Generalization Transformations

- Conversion of data collected at higher resolutions to lower resolution
- Change (reduction) in extent due to scale change (e.g. zoom)
- Less data and less detail
- Simplicity -> clarity
- Can be lossless or lossy

Generalization: Line to line transformations

- Problem of "line character"
- Algorithmic resampling i.e. reduce # of points in finite sample
- Algorithmic reconstruction
- Enhancement
Algorithms (Reviewed by McMaster)

- N-th Point retention
- Equidistant Resampling
- Douglas-Peucker

Douglas-Peucker aka Ramer–Douglas–Peucker algorithm, the iterative end-point fit algorithm or the split-and-merge algorithm

Pseudocode

function DouglasPeucker(PointList[], epsilon)
 // Find the point with the maximum distance
 dmax = 0
 index = 0
 for i = 2 to (length(PointList) - 1)
 d = OrthogonalDistance(PointList[i], Line(PointList[1], PointList[end]))
 if d > dmax index = i dmax = d end
 end
 // If max distance is greater than epsilon, recursively simplify
 if dmax >= epsilon
 // Recursive call
 recResults1[] = DouglasPeucker(PointList[1...index], epsilon)
 recResults2[] = DouglasPeucker(PointList[index...end], epsilon)
 // Build the result list
 ResultList[] = {recResults1[1...end-1] recResults2[1...end]}
 else
 ResultList[] = {PointList[1], PointList[end]}
 end
 // Return the result
 return ResultList[]
end
Douglas-Peucker for Michigan Counties

Example (Using Animation) Courtesy of Brad Allen and Waldo Tobler.

Enhancement: adding detail back!

- Lines
 - Splines
 - Bezier Curves
 - Polynomial Functions
 - Trigonometric Functions (Fourier-based)
 - Fractals
- Surfaces
 - Fractal
 - Fourier
 - Manual

Splines

Bezier curves: Match points and guide points

Continuous derivative at switching point
Fourier surfaces

Algorithms for Areas: Overlay

1. Intersections
2. Chain splitting
3. Polygon reassembly
4. Labeling and attribution

Volume-to-Volume
- Common conversion between two major data structures, vector (TIN) and grid.
- Often via points and interpolation
- Problem of VIPs

Vector to Raster and Back Again
- Efficient V->R->V has eliminated vector-raster debate, BUT is a major source of error
- Major consumer of processing power
- Vector to Raster
 - Easy compared to inverse, a form of resampling
 - Grid must relate to coordinates (extent, bounds, resolution, orientation)
 - Rasters can be square, rectangular, hexagonal.
 - Resample at minimum r/2
 - Both structures may be tiled
 - Problem: What value goes into the cell?
 - Separate arrays for dimensions and binary data?
 - Index entries & look up tables
Bressenham’s Algorithm

Consider drawing a line on a raster grid where we restrict the allowable slopes of the line to the range \(0 \leq m \leq 1 \). If we had to control the line-drawing routine so that it always increments \(x \) as it plots, it becomes clear that, having plotted a point at \((x, y)\), the routine has a severely limited range of options as to where it may put the next point on the line:

- It may plot the point \((x+1, y)\), or
- It may plot the point \((x+1, y+1)\).

So, working in the first positive octant of the plane, line drawing becomes a matter of deciding between two possibilities at each step.

Issues in Resampling

- Drop out
- Broken lines
- Fat lines
- Jaggies
- Moire patterns

Algorithm (e.g. rasterize)

- Convert form of vectors (e.g. to slope intercept)
- Thin fat lines
- Compute implicit inclusion (anti-alias)
Raster to Vector

- Much harder, more error prone.
- May involve cartographer intervention (e.g. Laserscan)
- Importance of alignment
- Can do points, lines, area

WinTopo

DXF file created

Algorithms

- Skeletonization and Thinning
 - Peeling/Erosion
 - Dilation
 - Medial Axis
- Feature Extraction
- Topological Reconstruction
- User assisted update
For example, dilation

STRUCTURING ELEMENT

For example: Medial Axis Transformation

Data Structure Transformations

- Scale transformations are lossy
- (re)storage produces error
- Algorithmic error, systematic and random

Types are:
- scale
- structural (data structure)
- dimensional
- vector-to-raster
Data structure transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Entity by Entity</th>
<th>Topological</th>
<th>TIN</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scaling</td>
<td>Structural</td>
<td>Structural</td>
<td>Vector to raster</td>
</tr>
<tr>
<td>Entity by Entity</td>
<td>Structural</td>
<td>Structural</td>
<td>Structural</td>
<td>Vector to raster</td>
</tr>
<tr>
<td>Topological</td>
<td>Structural</td>
<td>Structural</td>
<td>Structural</td>
<td>Vector to raster</td>
</tr>
<tr>
<td>TIN</td>
<td>Structural</td>
<td>Structural</td>
<td>Structural</td>
<td>Vector to raster</td>
</tr>
<tr>
<td>Grid</td>
<td>Raster to vector</td>
<td>Raster to vector</td>
<td>Structural</td>
<td>Vector to raster</td>
</tr>
</tbody>
</table>

Map error
- positional
- attribute
- systematic
- random
- known
- uncertain

Avoiding error
- Errors can be attributed to poor choice of transformations
- Incompatible sequences of T's (non-invertible)
- "Hidden" Error = use error, not process error
- Blunders and misinterpretations: Design!

The Role of Error
- Kate Beard: Source error, use error, process error
- Morrison: Method-produced error
- Error is inherent, can it be predicted, controlled or minimized?
- \[XT = X' \]
- \[X' T^{-1} = X + E \]
Summary

- Generalization a major issue in computer cartography
- Lossy vs Lossless
- Multiple representations vs continuous transformation
- Selection often hard, resampling easier e.g. n-th point
- Possible to create scale effects analytically e.g. by dilation, erosion, MAT
- Can invert scale loss using simulation, e.g. fractals
- Data structure transformations necessary: R -> V (hard) vs. V -> R (easy)
- Nature of error is complex, e.g. method error