

Analytical and Computer Cartography
Lecture 3:
Review: Coordinate Systems

Geographic Coordinates

90^{0} North Latitude

Figure 2.6 Geographic coordinates. The familiar latitude and longitude system, simply converting the angles at the earth's center to coordinates, gives the basic equirectangular projection. The map is twice as wide as high (360° east-west, 180° north-south).

NAD83

- NAD27 remained in use until the earthcentered international GRS80 was complete (Geodetic Reference System 1980)
- Then converted to NAD83, using GRS80 ellipsoid
- Very similar ellipsoid WGS84 was adopted by DOD and many other mapping agencies
- Meades ranch now just a historical relic

IERS

- Provides data on Earth orientation, on the International Celestial Reference System/Frame, on the International Terrestrial Reference System/Frame, and on geophysical fluids
- Maintains Conventions containing models, constants and standards
- Includes ITRS

IERS

nnternational Farth Rotation and Reference Systems Service

Organization

Data / Products / Tools

Publications
Science background
News / Meetings
Links

About IERS
Directing Board
Analysis Coordinator
Product Centres
Technique Centres
Central Bureau
IrRS Combination Centres
Working groups
Workshops

Search website:
Search item
Search IERS products:
Product search
Search IERS Messages:
Message search

Organization

The IERS was established in 1987 by the International Astronomical Union and the International Union of Geodesy and Geophysics. According to the Terms of Reference, the IERS accomplishes its mission through the following components: Technique Centres, Product Centres, Combination Centres, Analysis Coordinator, Central Bureau, Directing Board.

> More

Publications

The IERS issues Messages to distribute news, Bulletins to provide Earth orientation data, Technical Notes to publish research results and proceedings of workshops, and Annual Reports to inform the public about its work.

Data / Products / Tools

The IERS provides data on Earth orientation, on the International Celestial Reference System/Frame, on the International Terrestrial Reference System/Frame, and on geophysical fluids. It maintains also Conventions containing models, constants and standards.
> More
> More

Meetings

> IAG Commission 4
"Positioning and
Applications"
Symposium
> WDS Members' Forum
> 2016 CODATA General Assembly
> More

NAD2022 and NAVD2022

- North American Datum of 1983 will be replaced by a new geometric datum which provides latitude, longitude, height and time information.
- Will rely completely on the CORS network (continuously operating reference stations)
- NGS is completing a major project called Gravity for the Redefinition of the American Vertical Datum, or GRAV-D.
- The scale of the change will vary depending on your location, ranging from 0.5 to 1.5 meters in a horizontal direction, and 0 to 1.3 meters in elevation.
- Many state and other governmental entities passed laws on NAD83 that will need to be changed to reflect the new datum
- Will create the National Spatial Reference System

Resources

- http://alt.ngs.noaa.gov/web/science edu/o nline lessons/
- http://www.ngs.noaa.gov/corbin/class des cription/NGS Video Library.shtml

NAD83 to NAD2022

Datums and Map Projections

- Assuming an earth model sets the initial surface that will be transformed
- Influences both position and height
- If projection does not document the datum, it may be irreversible
- Most GIS packages create metadata files that establish key parameters
- After NAD2022, time will be an integral part of position

Ways to Record Lat/Long

Decimal Degrees
DMS
Hemisphere First
Decimal Minutes
Decimal Seconds
$38.8998339-77.0463660$
385359N 0770247W
N385359W0770247
3853.98' N 77º $02.78^{\prime} \mathrm{W}$

3853'98.333" N
77º ${ }^{\circ}$ '78.333"W

Problems with Geographic Coordinates

- Spherical geometry difficult, need great circle arcs for many applications
- Precision depends on mixed DMS and DD origin maps
- Axes are not orthogonal
- Difficult to use algorithms for spherical measurements e.g. simple distance in x $=\cos (\phi)$
- Solution: Planar geometry
- But, price is living with an imperfect projection

USGS Topographic maps

- Seven and a half minutes of longitude wide
- Seven and a half minutes of latitude high
- So why aren't they square?

Lets check two locations

Card Sound, Florida at $25^{\circ} 22^{\prime} \mathrm{N}$.
Flag Island, Minnesota at 49²2N.

