
Applications of Analytical Cartography�y

Wm Randolph Franklin

Electrical, Computer, and Systems Engineering Dept.,
Rensselaer Polytechnic Institute, Troy, New York 12180–3590

and

The National Science Foundation

wrf@ecse.rpi.edu
http://www.ecse.rpi.edu/Homepages/wrf

April 20, 2000

Abstract

Several applications of analytical cartography are presented. They include terrain visibili-
ty (including visibility indices, viewsheds, and intervisibility), map overlay (including solving
roundoff errors with C++ class libraries and computing polygon areas from incomplete informa-
tion), mobility, and interpolation and approximation of curves and of terrain (including curves
and surfaces in CAD/CAM, smoothing terrains with overdetermined systems of equations, and
drainage patterns). General themes become apparent, such as simplicity, robustness, and the
tradeoff between different data types. Finally several future applications are discussed, such
as the lossy compression of correlated layers, and just good enough computation when high
precision is not justified.
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1 Introduction

Analytical cartography’s progress has been distinguished sincemathematikoimeasured the circum-
ference of the Earth, (Aristotle, 350 BC), which may have happened before 2600 B.C., (Stecchini,
2000). Throughout its history, it has relied on, and even forced the development of applied mathe-
matics. Today, techniques developed in computer science enable its advance.

This paper samples several applications in analytical cartography that have benefited from com-
puter science, including terrain visibility, map overlay, mobility, and interpolation and approxima-
tion. Visibility includes using industrial engineering sampling techniques quickly to identify the
most visible potential observers, and alternating visibility index determination with viewshed de-
termination to site a set of observers who, jointly, will cover the complete area of interest. It also
includes intervisibility, or the pairwise visibility of a group of observers. Map overlay leads to a dis-
cussion of roundoff errors during computation, and one solution, the use of C++ class libraries, such
as LEDA and CGAL, that permit computations with datatypes such as rational numbers, which per-
mit the exact intersection of two lines. Map overlay also includes determining the areas of polygons
using only information about the set of vertex-edge incidences.

Interpolation and approximation includes a discussion of theory, mentioning some counterin-
tuitive results. It describes how the CAD/CAM community handles curves and surfaces. It also
discusses terrain elevation interpolation, including using the solution of an overdetermined system
of equations, with Matlab, to cause greater smoothness and to infer local peaks inside topmost
contours. It also summarizes drainage determination.

Some common themes become apparent, including the interplay between theory and applica-
tion, and factors in data structure and algorithms design, such as the importance of simplicity, the
importance of robustness, the use of Simulation of Simplicity to remove geometric degeneracies,
and the choice of different representation formats.

Finally some representative unsolved problems are presented, such as just good enough compu-
tation, and lossily compressing correlated layers of data while maintaining important relations.

2 Applications

This section samples applications in analytical cartography that have benefitted, or might benefit
from research in computer science. Many interesting applications are omitted; M¨uller (1991) con-
tains a valuable collection of other problems.

2.1 Terrain visibility

Consider a terrain elevation database, and an observer,O. Theviewshedis the terrain visible from
O within some distanceR of O. The observer might be situated at a certain height above ground
level, and might also be looking for targets at a certain height. Figure 1 on the following page shows
a viewshed with error bars for a region in northeastern New York State. The observer, at Mt Marcy,
the highest point, is marked by a white square near the lower left. This figure was produced by a
program that classifies the grid cells according to how likely they are to be visible.

The elevation of the almost certainly visible cells is indicated by colors. Cells that are probably
visible are indicated by colors overlaid with widely spaced black lines. These would form the most
likely viewshed. Cells that are probably hidden are colored according to their elevation, but overlaid
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Figure 1: Viewshed with Uncertainty
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with closely spaced black lines. Finally, cells that are almost certainly hidden from the observer are
colored solid black.

Thevisibility indexofO is the fraction of the disk of radiusR centered onO that is visible from
O. Ray (1994) presents new algorithms and implementations of the visibility index.

Siting radio transmitters is one application of terrain visibility. Here, the identities of the ob-
servers of highest visibility index are of more interest than their exact visibility indices, or than the
visibility indices of all observers. Locating points at which to hide is a corollary application. For
example, we may wish site a forest clearcut to be invisible to observers driving on a highway sited
to give a good view. Statistical sampling techniques from production quality control in industrial
engineering are useful to identify the most visible observers, as follows.

