How to Pick a GIS

Getting Started With GIS Chapter 9

9 How to Pick a GIS

- 9.1 The Evolution of GIS Software
- 9.2 GIS and Operating Systems
- 9.3 GIS Software Capabilities
- 9.4 GIS Software and Data Structures
- 9.5 Choosing the Best GIS

Choosing the GIS

- A first GIS analyst decision is often "Which GIS?"
- GIS users need to be aware of different GIS software products during system selection and beyond
- OpenGIS (OGC) standards have led to a new generation of choices for software
- Informed choice is the best way to select the best GIS

Functionality

- What functions must a GIS perform?
- What functions can it perform?
- What software has what functions?
- First management step is often to make a requirements matrix: needs vs. capabilities
- Then can rank or score systems and select highest, or exclude

•A GIS is often defined not for what it is but for what it can do

- o If the GIS does not match the requirements for a problem, no GIS solution will be forthcoming
- •A GIS may have overcapacity (function creep)
- oUser contributions often fill unmet needs

For example: Hawth's Tools and Fragstats

EMass Lanio

FRAGSTATS: Spatial Patt Program for Categorical M

Frequently Asked Questi

GSTA'

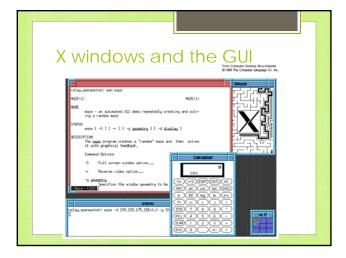
-

GIS as a toolbox...

- How did functions develop over time?
- What are the differences among software packages?
- What are any given package's strengths and weaknesses?
- What other factors come into play, cost, training, maintenance, robustness, etc.

GIS software in 1979

- A historical GIS "snapshot" was the IGC survey conducted in 1979
- In the 1979 survey, most GISs were sets of loosely linked FORTRAN programs performing spatial operations
- Computer mapping programs had evolved GIS functionality
- Many competing operating systems


GIS in the 1980s

- Spreadsheet was ported to the microcomputer, allowing "active" data
- Relational DBMS evolved as the leading means for database management
- Single integrated user interface
- Degree of device independence
- Led to the first true GIS software

GIS in the 90s

- Used graphical user interfaces and the desktop/WIMP model
- Unix workstations integrated GIS with the X-windows GUI
- GISs began to use the OS GUI instead of their own
- PCs integrated GIS with the variants of Windows and other OSs

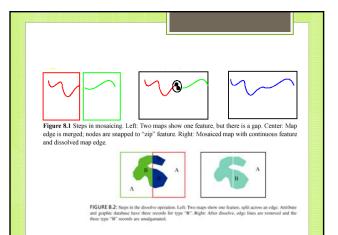
GIS in the 2000s

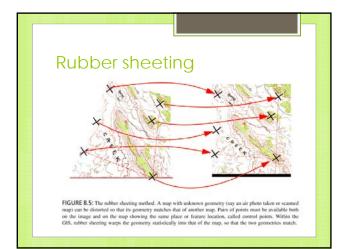
- Mobile systems
- •Web-based extensions
- Distributed systems and data
- Most software now object-oriented
- •New competition: OpenSource GIS
- •Web services
- Location-based services

Trends still under way

• Open Source development tools now ubiquitous, e.g. geotools libraries

- GoogleEarth, Bing Maps, etc.
- Mash-up solutions
- Many solutions using scripts and utilities, not programs


The "critical six" functional capabilities

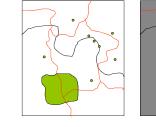

- odata capture
- storage
- management
- retrieval
- o analysis
- o display

Data capture functions

- o digitizing
- o scanning
- o mosaicing
- editing
- o generalization
- o topological cleaning

Storage functions

- compression
- o metadata handling
- o control via macros or languages
- o format support

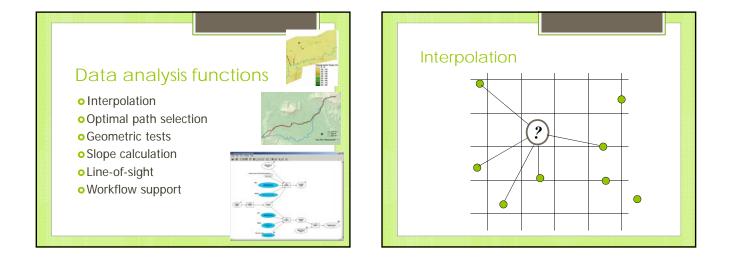

Compression

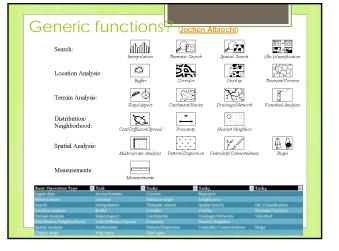
- By data structure
 - o quad trees
- orun length encoding
- image pyramids
- By data format
- o compressed TIF
- o jpeg
- By physical compression
 - odigit handling