Using Projections

- Choice of projection allows control over map center, plus pattern of distortion
- Can optimize projection for map purpose, e.g. choose standard parallels
- Allows customizations for particular maps and applications, e.g. navigation
- Often chosen once then choice remains in place
- E.g. Mercator for navigation by compass

Great circles are straight on some conformal projections (Gnomic): Note crossing angles

JFK to LHR: Approximating a great circle on the Mercator. Only 41km farther (0.74\%)

Projection and Coordinate Systems

- A coordinate system is a standardized method for assigning codes to locations so that locations can be found using the codes alone
- Standardized coordinate systems use absolute locations
- In a coordinate system, the x-direction value is the easting and the y-direction value is the northing
- Most systems make both values positive
- Can use letters, numbers
- Can interweave digits for x and y

What3words: $3 \times 3 m$ squares

https://map.what3words.com/lights.require.plug

Coordinate Systems for the US

- Some standard coordinate systems used in the United States are
- geographic coordinates
- universal transverse Mercator system
- military grid/MGRS/National grid
- state plane
- To compare or edge-match, both maps MUST be in the same coordinate system.

Equatorial Mercator

Transverse Mercator

The advantage of the transverse Mercator projection

UTM

- Universal transverse Mercator coordinate system
- Basis for 3 grid systems: Civilian UTM, MGRS and US National Grid
- Used in Hybrid form by geohack
- Uses 60 projections with 6 degrees between central meridians

Applies 80° S to $84^{\circ} \mathrm{N}$

60 zones each 6° of longitude wide

UTM Zones

- One degree $=111,111 \mathrm{~m}$
- Six degrees = 666,666
- Set Zone false origin so that central meridian is $500,000 \mathrm{~m}$
- Gives 166,666 m of overlap on each side at equator
- Overlap ends at about $25^{\circ} \mathrm{N} / \mathrm{S}$

Zones overlap slightly when 1million meters wide

Zone 11N

Grid north and the Zone

Universal Polar Stereographic (UPS)
 0

West Zone

South Polar Area UPS Grid

Example, GPS fix

238499E; 3811905N 11, N

Geohack Isla Vista

UTM zones in the USA

Military Grid Coordinates First Reference (6 x 8 degrees)