1. Start with a potential observerO. We wish to know whetherO has, with a given probability,
at least a given minimal visibility index.

2. SelectN random target points in the disk of radiusR aroundO.

3. Determine how many are visible fromO by running lines of sight. Let that number beK.

4. Note that the expected visibility index ofO is � = K=N , and the standard deviation is
� =

p
�(1� �)=N .

5. If the expected visibility index is high enough with sufficient probability, then acceptO as a
useful observer. E.g., since in a normal distribution,p(z > 1:6) = 0:05, for a 95% probability
that the visibility index is at least 0.5, we need�� 1:6� > 0:5.

6. Otherwise, if the expected visibility index is low enough with sufficient probability, then
rejectO, select another potential observer and repeat from step 2 above.

7. Otherwise, we don’t yet know what to do withO, so select more random targets, and repeat
from step 3 above.

The process is fast enough to iterate through a complete1201 � 1201 level-1 DEM.
Combining two separate algorithms so that each executes alternately is another useful tech-

nique. In this case viewshed determination for a specific observer, and selection of the most visible
observers, can be combined to site a set of observers that, jointly, will cover the whole terrain. The
process of selecting a setS of observers goes as follows.

1. Initially S = fg.
2. Find a set,P, of very visible potential observers, as described above.

3. Calculate all their visibility indices.

4. Pick the most visible one, insert it intoS, and determine its viewshed,V.

5. Delete any observers inP that are also inV.

6. Pick the most visible remaining observer.
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7. Add it to the set of observers, and find the union of its viewshed with the other observers in
S.

8. Repeat until this union viewshed is the entire terrain.

The set of observersS might be fine-tuned with a technique reminiscent of a multiple stepwise
linear regression with independent variable addition and deletion, as follows.

1. Find the observer inS whose viewshed covers the smallest area not covered by other observer-
s. With luck this observer might cover no new area at all (since later observers’ viewsheds
covered its viewshed completely).

2. Delete it.

3. If there is now some uncovered area, then insert a new observer as described earlier.

4. Repeat.

Efficiently calculating areas of sets of intersecting and uniting polygons is required to make this
process feasible. That is covered in the next section on overlay.

2.2 Map Overlay

Consider two layers in a vector database, such as soil types and watersheds. We wish tooverlay
them to create new polygons, each of which contains only one soil type and watershed. Roundoff
errors and short-circuit area calculations are two computer science issues resulting from this overlay.
Wu (1987) performs overlays in the Prolog language.

2.2.1 Roundoff Errors, andC ++ Class Libraries

The two layers frequently contain edges almost in common, as when an edge common to the two
layers, was digitized separately for each layer. The result is “sliver” polygons and floating roundoff
errors, (Veregin, 1989; White, 1977), which worsen as the digitization accuracy improves. The
proper solution is to recognize that this is one edge. However there are also tools to write computer
programs that are more tolerant of roundoff errors.

LEDA, theLibrary of Efficient Datatypes and Algorithms, (LEDA, 2000; Mehlhorn and N¨aher,
1995), is a C++ class library that “provides a sizable collection of data types and algorithms in
a form which allows them to be used by non-experts. This collection includes most of the data
types and algorithms described in the text books of the area”, according to the manual. Its number
types include, among others, arbitrary-length integers, rational numbers defined as the quotient of
two integers, big floating point numbers, and algebraic numbers defined as roots of polynomials.
Rational numbers allow the intersection of two lines to be stored exactly. A map overlay program
using rationals will be somewhat slower, but will have no roundoff errors. Algebraic numbers allow
the intersection of a line and a circle to be stored exactly. A coordinate of

p
2 is stored as the

expression
p
2 and not as1:414:::. When squared, the result is exactly2.

Built-in data types include 1-D and 2-D arrays, stacks, queues, trees, hash tables, dictionar-
ies, and graphs. Implemented algorithms include shortest path and maximum flow on graphs, and

6



Franklin Applications of Analytical Cartography

Voronoi and 3-D convex hull algorithms in geometry. A user can change a variable’s types after
coding an algorithm, by changing a few declarations and recompiling. Finally, there are tools to
create graphical user interfaces, many demonstration programs, and considerable documentation.

