

Analytical and Computer Cartography Winter 2017

Lecture 9:
 Geometric Map Transformations

Cartographic Transformations

-Attribute Data (e.g. classification)

- Locational properties (e.g. projection)
-Graphics (e.g. symbolization)
- Information content of maps (e.g. data structure conversion)

Dimensional Transformations

STATE AT TIME ONE

Geometric map transformations

- Same dimension: e.g. point to point in a projection
- Change structure: e.g. TIN to grid in a DEM
- Change scale: e.g. Area to point as a city is generalized

Planar geometries

-Cartesian
-Spherical (ellipsoidal)

- Radial

Analysis

- Input: geometric feature Point, line, Area, Surface, Volumes
- Output: Reduce feature to single dimension: e.g. centroid, length, perimeter, area in square unit lengths
- Output: A scalar, numerical value reflecting quantity "Collapse"
- E.g. shape, sinuosity, network metric
-Can compute using algorithms

Lake Cachuma

Lake Cachuma

Lake in California

Cachuma Lake is an artificial lake located in the San central Santa Barbara County, California on the Sant the north side of California State Route 154. Wikipec

Surface elevation: 753'
Area: $4.844 \mathrm{mi}^{2}$
Outflow location: Santa Ynez River

Reservoir Information	Reservoir Elevations referenced to NGVD-29. **Cachuma is full and subject to spilling at elevation 750 ft . However, the lake is surcharged to 753 ft . for fish release water. (Cachuma water storage is based on Dec 2013 capacity revision)					
Spillway Elev. (ft)	Current Elev. (ft)	Max. Storage (ac-ft)	Current Storage (ac-ft)	Current Capacity (\%)	Storage Change Mo.(ac-ft)	Storage Change Year*(ac-ft)
Gibraltar Reservoir 1,400.00	1,399.93	5,272	5,255	99.7\%	39	4,640
Cachuma Reservoir 753.**	669.75	193,305	33,079	17.1\%	8,043	18,468
Jameson Reservoir 2,224.00	2,169.80	5,144	769	14.9\%	52	211
Twitchell Reservoir 651.50	582.75	194,971	36,094	18.5\%	20,454	36,093

Uncertainty in Geometric features

- Assume infinite thinness
- Assume exact location
- Assume unambiguous ontology (definition) e.g. wetlands

mit International Review | web.mit.edu/mitir

Web-published essay installment for 17 February 2009

Finding Osama bin Laden:

An Application of Biogeographic Theories and Satellite Imagery

Thomas W. Gillespie and John A. Agnew are professors of geography at UCLA.
They may be contacted respectively at $\mathrm{tg} @$ geog.ucla.edu and jagnew@geog.ucla.edu. Erika Mariano, Scott Mossler, Nolan Jones, Matt Braughton, and Jorge Gonzalez are undergraduates in UCLA's geography department. They may be contacted respectively at erikmari@ucla.edu, smossler@ucla.edu, nolanjones@ucla.edu, mbraught@ucla.edu, and inronn(mucla edu ${ }^{1}$

Likely location and setting (3 given)

Actually at: 34.156136,73.219657

Abbottabad

Assuming crisp features: Points, lines, areas, volumes

- What simple transformations can be performed on PLAV in Euclidean space?
- In C language
- typedef struct POINT \{ int point_id, double x, double y\};
- POINT Point[100]; int npts;
- Create a loop
- double sumx $=0.0$
- for (i=0; I <= npts; i++) sumx += Point[i].x;
- meanx = sumx / npts;

Planar Map Transformations on Points - Length of a line

- Repetitive application of point-to-point distance calculation
- For n points, algorithm/formula uses $\mathrm{n}-1$ segments

$$
\text { length }=\sum_{i=1}^{n p t s} \sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}
$$

Length of a Line

Estimate?

Length of a generic line

Planar Map Transformations on Points - Centroids

- Multiple point or line or area to be transformed to single point
- Point can be "real" or representative
- Can use weightings or populations
- Mean center simple to compute but may fall outside point cluster or polygon
- Can use point-in-polygon to test for inclusion

$$
\bar{x}=\frac{\sum_{i=1}^{n p t s} P_{i} x_{i}}{\sum_{i=1}^{n p t s} P_{i}}
$$

$$
\bar{y}=\frac{\sum_{i=1}^{n p t s} P_{i} y_{i}}{\sum_{i=1}^{n p t s} P_{i}}
$$