USMG： $2^{\text {nd }}$ Reference $100,000 \mathrm{~m}$ cells

		CK	DK	EK	FK			L0	Ma	NO	PQ			UK	vk	wk	xK			CO	DO	EO	FO			LK	MK	NK	PK			U0	vo	wo	xa			CK	DK	EK	FK
YP	B	c．	DJ	EJ	F3	cu	16 P	LP	MP	NP	pp	op	Ts	us	vs	was	xs	r	BP	cp	DP	Ep	FP	GP	ks	ω	m ${ }^{\text {a }}$	NJ	PS	as	tp	up	vp	wp	xp	YP	（3）	c．	Di	EJ	FS
W	BH1	CH	Dil	EH	F1	CH	K01	LN	MN	N＊	PN	On	TH	U1）	V1	mi	$x{ }^{0}$	va	BiN	c）	Dis	EN	FN	ON	KH	4	4，	A41	Pil	OH	m	UN	W	Wes	x N	w	BH	di	OH	CH	FH
N24．	BG	－	－ 0	EO	PG	00	KM	UN	Man	－NM	PMM	OM	To	UO	Ve－	－we	＊e	YG	Qn	CM－	－OM－	EM	mM	OM－	KG－	－Le	me	NO－	PG	$0 \cdot$	TM	UN	var－	－we	－xM	MM	©G	eo	De	Ee－	N24－
YL	BF	CF	or	Ef	fF	of	K1	1	M	NL	PL	a	TF	UF	VF	WF	$x=$	vF	a．	c	0	EL	5	6	KF	15	Mr	NF	PF	of	Th	u	V	WL	x_{i}	YL	85	cF	Dr	EF	fF
YK	BE	CE	DE	EE	FE	GE	кк	LK	MK	NK	PK	OK	TE	UE	VE	WE	XE	YE	8 K	ck	DK	EK	FK	GK	KE	LE	ME	NE	PE	OE	TK	UK	vk	wK	xk	YK	8 E	CE	DE	EE	FE
Y 1	${ }^{80}$	co	DD	ED	Fo	co	kJ	Ls	NN	N	Ps	0）	To	uo	vo	wo	X0	yo	B．	c	0	E）	FJ	as	ko	10	MO	ND	PO	00	Ts	w	v	w）	$\times{ }^{0}$	rs	80	CD	DO	ED	FD
YH	BC	CC	DC	EC	FC	GC	KH	tH	y	NH	PH	OH	TC	ve		we	1	Yc	aH			EH	FH	GH	KC			N	1	0	TH			WH	H	YH	BC	CC		EC	Fc
VG	BB	CB	DB	EB	8 8	GB	к6		MG	NG	PG	OG	т		VB	w	${ }^{\text {x } 8}$	YB	BG	co	0 O	EG	F^{6}	GG	KB	L8	MB	NB		08	TG	U6	vs	wg．	x 6	Vo	BB	C8	D8	es	${ }^{8}$
YF	BA	CA	OA	EA	FA	GA	KF	LF	MF	NF	PF	OF	TA	UA	va	wa	XA	YA	BF	CF	DF	Ef	FF	Gr	KA	LA	MA	NA	PA	OA	TF	UF	vF	wF	XF	YF	BA	CA	da	EA	EA
YE	8v	cr	OV	Ev	FV	ov	KE	LE	ME	NE	PE	OE	TV	uv	vv	w	XV	w	BE	CE	DE	EE	FE	GE	kV	LV	MV	NV	PV	OV	TE	UE	VE	WE	XE	YE	BV	cy	OV	EV	FV
Yo	8u	cu	ou	Eu	Fu	Gu	k0	10	MD	No	Po	00	TU	vu	vu	wu	xu	vu	80	co	DD	ED	FO	60	KU	1 L	Mu	（w）	PU	Qu	T0	vo	vo	wo	xD	yo	Bu	a	Du	Eu	Fu
N16	牟	हT	－07	ET	－	ล\％	Ǩ）	L®®	ME	${ }^{-N C}{ }^{-}$	pt	ลc	त̇ ${ }^{-}$	UT	$\stackrel{\square}{7}$	WT	$\overline{\text { XT }}$	VT	BC	$\mathrm{c}_{0}{ }^{-}$	DC＇	E	${ }^{\circ} \mathrm{C}{ }^{-}$	©c	KT	LT	M\％	NT ${ }^{-}$	－pt	à	FCO^{-}	Uô	$0 c^{-}$	WC－	$\overline{\text { x }}$	$\overline{16}$	BT	cr	－0＇	断	$\mathrm{N}_{10^{\circ}-}$
va	BS	CS	DS	ES	Fs	GS	кв	LB	MB	NB	PE	08	Ts	us	vs	ws	\times x	Ys	в	CB	DB	Es	FB	Gs	KS	t5	MS．	NS	Ps	os	TB	ve	ve	we	x ${ }^{\text {d }}$	VB	bs	cs	DS	Es	Fs
