled in various ways depending on the type of kriging predictor
adopted.

In simple kriging (SK), the mean is modelled as known and stationary across space.
Ordinary kriging (OK) is an extension of SK to the case of an unknown mean. The local
mean within a moving window around each location x0 to be predicted is used to
estimate the unknown locally stationary mean within that window (Journel and
Huijbregts, 1978). Thus, for OK the mean is neither known nor stationary across the
region of interest. Kriging with a trend model (KT) (also known as universal kriging)
was developed to model a local mean that is not stationary, even within a local neigh-
bourhood (Matheron, 1969; Armstrong, 1984; Goovaerts, 1997). In KT the trend is fitted
to the data using some least squares algorithm and kriging is performed on the
residuals (Kitanidis, 1997). An important distinction occurs between global KT in
which the trend is fitted once and local KT in which the trend is fitted locally to
data neighbouring each x0. For global KT, kriging is applied to the residuals from the
trend using the detrended variogram. However, for local KT the locally detrended
variogram is unknown, presenting problems for successful application. This problem is
important because local KT often provides sizeable increases in prediction accuracy
over OK. An alternative model for a locally varying mean is provided by the so-
called intrinsic random functions of order-k (IRF-k) (Delfiner, 1976; Chiles and Delfiner,
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1999). In the IRF-k model the trend is modelled as a series of monomials that are just
sufficient to filter the trend from the data leaving residuals with a stationary covariance
function.

3 Spatially nonstationary variogram

Where the number of data is limited (as with mining and petroleum geology), the inves-
tigator has little choice but to decide to use a stationary model of the variogram. That
is, the variogram is modelled as being spatially invariant within the region of interest.
However, for environmental applications, the number of data available is often much
greater than 100. For example, for remote sensing and other spatial properties that are
inexpensive to measure, such as elevation, the number of observations can be in excess
of 1 000 000. Such sources of data allow for the possibility of nonstationary variogram
models.

Nonstationary models of the variogram have generally tended to fall into three
groups: 1) those based on prior segmentation; 2) locally adaptive approaches; and
3) deformation approaches. Deformation approaches, as decribed by Sampson and
Guttorp (1992), are beyond the scope of this report. The segmentation approach is based
on the assumption that the region of interest can be divided into separate subregions
within which the variogram can reasonably be modelled as stationary. There are two
ways of achieving the segmentation: 1) prior knowledge (e.g., physical units such as soil
types); or 2) automatic division of the space based on some property of the variogram.
Segmentation based on prior knowledge has been implemented for many years. For
example, Berberoglu et al. (2000) segmented a remotely sensed image based on vector
polygon data and used variograms estimated within segments to aid per-field classifi-
cation. Data on some prior ‘statification’ are generally incorporated into the kriging
process via stratified kriging which is nothing more than kriging applied to the strata
independently (e.g., Goovaerts, 1997). 

Automatic segmentation can be achieved using either a classification algorithm or a
segmentation algorithm (in which spatial proximity of like classes is promoted).
Generally, segmentation is preferred over classification because the resulting division of
space tends to involve fewer and more compact subregions. However, Allard (1998) and
co-workers (Allard and Monestiez, 1999; Allard and Guillot, 2000) have implemented
classification-based approaches within a geostatistical framework. Further, the geosta-
tistical classification of Oliver and Webster (1989) is a useful way of incorporating a
spatial weighting into an unsupervised classification algorithm. 

Ideally, where the objective is to identify populations with different variograms,
automatic segmentation should be based on some property of the variogram such as the
fitted variogram model range. It is well known that change in the sill variance of the
fitted variogram model does not affect the kriged predictions (Isaaks and Srivastava,
1989). Rather, change in the range coefficient, change in the nugget variance relative to
the sill variance and change in the form of the variogram model have most effect.
Ramstein and Raffy (1989) allowed automatic fitting of an exponential model to local
variograms estimated for remotely sensed imagery and subsequently segmented on the
basis of the range coefficient. St-Onge and Cavayas (1997) employed a similar approach
while Lloyd and Atkinson (2001) chose to segment on the basis of the local fractal
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dimension because this reduced effectively the information in the local variogram to a
single variable. 

The locally adaptive kriging (LAK) approach has been applied in a limited number
of cases. For example, Haas (1990a; 1990b) was the first to implement a LAK approach
(called moving window kriging) applied to atmospheric data. Pieters et al. (2001)
applied moving window kriging to soil pollution data while Lloyd and Atkinson (2000)
used LAK to map digital elevation data. The variogram was estimated and modelled
locally and the model coefficients were used in OK locally. 