Mean Center of Population for the United States: 1790 to 2000

Mean point vs. centroid

	0	0_{0}		0	
0	\bigcirc	\bigcirc	\bigcirc		0
		0			
\bigcirc			0		

Planar Map Transformations on Points - Standard Distance

- Just as centroid is an indication of representative location, standard distance is mean dispersion
- Equivalent of standard deviation for an attribute, mean variation from mean
- Around centroid, makes a "radius" tracing a circle

$$
\begin{gathered}
s_{x}=\sqrt{\frac{\sum_{i=1}^{n p t s}\left(x_{i}-\bar{x}\right)^{2}}{n p t s}} \quad s_{y}=\sqrt{\frac{\sum_{i=1}^{n p t s}(y-\bar{y})^{2}}{n p t s}} \\
s=\sqrt{\left(s_{x}^{2}+s_{y}^{2}\right)}
\end{gathered}
$$

Standard distance

ATTEMPTED STREET ROBBERY AND GUN HOMICIDE POINT PATTERNS

Standard Deviational Ellipses

Planar Map Transformations on Points
 - Nearest Neighbor Statistic

- NNS is a single dimensionless scalar that measures the pattern of a set of point (point-> scalar)
- Computes nearest point-to-point separation as a ratio of expected given the area
- Highly sensitive to the area chosen
- Available in ArcGIS etc

$$
N N S=2 \times \frac{\sum_{i=1}^{n p t s} d_{i}}{n p t s \times \sqrt{\frac{A}{n p t s}}}
$$

$N N S=$ clustered or random?

Local NNS: Cluster busting

Planar Map Transformations Based on Lines - Intersection of two lines

- Absolutely fundamental to many mapping operations, such as overlay and clipping.
- In raster mode it can be solved by layer overlay.
- In vector mode it must be solved geometrically.
- Lines (2) to point transformation

Raster solution: add binary arrays

Red $=1$

Blue $=2$

Green $=3$

Planar Map Transformations Based on Lines - Intersection of two lines (cnt.)

If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on the same line, then

$$
\begin{aligned}
& y_{1}=a_{1}+b_{1} x_{1} \\
& y_{2}=a_{1}+b_{1} x_{2}
\end{aligned}
$$

-When using this algorithm, a problem exists when b2-b1 = 0 (divide by zero)
-Special case solutions or tests must be used
-These can increase computation time greatly
-Computation time can be reduced by pre-testing, e.g. based on bounding box.

Similarly, if $\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ lie on the same line, then

$$
\begin{aligned}
& y_{3}=a_{2}+b_{2} x_{3} \\
& y_{4}=a_{2}+b_{2} x_{4}
\end{aligned}
$$

If there exists an intersection point, (p, q) that lies on both lines, then

$$
\begin{aligned}
& q=a_{1}+b_{1} p \\
& q=a_{2}+b_{2} p
\end{aligned}
$$

By subtracting the former from the latter,

$$
q-q=a_{1}-a_{2}+p\left(b_{1}-b_{2}\right)
$$

and rearranging, we obtain

$$
a_{1}-a_{2}=p\left(b_{2}-b_{1}\right)
$$

Bounding Box
 if ($x<\operatorname{minx}$) or ($x>\max x$) or ($y<m i n y$) or ($y>\operatorname{maxy}$) then point is outside

Planar Map Transformations Based on Lines - Distance from a Point to a Line

Used to create a buffer

buffer zone around vector points
buffer zone around vector polylines
buffer zone around buffering rivers vector polygons

Threshold value

Planar Map Transformations Based on Areas

- Computing the area of a vector polygon (closed)
- Manually, many methods are used, e.g. cell counts, points on grid.
- For a raster, simply count the interior pixels
- Vector Mode more complex

$$
A=\frac{1}{2}\left|\sum_{i=1}^{n p t s+1}\left(x_{i} y_{i-1}\right)-\left(x_{i-1} y_{i}\right)\right|
$$

Planar Map Transformations Based on Areas

Polygon direction

- Clockwise: Sum is positive
- Counter-clockwise: Negative
- So make holes counter clockwise, include in area calculation, then add

Planar Map Transformations Based on Areas
 - Point-in-Polygon

- Again, a basic and fundamental test, used in many algorithms.
- For raster mode, use overlay.
- For vector mode, many solutions.
- Most commonly used is the Jordan Arc Theorem
- Tests every segment for line intersection
- Test point selected to be outside polygon

Another Point-in-Polygon Algorithm

- Calculate area of polygon
- Find test point
- Calculate area for all triangles made by center and two sequential exterior points
- If sum of areas is the area of the polygon, point is inside polygon

Planar Map Transformations Based on Areas - Theissen Polygons

- Often called proximal regions or Voronoi diagrams
- Often used for contouring terrain, climate, interpolation, etc

http://en.wiki.mcneel.com/default.aspx/M cNeel/PointsetReconstruction.html

Affine Transformations

- These are transformation of the fundamental geometric attributes, i.e. location.
- Influence absolute location, not relative or topological
- Necessary for many operations, e.g. digitizing, scanning, geo-registration, and display
- Affine Transformations take place in three steps (TRS) in order
- Translation
- Rotation
- Scaling