CGAL, theComputational Geometry Algorithms Library, is another C++ class library, which
implements more specifically geometric operations such as 2D and 3D Voronoi diagrams, multidi-
mensional searching, etc., (CGAL, 2000; Fabri et al., 1996).

These, and other similar, packages allow the designer to delay critical decisions about what
number type to use, to experiment more easily, and hence greatly to increase productivity.

2.2.2 Polygon Area Determination From Partial Information

Determining the overlaid polygon’s areas, perhaps to interpolate data from one layer to another, is
one application of overlaying, (Franklin et al., 1994). Tobler (1999) smooths the data with partial
differential equations to achieve a similar effect. In this case, suppose that layerA has census
polygons, labeledAi, including their areas,ai, and populations,pi. LayerB has soil types. We
wish to estimate the population of each soil polygon,Bj, perhaps to estimate agricultural land being
taken out of production for housing. Givencij , the area of intersection ofAi andBj, then one
estimate of the population ofBj is

X
i

picij
ai

(This assumes that the population ofAi is evenly distributed throughout it.) Calculatingcij would
seem to require having the actual intersection ofAi andBj. However, with a careful choice of data
structure and algorithm, this is not true since most of the topological structure of the polygon is
unnecessary to determining its area. In the present case, the necessary information includes only
the set of incidence relations of vertices and edges, and, for each one, this information:

1. the location of the vertex,

2. the direction that the edge leaves the vertex, and

3. which side of this edge ray is inside the polygon.

Knowing how the vertices pair up to form edges, and how the edges are joined into nested loops
is unnecessary. This greatly shortens the program and speeds the computation. The implementa-
tion executes in expected time linear in the number of input edge segments plus output polygons,
(Franklin et al., 1994). The concept also extends to finding areas of boolean combinations of many
polygons, (Narayanaswami and Franklin, 1992).

2.3 Mobility

Consider a database of terrain elevation and ground conditions, such as soil type and tree stem size.
Now, determine the best feasible route for a hiker, truck, tank, or whatever from pointA toB. Avoid
the temptation to make the problem unrealistic while simplifying it enough to solve it. Battles have
been won, such as in the Ardennes forest in 1940, when one side traversed an area that the other
side thought was impassable.
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The simplest mathematical formulation of this is as a shortest path graph traversal problem,
perhaps using a Dijkstra algorithm, although if the roads have capacity limits the situation is more
complicated. Then there are transportation capacity paradoxes such as Braess (1968), where adding
a new road increases every driver’s delay. Mobility in 3-D is of interest to the robotics community,
(Akman, 1985).

The recentintervisibility problem concerns planning the joint mobility of a group. Assume that
a platoon of soldiers wishes to move fromA to B, having regard to the considerations described
above, plus two new constraints. First, the soldiers wish to remain pairwise visible to each other in
order to communicate via VHF radio. Second, the soldiers wish to remain dispersed so that there is
never a possible single other observer who can simultaneously see them all.

2.4 Interpolation and Approximation

Drawing a meaningful line or surface through (for interpolation), or near (for approximation) a
sparse set of points remains an engaging problem. In this section, we will first see some interpola-
tion theory, then some practice from the CAD/CAM community, and finally some issues in terrain
reconstruction.

2.4.1 Interpolation theory

The mathematics of interpolation is counterintuitive, and the desired properties often mutually con-
tradictory. Consider the Lagrangian interpolation of anN � 1-degree polynomial to fitN points
in 2D. Even though the generated curve passes through the data points, between them it will tra-
verse far from the line joining adjacent pairs of points. That is, the curve lacks the usefulvariation
minimizationproperty.

Further, moving one point drastically changes the whole curve, so Lagrangian interpolation does
not havelocal control. Figure 2 on the next page shows interpolating a 11-th degree polynomial
through 12 evenly spaced points, half withy = 0, and half withy = 1. Note that the curve’s
maximum isy = 6, much larger than the data points’ range of�1 � y � 1. Figure 3 on the
following page shows the effect of moving the point(6; 0) to (6; 1). The whole curve largely
inverts.

As another example, see the Catmull-Rom-Overhauser interpolating spline shown in Figure 7
on page 14. This cubic spline isC2. In order to maintain that condition while interpolating control
pointP2, the curve is forced to swing wide before the point. Also, although the control pointsP9,
P10, andP11 are collinear, the continuity requirements atP9 andP11 force the interpolating curve
not to be a straight line.