Data management functions

- ophysical model support
- o DBMS
- oaddress matching
- o masking
- ocookie cutting


Cookie cutting




Data retrieval functions

- locating
- selecting by attributes
- o buffering
- omap overlay
- omap algebra

Functional capabilities are byproducts of data structure

- Raster systems work best in forestry, photogrammetry, remote sensing, terrain analysis, and hydrology
- •Vector systems work best for land parcels, census data, precise positional data, and networks

Vector

- Precision intact
- Used when individual coordinates are important
- More concise spatial description
- Assumes feature model of landscape
- Easy to transform data e.g. map projections

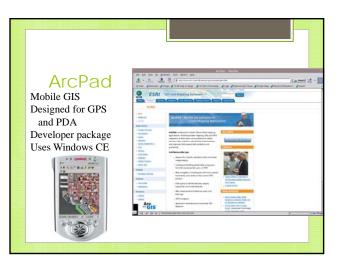
Raster

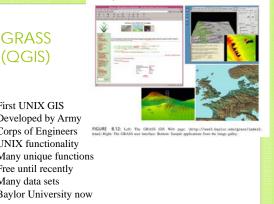
- Better for field data
- Used by most imaging systems
- Can be compressed
- Easy to display and analyze
- Many common formats
- However, most systems now use both
- Raster layer often backdrop-onscreen editing

Commercial GIS				
Software	About	Information		
Autodesk	Map 3D, Topobase, MapGuide and other products that inter- face with its AutoCAD CAD package.	usa.autodesk.com/		
Bentley Systems	Products include Bentley Map. Bentley PowerMap, and other products that interface with its MicroStation software.	www.bentley.com/en-US/		
Intergraph	GeoMedia, GeoMedia Professional, GeoMedia WebMap, an add-on products for industry sectors, as well as photogramme try.			
ERDAS	Leica Geosystems subunit encompassing GIS, Photogramme try, and Remote Sensing. Main software is Imagine.	www.erdas.com		
ESRI	AreView 3.x, AreGIS, AreSDE, AreIMS, AreWeb services, and AreServer.	www.esri.com		
ENVI	From ITT. Image analysis, exploitation, and hyperspectral analysis.	www.itt.com.		
MapInfo	From Pitney Bowes. Includes MapInfo Professional and MapXtreme. Integrates GIS software, data and services.	www.mapinfo.com		
Manifold	Full capability GIS software package.	www.manifold.net		

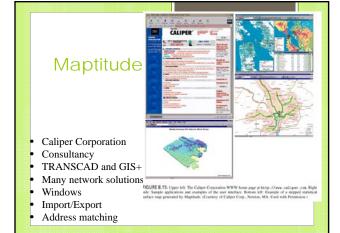
Smallworld	Developed in Cambridge, England; now owned by General Electric and used primarily for public utilities.	http://www.gepower.com/ prod_serv/products/ gis_software/en/ smallworld4.htm
Cadcorp	Cadcorp SIS (desktop), GeognoSIS (web), mSIS (mobile), and developer kits.	www.cadcorp.com
Caliper	Maptitude, TransCAD, and TransModeler. Develops GIS and the only GIS for transportation.	www.caliper.com
GeoConcept	GeoMap 3D,Topobase, GC Standard, GC eterprise, Sales & Marketing, routing, Geo optimization, Geo Server and other products.	www.geoconcept.com/en
IDRISI	Taiga GIS product developed by Clark Labs.	www.idrisi.com
TatukGIS	TatukGIS Developer Kernel (SDK), GIS Internet Server, GIS Editor, and free GIS Viewer software products.	www.tatukgis.com
SuperGeo	SuperGIS Desktop, SuperPad Suite, SuperWebGIS, SuperGIS Engine, SuperGIS Mobile Engineg, SuperGIS Image Server, SuperGIS Server, and other desktop extensions.	www.supergeotek.com

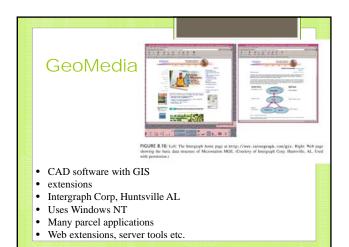





The Big Eight


- Form the bulk of operational GIS in professional and educational environments
- Have changed only slightly over time
- All use version update
- There are some significant differences between these "big eight" systems





Open Source GIS Basis in standards: OGC critical, but others e.g. GeoVRML, X3D, X11, GML Includes code level tools, scripts, libraries, and utilities Clearinghouses for information: e.g. opensource.org Support fora, wikis, lists, etc Whole GIS systems e.g. GRASS, OGIS, MapWindow Whole web-based support systems e.g. MapServer

What is Open Source?