Affine Transformations - Translation

Translation

- Movement of the origin between coordinate systems

$$
\left[\begin{array}{lll}
x & y & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-x_{0} & -y_{0} & 1
\end{array}\right]=\left[x-x_{0}, y-y_{0}, 1\right]
$$

Affine Transformations
 - Rotation

- Rotation of axes by an angle theta

$$
\left[\begin{array}{lll}
x-x_{0} & y-y_{0} & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]=
$$

$$
\left[\cos \theta\left(x-x_{0}\right)-\sin \theta\left(y-y_{0}\right) \sin \theta\left(x-x_{0}\right)-\cos \theta\left(y-y_{0}\right) 1\right]
$$

Affine Transformations
 - Scaling

- The numbers along the axes are scaled to represent the new space scale

Scaling

$$
\begin{aligned}
& {\left[\cos \theta\left(x-x_{0}\right)-\sin \theta\left(y-y_{0}\right) \sin \theta\left(x-x_{0}\right)-\cos \theta\left(y-y_{0}\right) 1\right]\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & S_{y} & 0 \\
0 & 0 & 1
\end{array}\right]=} \\
& \quad\left[S_{x}\left[\cos \theta\left(x-x_{0}\right)-\sin \theta\left(y-y_{0}\right)\right] S_{y}\left[\sin \theta\left(x-x_{0}\right)-\cos \theta\left(y-y_{0}\right)\right] 1\right]
\end{aligned}
$$

Affine Transformations

- Possible to use matrix algebra to combine the whole transformation into one matrix multiplication.
- Step must then be applied to every point

Sum of Transformations

$$
\begin{aligned}
{\left[\begin{array}{lll}
x & y & 1
\end{array}\right] T R S } & =\left[\begin{array}{ll}
x^{\prime} & y^{\prime} \\
1
\end{array}\right] \\
x^{\prime} & =S_{x}\left[\cos \theta\left(x-x_{0}\right)-\sin \theta\left(y-y_{0}\right)\right] \\
y^{\prime} & =S_{y}\left[\sin \theta\left(x-x_{0}\right)+\cos \theta\left(y-y_{0}\right)\right]
\end{aligned}
$$

Statistical Space Transformations - Rubber Sheeting

- Select points in two geometries that match
- Suitable points are targets, e.g. road intersections, runways etc
- Use least squares transformation to fit image to map
- Involves tolerance and error distribution
- $[\mathrm{x} y]=\mathrm{T}[\mathrm{u} v]$ then applied to all pixels
- May require resampling to higher or lower density

Statistical Space Transformations
 - Cartograms

- also known as value-by-area maps and varivalent projections (Tobler, 1986)
- Deliberate distortion of geometry to new "space"
- Type of non-invertible map projection

Symbolization Transformations

- Screen coordinates are often reduced to a "standard" device Normalization Transformation
- Standard Device display dimensions are $(0,0)$ to $(1,1)$
- World Coordinates-> Normalized Device Coordinates > Device Coordinates

World coordinates

Normalized device coordinates
$(0,0)$

$(1,1)$
Workstation transformation

Drawing Objects: Primitives

- Most use model of primitives and attributes
- The Graphical Kernel System (GKS) has six primitives, each has multiple attributes.

Fill area

Polymarker

Cell array

New York Text
Generalized device primitive

```
GEOJSON
Objects : Point, LineString, Polygon,
MultiPoint, MultiLineString, and
MultiPolygon
{
    "type": "Feature",
    "geometry": {
        "type": "Point",
        "coordinates": [125.6, 10.1]
    },
    "properties": {
        "name": "Dinagat Islands"
    }
}
```


GoogleEarth KML Objects

For example, a LinearRing in KML

- <?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Placemark>
<name>LinearRing.kml</name>
<Polygon>
<outerBoundaryls>
<LinearRing>
<coordinates> -122.365662,37.826988,0-122.365202,37.826302,0-
122.364581,37.82655,0-122.365038,37.827237,0-
122.365662,37.826988,0 </coordinates>
</LinearRing>
</outerBoundaryls>
</Polygon>
</Placemark>
</kml>

Launch GE, bring in KML file

Summary

- Geometry can be crisp or vague, raster or vector
- Operations can work even when information is vague
- Algorithms can apply basic transformations for essential measurements, such as clustering, length, area, density
- Basic features can be ingested into simple programming language data structures
- Functions then can measure length, mean center, dispersal, area
- Can also transform geometry in non-invertible ways, e.g. cartograms
- Last transformation is into normalized device coordinates, then device/viewport coordinates
- Gave examples of simple objects and their rendering objects