rA	BR	CR	DR	ER	FR	GR	KA	4	Ma	MA	PA	OA	TR	UR	VR	WR	XR	YR	BA	ca	DA	EA	FA	GA	KR	18	MR	NR	PR	ar	ta	tin	VA	wA	XA	YA	BR	Cr	DR	ER	FR
w	80	CO	00	EO	$F 0$	G0	kV	L	Mv	NV	PV	Qv	TO	vo	9	wo	xa	Yo	BV	cv	pv	Ev	fV	ov	KQ	L0	m9	No	PO	Q	TV	uv	w	w	XV	w	80	co	00	EO	Fo
Yu	BP^{3}		P	EP	ip	${ }^{\text {GP }}$	ku				pu	Qu	IP			w	xp	Yp				ev	α	Gu	${ }^{* P}$			NP	pe	ap	It				xt	vu	gp	co	dp	EF	pr
nt	BN	CN	ON	EN	FN	GN	kT		MIT	NT	PT	at	TN	UNX	viv	WN	XN	YN	at	ct	bT	ET	FT	GT	kN	un	MV	NN	PN	ON	π			wT	xT	YT	日N	CN	ON	EN	fN
Ys	BM	CM	DM	EM	FM	GM	ks	ts	MS	NS	P8	08	TM	UM	vM	WM	XM	YM	BS	cs	D8	E8	${ }^{58}$	GS	kM	IM	MM	NM	PM	OM	T8	us	vs	ws	xs	ys	BM	CM	OM	EM	FM
YR	BL	CL	DL	EL	Ft	GL	KR	LR	Mr	NR	PR	QR	IL	UL	n	WL	\times	Y	BR	CR	DR	ER	FR	CR	k．	4	ML	NL	PL	OL	TR	UR	VR	WR	XR	YR	BL	c	DL	EL	FL
vo	日K	CK	DK	EK	Fk	OK	ко	10	MO	No	PO	\bigcirc	TK	UK	vk	wk	xk	\％к	BO	co	D0	E0	50	GO	Kk	LK	MK	NK	PK	OK	TO	Ho	vo	wo	xo	Yo	BK	ck	DK	Ek	fk
－ MP	B．	a	D）	EJ	FJ	Q	kP	If	MP	NP	pp	Q	TJ	u	vi	ws	$\times .1$	\％ 1	BP	CP	DP	EP	FP	GP	k）	4	MJ	NJ	P）	a）	TP	UP	vp	wp	XP	yp	B．	c）	（0）	EJ	FJos：
rn	BH	CH	OH	EH	FH	GH	kN	LN	MN	NN	PN	ON	т	UH	VH	WH	XH	YM	BN	CN	Liv	EN	FiN	GN	KH1	4	MH1	Nith	PH	OH	in	Unv	Vir	wN	XN	yN	BH	OH	DH	Er－	FH
YM	BO	CO	OG	EG	FO	GO	KM	LM	MM	NM	PM	OM	TO	U6	Ve	wo	XG	Yo	BM	CM	OM	EM	FM	GM	KO	10	MG	NO	$P G$	06	TM	UM	M	WM	XM	YM	BO	co	DG	EC	Fo
YL	BF	CF	OF	cr	15	GF	KL			NL	PL	QL	TF			NF	XF	YF	日L	CL	0.	EL	12	GL	KF		MF	Nr	PF	Of	It		k	Wh	${ }^{\text {x }}$	YL	BF		Of	cr	TF
YK	86	CE	DE	Ef	FE	GE	KK	Lk	uk	NKO	pK	QK	TE	UF	ve	WE	XE	YE	BK		dik	En）	Ak	GK	KE		1	$N E$	PE	QE	TK			W．	×к	YK	8E	CE	PF	Ef	PE
Y）	80	co	00	Eo	Fio	co	ks		M	Ns	Ps	as	to	UD	S0	wo	xo	yo	Bs	co	os	es	Fo	Os	ко	L6．	－no	NB	PO	00	IJ		S 4	ws	xs	Ys	80	co	DD	ED	Fo
YH	sc	CO	DC	EC	FC	GC	KH	LH	MH	NH	PH	OH	IC	uc	vc	We	xc	Yo	BH	CH	DH	EH	FH	CH	KC	Lc	MG	NC	PC	ac	TH	UH	VH	WH	XH	YH	8 C	cc	DC	EC	FC
YG	B8	CB	DB	EB	FB	GB	KG	LG	MG	NG	PG	06	тө	UB	ve	WB	XB	YB	86	CQ	DC	EG	FC	GG	KB	18	ME	NB	PS	08	T6	UG	vg	WG	xG	YG	B日	CB	OB	EB	FB
YF	BA	CA	DA	ca	FA	GA	kF	15	Mr	NF	Pr	of	TA	UA	VA	WA	XA	YA	ef	cF	DF	EF	Fr	GF	ka	La	MA	Na	PA	OA	Tr	UF	V	WF	x F	YF	BA	CA	DA	EA	FA
YE	av	cV	DV	Ev	fV	GV	KE	LE	ME	NE	PE	QE	TV	uv	w	w	XV	rv	BE	CE	DE	EE	FE	GE	kV	Lv	mv	NV	PV	av	TE	UE	VE	WE	XE	YE	BV	CV	DV	Ev	FV $\mathrm{NV}^{\text {－}}$