More complicated interpolation methods are counterintuitive in more subtle ways. In fact, a
completely “reasonable” interpolation method does not exist; the concept can be shown to be self-
contradictory.

2.4.2 Curves and Surfaces in CAD/CAM

The Computer Aided Design / Computer Aided Manufacturing(CAD/CAM) community has ex-
tensive experience in approximating lines and surfaces with curves. Typically they use sections
of parametric cubics whose tangents and curvatures match at the joints. Besides airplane fuselages,
ship hulls, and auto bodies, even PostScript and TrueType fonts are designed thus. These techniques
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Figure 2: Interpolating 12 Points
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Figure 3: Moving One Point
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will be useful in analytical cartography to the extent that curves and surfaces in this domain are also
smooth. Fortunately, the available data have often been smoothed during data collection and sam-
pling. Farin (1993) is an excellent text on these curves and surfaces. Franklin (1992) describes their
applications to analytical cartography in more detail.

The first design question is, what form of mathematical equation should be used to represent a
curve, such as a coastline or contour line? Ordinary differential equations (ODEs), explicit, implicit,
and parametric curves are 4 possibilities. The ODE formulation which isy0 = �y=x for a circle of
radius 1 centered at the origin, is often used for time-space curves, but is rare in curve design. In an
explicit equation,y is a function ofx, as in the half-circley =

p
1� x2. In an implicit equation, we

have a function ofx andy that is zero for points on the curve. For example, a circle isx2 + y2 = 0.
A parametric equation has a parameter,t, and bothx andy are functions oft. For example, the
circle can be represented parametrically thus:

x =
2t

t2 + 1
; y =

t2 � 1

t2 + 1
; �1 � t � 1

Explicit representations are not used because they can represent only a single-valued function,
and that even ceases to be single-valued when rotated. In an implicit representation, determining
points on the curve is difficult. Given one point, it is possible to step along the curve and generate
successive points on the same curve segment. However, it is difficult to determine the curve’s
topology; how many curve segments there are. For example, consider these four curves; note that
the only difference is the constant at the end.

y2 = x3 � 3x� 3

y2 = x3 � 3x� 2

y2 = x3 � 3x

y2 = x3 � 3x+ 2

Their plots are in Figure 4 on the following page. Note that the first curve has one infinite line,
but the second has one infinite line plus a single isolated point at(�1; 0), the third has an infinite
line and a closed line, and the fourth has an infinite line that crosses itself.

A more important problem with an implicit representation is that we usually don’t want an
infinite curve, but rather a finite segment, which requires also storing the segment’s limits, perhaps
as two other intersecting implicit equations.

Therefore, the parametric representation is preferred. The next decision is whether to represent
a complicated shape with one high-degree curve, or instead a sequence of low-degree curves, de-
signed to join with sufficient continuity that the joints are invisible. A single high degree curve is
undesirable for several reasons, which we’ll illustrate with an explicit representation for simplici-
ty. As shown above in the interpolation section, when anN � 1 degree polynomial is interpolated
throughN points, between the points, the polynomial may take very large values. Indeed, the size
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Figure 4: Four Topologically Different Implicit Plots, Whose Equations Differ Only in a Constant
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of these excursions can grow exponentially withN . Next, the generated polynomial can be very
sensitive to small changes in the input points. Indeed, this problem can be expressed as the solution
of a system of linear equations, where the determinant is almost singular. Finally, the generated
polynomial is very sensitive to numerical roundoff errors during the computation.

Therefore, aspline, or a curve composed of a sequence of low degree curves, is the preferred
solution. If the joint between two adjacent segments is to be invisible, then the radius of curvature
should be continuous across the joint. That is calledG2 continuity. To simplify the mathematics at
the cost of using up a degree of freedom at each joint, a slightly stronger condition, that the second
derivative be continuous across the joint, is often used instead. This is calledC2 continuity.

