Lecture 11: Dasymetric and isarithmic mapping
Discrete vs. continuous revisited

- Choropleth suited to discrete areal, but suffers from MAUP unless standardized
- Dots can work for discrete points, but can be ineffective
- Dasymetric mapping allows discrete data to be supplemented with additional information about distributions
- Isarithmic methods work for continuous field variables, and are mostly derived from terrain mapping
- Isarithmic mapping often abused, on web commonly called “heat mapping”
A Uniform
http://demographics.coopercenter.org/DotMap/index.html
Dasymetric: Note the blank areas

- Overlay land use and other data
- Move dots to where they are most likely to reside
- Can compute quantities from proportions in overlay
- Example of data fusion
Dasymetric

• Method of thematic mapping, which uses areal symbols to spatially classify volumetric data
• Developed and named in 1911 by Benjamin Petrovich Semenov-Tyan-Shansky
• Popularized by J.K. Wright in a 1936 map of Cape Cod
• Cartographers use dasymetric mapping for population density over other methods because of its ability to realistically place data over geography
• Now possible to use land use, imagery, many other information sources
A METHOD OF MAPPING DENSITIES OF POPULATION

WITH CAPE COD AS AN EXAMPLE

John K. Wright

The first of the maps presented on page 105 is a conventional population map of Cape Cod in which a symbol for the density covers the whole area of each township. The map is not particularly realistic. Anyone who has visited the region knows that large parts of it are uninhabited. Terminal-moraine ridges run parallel to the north and east shores of the Cape's "upper arm"—to use a term implying comparison of the Cape to an arm shaking its fist at the Atlantic. These moraines are wildernesses of burnt-over land covered with scrub oak and stunted pine. Fringing Nantucket Sound is a string of villages, but elsewhere the sandy outwash plains that intervene between the moraines and the sound are thinly peopled, and one often drives for several miles without seeing a house. At the tip end of the Cape the map shows a density of 200 to 500 to the square mile in the "fist." As a matter of fact, nearly all the people here live in the compact village of Provincetown along the harbor, and the greater part of the Cape is wilderness.
• Start with the counts for the choropleth map
• Adjust each area using land use to exclude areas that are uninhabited
• Adjust the remaining area and recompute the density
• Remap densities within each land use class, e.g. urban, rural
Adjustments to density

A

Urban
(1,000)

Forested
(1,000)

B

Urban
(15,775)

Forested
(15)
Overlapping zones

A: Source Zones
B: Ancillary Zones
C: Overlay of Zones

Copyright © 2009 Pearson Prentice Hall, Inc.
Landscan: Global Population (Eastview)
Landscan Data Sources

- Census
- Administrative boundaries
- Land cover
- Elevation and slope
- Coastlines
- Imagery
- Nighttime lights
NASA: Global Rural-Urban Mapping Project
Distributed via CEISIN: http://sedac.ciesin.columbia.edu/data/collection/grump-v1
Software

- Use standard map overlay, e.g. in ArcGIS
- Using imagery: eCognition
- Schneider’s code in R at UCSB
- Mashups
USGS Western Mapping Center

Astoria, Oregon
Rachel Sleeter and Michael Gould http://pubs.usgs.gov/tm/tm11c2/
Isarithmic mapping

- Includes contour maps
- Any map showing lines joining points of equal value
- Can shade or use colors for areas between lines
- Can use many terrain-based methods, such as shading
- Based on assumption of continuity
- When data at points (or area centroids) are used, need to use interpolation
- Interpolation methods and models are many
- Longley et al Contrast interpolation and kernel density function
- Can use optimal interpolation, e.g. kriging
Isarithmic maps using isopleths
Planar Map Transformations on Points
- Centroids

- Multiple point or line or area to be transformed to single point
- Point can be "real" or representative
- Can use weightings or populations
- Mean center simple to compute but may fall outside point cluster or polygon
- Can use point-in-polygon to test for inclusion

\[
\bar{x} = \frac{\sum_{i=1}^{npts} P_i x_i}{\sum_{i=1}^{npts} P_i} \\
\bar{y} = \frac{\sum_{i=1}^{npts} P_i y_i}{\sum_{i=1}^{npts} P_i}
\]
Mean point vs. centroid
The interpolation problem
Southern California
Interpolation to a Grid

• Given a set of point elevations (x, y, z) generate a new set of points at the nodes of a regular grid so that the interpolated surface is a reasonable representation of the surface sampled by the points.
• Imposes a model of the true surface on the sample
• "Model" is a mathematical model of the neighborhood relationship
• Influence of a single point = f(1/d)
• Can be constrained to fit all points
• Should contain z extremes, and local extrema
• Most models are algorithmic local operators
• Work cell-to-cell. Operative cell = kernel
Aligned

Sparse

Dense

Missing from edges
Planar Map Transformations Based on Areas
- Theissen Polygons

- Often called proximal regions or Voronoi diagrams
- Often used for contouring terrain, climate, interpolation, etc

http://en.wiki.mcneel.com/default.aspx/McNeel/PointsetReconstruction.html
Kernel density maps

Image source: Jochen Albrecht
Weighting Methods

• Impose \(z = f \left(\frac{1}{d^n} \right) \)
• Computationally rather intensive
• e.g. 200 x 200 cells 1000 points = 40 x 10^6 distance calculations
• If all points are used and sorted by distance, called "brute force" method
• Possible to use sorted search and tiling (Hodgson, ERDAS)
• Distance can be weighted and powered by \(n = \) friction of distance
• Can be refined with break lines
• Use \(\cos(\text{angle}) \) to prevent shadowing
Inverse Distance Weighting

\[Z_{i,j} = \frac{\sum_{p=1}^{R} Z_p d_p^{-n}}{\sum_{p=1}^{R} d_p^{-n}} \]

\(Z = \text{height} \)
\(D = \text{distance} \)
\(P = 1 \ldots R \)
\(n = ? \)
Search Patterns

• Many possible ways to define interpolated "region" R
• Can use # points or distance
• Problems in
 • Sparse areas
 • Dense areas
 • Edges
• Bias can be reduced by changing search strategy
Search patterns

Simple

Quadrant

Octant

Copyright © 2009 Pearson Prentice Hall, Inc.
Kriging

- "Optimal interpolation method" by D.G. Krige
- Origin in geology (geostatistics, gold mining)
- Spatial variation $= f$(drift, random-correlated, random noise)

To use Kriging
- Model and extract drift
- Compute variogram
- Model variogram
- Compute expected variance at d, and so best estimate of local mean

Several alternative methods
- Universal Kriging best when local trends are well defined
- Kriging produces best estimate and estimate of variance at all places on map
Variogram
Algorithm matters: IDW (5) vs. Splines (12, 0.1)
Interpolation methods

Interpolation Methods
Hurricane Hugo Precipitation, 1989

A. Triangulation

B. Inverse Distance - All Data

Contour Lines Represent Inches of Rainfall

C. Inverse Distance - Quadrant

D. Kriging

Contour Lines Represent Inches of Rainfall

Copyright © 2009 Pearson Prentice Hall, Inc.
Summary

- Discrete vs. continuous (Choropleth, Dasymetric, Isarithmic)
- Dots useful, but aggregate
- Dasymetric mapping effective, good data not so good software
- Isarithmic maps; many symbolization methods to choose among
- Conversion to surface an issue: points, density, model
- Interpolation a problem: heuristics vs optimal methods
- Must assume surface model, search pattern, neighborhood and method