Open Source Initiative

- 1. Free Redistribution
- 2. Source Code
- 3. Derived Works
- 4. Integrity of The Author's Source Code
- 5. No Discrimination Against Persons or Groups
- 6. No Discrimination Against Fields of Endeavor
- 7. Distribution of License
- 8. License Must Not Be Specific to a Product
- 9. License Must Not Restrict Other Software
- 10. License Must Be Technology-Neutral

OSI vs. FSF

- Open Source Initiative polices OpenSource
- Not exactly the same as freeware
- Some FSF licenses not accepted by OSI
- Nearly all free software is open source, and nearly all open source software is free

- Free Software Foundation, http://www.gnu.org/philosophy/categories.html

The nice thing about standards

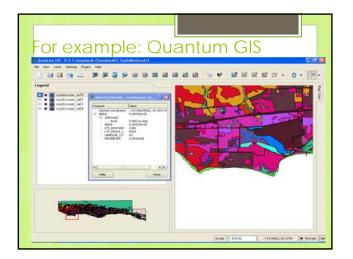
- 39 Open Source License types
- 40 Types in Free Software Community
- Examples: Academic Free License, Common Public License, GNU General Public License, Zope Public License
- Other standards: e.g. Copyleft, Media Commons, Wiki, creative commons

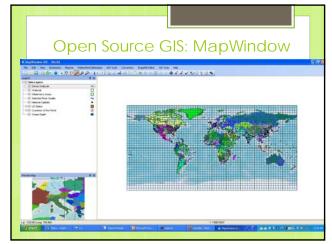
Sample code libraries

- cgal.org: CGAL Open Source Project to provide easy access to efficient and reliable geometric algorithms in the form of a C++ library
- OGR: Simple features library, C++ open source library (and commandline tools) providing R/W access to vector file formats
- GEOS: Geometry Engine Open Source, C++ port of the Java Topology Suite (JTS)
- OpenCV: C++ Class library to support computer vision

Sample software tools

- TARDEM, A suite of programs for the Analysis of Digital Elevation Data
- Merkaartor is an OpenStreetMap editor distributed under the GNU General Public License
- Worldwind: browser tool for geospatial data




Open Source GIS

QGIS	Quantum GIS-OGIS is a user friendly. Open Source GIS that runs on Linux , Unix , Mac OS X, and Windows.	htp://www.qgis.org/
MapWindow GIS	Free, open source GIS desktop application and programming component.	http://www.mapwindow.org/
LWS	Integrated Land and Water Information System. Integrates image, vector and thematic data.	http://www.itc.nl/ilwis/
uDig	uDig is an open source desktop application framework, built with Eclipse Rich Client technology.	htp://udig.refractions.net/
JUMP GIS / OpenJUMP-(0 Java United Mapping Platorm. OpenJUMP, Sky JUMP, deeJUMP, and Kosmo emerged from JUMP.	htp://www.jump-project.org/
Capaware rc1 0.1	General purpose virtual worlds 3D viewer. A free software project started in 2007 to promote the development of free s	ic http://www.capaware.org/
Kalypso	An Open Source GIS (Java, GML3) that locuses on water management. Supports modeling and simulation.	htp://www.ohioh.nel/p/kalypso
Terral/iew	Desktop GIS that handles vector and raster data stored in a relational or geo-relational database, a frontend for TerraLib.	htp://www.dpi.inpe.br/terraview/index.php
GeoServ er	GeoServer is an open source software server written in Java that allows users to share and edit geospatial data. Desig	gr http://geoserver.org/display/GEOS/Welcome
WebMap Server	Open source protocol and tools for serving GIS data over the Internet.	http://lerraserver-usa.com/ogcwms.aspx
MapGuide Open Source	Web-based platform that enables users to quickly develop and deploy web mapping applications and geospatial web s	e http://mapguide.osgeo.org/
MapServer	Web-based mapping server, developed by the University of Minnesota.	http://mapserv.er.org/
PostGIS	Spatial extensions for the open source PostgreSQL database, allowing geospatial queries.	http://postgis.refractions.net/
H2Spatial for	Spatial extension for an open source DBMS H2_(DBMS).	htp://geosysin.ict.ch/irstv-trac/wiki/H2spatial/Download
SpatialLite for SQLite	Spatial-tie extension enables SQLite to support spatial data in a way conformant to OpenGis specifications.	http://www.gaia-gis.it/spatialite-2.0/index.html
My SQL Spatial	MySQL spatial extensions following the specification of the Open Geospatial Consortium.	htp://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html

A variety of issues should be considered in system selection:

- o cost
- o upgrades
- LAN configuration support
- training needs
- ease of installation
- o maintenance
- o documentation and manuals
- help-line and vendor support
- means of making patches
- o workforce

Tests show that....

- The same function, enacted in different systems give (slightly) different results!
- Errors can find their way into unquestioned final results unless tasks are carefully checked
- Workflows are the best way to repeat and check processes
- Most errors are made by people unfamiliar with functionality

Selecting a GIS can be a complex and confusing process.

- The intelligent GIS consumer should research, select, test, and question systems before purchase/installation
- Installation itself can be a challenge
- Match needs and requirements
- Be prepared to upgrade continuously

The needs matrix

System 1 System 2 System 3 System 4 etc

Requirement 1 Requirement 2 Requirement 3 Requirement 4

Requirement N

- Yes/No Ranking Score
- Weighted Score