The major problem with LAK (and methods of segmentation based on variogram
model coefficients) is that the variogram estimated locally must be fitted with a mathe-
matical model automatically. In some cases, the local experimental variogram has the
same general shape for all x. For example, for a photogrammetrically derived DEM,
Lloyd and Atkinson (2000) found that the Gaussian model provided a reasonable fit in
almost all cases because of the inherent smoothness in the data. If the general shape of
the experimental variogram varies with x then automatic fitting can be difficult. For
these reasons, such ‘blind’ automatic fitting of variogram models without check is
discouraged in geostatistical practice. Clearly, what is needed is some alternative
method of utilizing the local information on spatial structure without the need for inap-
propriate ‘blind’ model fitting.

4 Spatially nonstationary relations: lessons from human geography

One of the most important developments made in recent years in quantitative human
geography has been the application of spatial nonstationary models to geographical
applications. In particular, the Geographical Analysis Machine (GAM) and
Geographical Explanation Machine (GEM) (Openshaw et al., 1987; Openshaw, 1998)
represented something of a breakthrough in geographical analysis. While conceptually
simple, the GAM represents one of the first attempts to address, in a geographical
manner, a clearly geographical problem. The specific problem addressed by Openshaw
was to detect clusters of leukaemia in spatial data. The solution involved counting the
number of people with and without leukaemia within a circle of given diameter and
repeating for all positions on a grid. The exercise was then repeated for various circle
diameters. The results were superimposed to provide a scale-independent map of
clusters of high incidence (and, by inference, high risk). The Geographical Explanations
Machine (GEM) extended this basic approach to the relations between variables rather
than cluster detection. The important themes in the GAM were ‘local analysis’ and
‘independence from a statistical model’.

The geographically weighted regression (GWR) proposed by Brunsdon et al. (1996)
and described by Fotheringham et al. (2000) provides an inherently geographical
method of analysing relations in geographical data. The model involves applying
regression within a local window or kernel to obtain local regression coefficients in
place of the usual global set of coefficients. Thus, the result of GWR is a set of maps of
regression coefficients. The underlying philosophy of such an approach is either that 1)
there is some change in the nature of the relation over space; 2) there may be some
properties with low spatial frequency that have not or cannot be measured; or 3) so
many properties affect the dependent variable that the full global model is
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cumbersome. While it is unlikely in physical geography that (1) can be supported, (2)
and (3) often can be. 

5 Spatially nonstationary relations: geostatistics

In geostatistics, researchers have analysed the spatial cross-correlation between
variables often represented with the cross-variogram. This represents the spatial cross-
correlation as well as the simple correlation. The technique of cokriging has been
applied widely to predict spatially a primary variable from a sparse sample of that
variable plus generous coverage of a secondary correlated variable. Cokriging makes
use of the full spatial cross-correlation and, thus, represents a favourable alternative to
regression (which utilizes only the simple correlation). Kelly and Atkinson (1999)
reported a standard application of cokriging to predict snow depth in the UK from
DEM data under a nonstationary (segmented) model of the cross-correlation structure.
This amounted to the application of cokriging in Scotland and regression in the
remainder of the UK.

A problem with cokriging is that the linear model of coregionalization (LMC)
(essentially the combined variogram and cross-variogram models) must satisfy certain
constraints that are time-consuming to verify. Recent developments in geostatistics
have circumvented the need to fit the LMC. For example, kriging with an external drift
(KED) is a modification of the more usual KT in which the trend is modelled as a
function of some secondary variable with which it is linearly related rather than as a
function of the co-ordinates (Goovaerts, 1997). Further, simple kriging with locally
varying means (SKlm) is an extension of simple kriging (with a known constant mean)
to the case of varying local mean expressed as a function of some secondary variable.
Both methods avoid the need to fit the LMC. Goovaerts (1999) provides a comparison
of these approaches. Recently, Ma and Journel (1999) have introduced Markov models
that allow one to apply cokriging treating one variogram as a linear function of the
other. 

An important development of cokriging has been colocated cokriging in which the
spatial cross-correlation structure is ignored and only the simple correlation is used in
predicting the primary variable at unknown observations. Clearly, for this to be viable,
one must have complete coverage of the secondary variable as with remotely sensed
images or digital elevation models. Colocated cokriging has striking similarities to
GWR, the main difference being that the variogram model fitted to the primary variable
is used for prediction in addition to the regression coefficients. Clearly, colocated
cokriging depends on a stationary model of the variogram and correlation. However,
where primary data are sufficiently numerous the regression coefficients can be
obtained locally (Pereira et al., 2000) amounting to a version of GWR that incorporates
spatial information in the prediction. 

III Conclusion

In simple terms, GeoComputation is the application of geographical computation to geo-
graphical problems. For problems to be truly geographical they should have a spatial
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component such that for their solution they require a geographical model or algorithm.
It is the spatial or geographical components of models and algorithms that make
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