

Geog183: Cartographic Design and Geovisualization Spring Quarter 2020

Lecture 7: Color and its use

Color

- Most powerful element in map symbolization
- Invokes unconscious, perceptual and cognitive responses
- Both input (eye) and output (video) concern in cartography
- Color rendering methods use additive and subtractive color
- Color models
- Hardware
- RGB
- CMYK
- User-oriented
- HSV
- Munsell
- HVC

Color context

Context and illumination

Trial 1
Booth A

Allred, Sarah R., and Maria Olkkonen. "The Effect of Background and Illumination on Color Identification of Real, 3D Objects." Frontiers in Psychology 4 (2013): 821. PMC. Web. 25 Apr. 2018.

Not just a good idea, it's the law

- c = $299792458 \mathrm{~m} / \mathrm{s}$
- c= 670444951 miles per hour
- Eye can process up to
- Movies run at 24 FPS
- TV runs at 30 FPS $=33$ milliseconds/frame
- Using 50 FPS, light can travel $5,995,849 \mathrm{~m}$ between frames
- Effect on light is motion blur at high velocities

Wave theory of EMR: Polarization

EMR Theory: A Duality

Particle Theory of EMR Photons

EMR has a wavelength

- Wavelength $(\lambda)=c / v$
- $\operatorname{Frequency~(f)~}=1 / \lambda$
-Amplitude (A)

Intensity of EMR = Brightness

- Energy content $=\mathrm{E}=\mathrm{f}(\#$ photons $)$
- $\mathrm{E}=\mathrm{hc} / \lambda$

Planck's constant (h)

- $6.626 \times 10^{\wedge}$-34 Joules/second
- Basic energy equation
- E.g. UV and visible light on skin
- UV shorter λ

Electromagnetic spectrum

"Pure" sunlight: absorption features

'Solar Flux Atlas from 296 to 1300 nm' by Robert L. Kurucz, Ingemar Furenlid, James Brault, and Larry Testerman: National Solar Observatory Atlas No. 1, June 1984.

Light interactions

- Shadowing (depth)
- Reflection

Direct Flash

Bounced Flash

- Refraction
- Scattering
- Absorption
- Re-emission

Spectrum and Absorption

Light: Electrical and magnetic dimensions (Polarization)

Rods and cones

Fig. 2. The mean absorbance spectra of outer segments of the four classes of human photoreceptors. Curves labelled as follows: ' 498 ', mean of eleven rods; ' 420 ', mean of three blue-sensitive cones; ' 534 ', mean of eleven green-sensitive cones; ' 564 ', mean of nineteen red-sensitive cones.

Theories of color perception

- Trichromatic theory
- RGB cones
- Opponent-process theory
- Light-dark and two color scales, red-green and blue-yellow
- Both theories have value
- Nerves fire at a constant rate
- Above standard is excitation, below is inhibition

Simultaneous contrast

Almond illusion

Rendering color

- Depends on medium, but one major contrast
- Subtractive color
- Assumes background color is white, uses filtering pigments to add to surface to create color
- Add little color, unsaturated and light
- Add full color, saturated and darker
- Non-primary colors are blends of MCY
- Additive color
- Assumes background is black
- Adds illumination to achieve color
- More color more saturated, more light brighter
- Non-primary colors are blends of RGB

Copyright © 2009 Pearson Prentice Hall, Inc.

Offset color lithographic printing

Raster graphics

Raster imaging technologies

Display details

- Pixelization
- Aliasing and anti-aliasing
- Dithering

Anti-Aliased

- Frame buffers and the refresh rate
- Movement periodicity
https://www.youtube.com/watch?v=smDpCsVVgPA

Liquid Crystal Display

Copyright © 2009 Pearson Prentice Hall, Inc.

Light Emitting Diodes

- LED panels: conventional (using discrete LEDs) and surface-mounted device (SMD) panels
- A cluster of red, green, and blue diodes is driven together to form a full-color
 pixel, usually square
- Pixels are spaced evenly apart and are measured from center to center for absolute pixel resolution
- Largest LED display in the world is over 500 meters long in Suzhou, China
- Largest LED television in the world is the Center Hung Video Display at Cowboys Stadium, which is $49 \mathrm{~m} \times 22 \mathrm{~m}$
- LED TVs using SMD pixels of red, green, and blue diodes mounted in a single package, which is then mounted on the driver PC board
- Individual diodes are smaller than a pinhead and are set very close together
- Reduces maximum viewing distance by 25% from the discrete diode screen at the same resolution

Color models: Cube

Color production and reproduction

- Requires measurement
- Based on standards
- Names are subjective
- Applies to foveal zone only
- Requires color MODEL

eyazo

Color models: Wheel (Hue and Saturation)

[^0]
CMYK: Subtractive primaries Cyan, magenta, yellow, black

CYAN

MAGENTA

YELLOW
 The CMYK color code is an add
mode with perentages of Cyan,
Magenta, Yellow and
.ack
For

HSV color model: Perceptual, but not all equal value

Saturation

Intensity

Munsell color model

Copyright © 2009 Pearson Prentice Hall, Inc.

Munsell layers

Copyright © 2009 Pearson Prentice Hall, Inc.

CIE color model

- Commission Internationale de l'Eclairage
- Objective way to specify color
- Based on three numbers Yxy
- Two dimensional space for range of hue and saturation
- Central white-point (or equal energy)
- Uses RGB theory, color combinations and human subjects for color repetition
- Attempt to rectify perceptual difference in luminescence as a function of hue

CIE color spaces

Copyriaht © 2009 Pearson Prentice Hall. Inc.

CIE stimulus adjustment

∇ C Q Search

Diverging

Qualitative

Summary

- Color is complex and powerful
- Light behaves as both a wave and particles
- Light interacts with all aspects of map viewing
- Colors can be additive or subtractive
- Color models allow color specification and control
- Covered RGB, CMYK, HSV, Munsell and CIE
- Colorbrewer recommends color sequences for sequential, diverging and qualitative color sets
- Don't forget: Hue suggests class, saturation and intensity suggest value

[^0]: Copyright © 2009 Pearson Prentice Hall, Inc.