MGRS Grid Cell Designators

MGRS/National Grid

Produced by the United States Geological Survey North American Daturn of 1983 (NAD83)
World Geodetic System of 1984 (WGS84). Projection and 1000 -meter grid: Universal Transverse Mercator, Zone 15R 10000 -foot ticks: Louisiana Coordinate System of 1983 (south zone)

U.5. National Grid
$100,000 \mathrm{~m}$ Square ID YP Gind Zone Dosignation 15 R

Anatomy of a MGRS coordinate

4Q .GZD only, precision level $6^{\circ} \times 8^{\circ}$ (in most cases)
4QFJ .GZD and 100 km SQ_ID, precision level 100 km
4QFJ16precision level 10 km
4QFJ1267precision level 1 km
4QFJ123678precision level 100 m
4QFJ12346789precision level 10 m
4QFJ1234567890precision level 1 m

USNG: The National Grid

Same as the MGRS except uses NAD83
Maximum difference only c 2 m
worldwide
Supported in National Map
Some problems at cell boundaries

State Plane Coordinates

Zones:

Lambert Conformal Conic vs. Transverse Mercator (Plus one Hotine Oblique Mercator)

Roseville, CA School Districts

Measurement: Just use GPS

6 decimal places
$0.000001^{\circ} \times 111111 m$
$=0.11 \mathrm{~m}$

Converting

Firefox -
 SNGS GEODETIC TO SPC
 ```+```

GEODETIC to SPC

This utility uses NGS program SPCS83 or program GPPCGP to convert NAD83 or NAD27 Geodetic Positions
to State Plane Coordinates (SPC)
This utility supports Internet Explorer versions 6.0+ and Netscape versions 6.0+.
© NAD83 (SPCS83)
CNAD27 (GPPCGP)
LATITUDE $=$ N350933.970 example $=$ N385930.99999
LONGITUDE $=$ W0982632.009 example $=$ W0985930.99999
ZONE $=\square$ Leave ZONE blank if you want the program to determine it.
Submit

```
Reset
```

NOS Home I Contact Info I Privacy Policy I Disclaimer I Document Viewers
Web site owmer: National Geodetic Survey (NGS),
National Oceanic \& Atmospheric Administration (NOAA)

www.earthpoint.us

Coordinate examples

- 238,479 mE; 3,811,950 mN; 11, N
- 11SKU3847911950
- 11SKU3847911950 NAD83
- N 34ํ24’57.24" W 11950'42.9"
- 6031531830382 CA 5

Code Libraries

- Matthew's Map Projection Software http://www.users.globalnet.co.uk/~arcus/m mps/
- PROJ. 4 https://trac.osgeo.org/proj/
- GEOTRANS http://earthinfo.nga.mil/GandG/geotrans/
- Java Map projection Library http://javamapprojlib.sourceforge.net/

Sarah E. Battersby, Daniel "daan" Strebe \& Michael P. Finn (2016) Shapes on a plane: evaluating the impact of projection distortion on spatial binning, Cartography and Geographic Information Science, http://dx.doi.org/10.1080/15230406.2016.1180263

- Issue: Much social data is "binned" by lat/long grid cells, not taking into account projection distortion
- Suggest ways that cells can be equalized: using hexagons and binning by equal areas

Fits distortion analysis tradition

Figure 6. Hexagonal bins defined as 10° side on a plate carrée projection, and projected onto a Web Mercator base map. Measurements listed provide relative map area and ground area.

Figure 3. Taxi cab pickup locations in Manhattan as raw point locations (left) and as counts after being binned into a hexagonal grid (data from Andres Monroy - http://www.andresmh.com/nyctaxitrips/).

Degree of digit variation in a line

- 4QFJ12345 67890
- 4QFJ12347 67897
- 4QFJ12349 67899
- 4QFJ12352 67903
- 4QFJ12355 67907
- 4QFJ12356 67910

Red values do not change
Green values are 2 of 10 possible values
Blue digits are 2 of 10 possible values
Purple digits are 5 of 10 possible values

Suspicious

- 4QFJ1234567890
- 4QFJ12340 67897
- 4QFJ12340 67899
- 4QFJ12355 67903
- 4QFJ12355 67907
- 4QFJ12360 67910

Always 0 or 5 , rounded?
But only in the Easting

Information content

- For any digit n at any one significant digit location out of N possible digit values or states (10 for decimal), lis defined, where:

$$
I_{n}=\sum_{1}^{N}\left|\frac{D}{\sum_{n}}-\frac{1}{N}\right|
$$

First digit of the coordinates are all " 4 " so nine digits would have no occurrence ($0.0-0.1 \times 9=-0.9$) and one digit would occur alone (1.0-0.1 = 0.9), which sums to 1.8 .
If all values are equally represented, $I=0.0$

The Coordinate Digit Density Function

Coordinate Digit Density Function: Long Island Coastline

Summary

- Geographic Reference System allows positions to be described
- Geographic coordinates are not planar
- Euclidean coordinates need a plane, and orthogonal axes
- Many standard coordinate systems are in use e.g. State Plane, UTM, MGRS, National Grid
- We can compute information content for sets of coordinates
- Coordinate digits can be redundant to random
- To merge and overlap maps, they must be in the same map projection, datum and coordinate system