If the spline segments are to join withC2 continuity, and the segments are not really all the same
quadratic curve, then each segment must be at least a cubic polynomial. Its equation is as follows.

x =

3X
i=0

ait
i; y =

3X
i=0

bit
i; 0 � t � 1

By varying the parametert, we can easily generate points on the segment. The curve is defined
by 8 coefficients, or degrees of freedom. Requiring the user to specifyai andbi explicitly would
be hostile, so better interfaces are used. In theHermite form, the user specifies the8 degrees of
freedom as the two endpoints, and the vector derivatives at the endpoints. In theBézier form, the
user specifies a 4-pointcontrol polygon. The generated curve starts at the first point, goes near the
second and third points, and ends at the fourth point. If the control points areP0, P1, P2, andP3,
then the curve is

P(t) =
3X

i=0

wiPi

where

wi =

�
3

i

�
ti(1� t)3�i

�3
i

�
, pronounced3-choose-i, is 3!

i!(3�i)! . Since
P

iwi = 1 the curve is always inside the convex hull
of the four points. Therefore, if the control polygon is relatively flat, then so will be the curve, which
is desirable. Figure 5 on the next page shows 4 control polygons and their corresponding B´ezier
curves.

A cubicB-splinecurve contains a sequence of cubic B´ezier segments joined withC2 continuity.
That severely limits the number of degrees of freedom of each segment. For instance, the last control
point of one segment must be identical to the first control point of the next. Each segment will be
affected by only four control points, and each control point will affect only four segments. Segment
Qi will be affected by pointsPi�3; : : : ; Pi, and control pointPi will affect segmentsQi; : : : ; Qi+3.
This desirable concept is calledlocal control.

The B-spline does not go through any control points, even the end ones, unless some control
points are superimposed or duplicated. A double control point reduces the continuity and the cor-
responding knot fromC2 to C1. A triple control point reduces the continuity toC0, i.e., the curve
has a corner here, and it goes through the control point.
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Figure 5: Some B´ezier Control Polygons and Corresponding Curves

Figure 6 on the following page shows an example of a B-spline on ten control points, together
with the control polygon (P0P1 : : : ) and the joints between the segments (K3K4 : : : ).

B-splines’ not going through their control points is acceptable to a freeform designer, but less
desirable when we wish to fit a spline to some data. The Catmull-Rom-Overhauser splines go
through, or interpolate, their control points. In addition, the tangent to the spline at control pointPi

is in the directionPi�1Pi+1. Thus each segment is defined by two points and two derivatives, which
give the correct number of degrees of freedom. Figure 7 on the next page shows an example on the
same control polygon as in Figure 6 on the following page.

The easiest way to extend these ideas to a surface is to construct it as a grid ofpatches, each
patch a parametric B´ezier surface with two parametersu andv, and the following equation.

x =

3X
i=0

3X
j=0

aiju
ivj ; y =

3X
i=0

3X
j=0

biju
ivj ;

z =
3X

i=0

3X
j=0

ciju
ivj; 0 � u � 1; 0 � v � 1

There are48 degrees of freedom:aij; bij ; cij . A more user-friendly interface is to specify a
control grid of 4� 4 3-D pointsPij . Then a general point on the surface is

P(u; v) =
3X

i=0

3X
j=0

�
3

i

��
3

j

�
ui(1� u)3�ivj(1� v)3�jPij

0 � u � 1; 0 � v � 1
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Figure 6: B-spline Approximating Ten Control Points

Figure 7: Catmull-Rom-Overhauser Spline Interpolating Ten Control Points
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Adjacent patches are joined withC2 continuity, so that the joints are invisible.
Triangular spline patchesare more powerful than the, above, much more common, Cartesian

product square patches, and more easily adapt to regions of varying resolution. However, the math-
ematics is more complicated and fewer software packages are available yet. Pedrini (2000) is inves-
tigating approximating a terrain surface with a TIN composed of triangular splines.

2.4.3 Terrain Elevation Interpolation

Assume that we have a digital terrain elevation model (DEM) dataset represented by a matrix ofN�
N elevations, many of which may be missing. For a level-1 DEM,N = 1201. Lam (1983) surveys
many methods. Common operations include interpolating missing elevations, smoothing the data,
and determining drainage networks. Voronoi diagrams, (Gold, 1990) are particularly capable of
processing very unevenly spaced data. Wood and Fisher (1993) assesses interpolation accuracy.
Douglas (1983) interpolates contours by running 8 rays from each unknown point until they hit
known points, then postprocessing the surface to smooth it. Gousie (1998) presents several new
methods. The first interpolates intermediate contours between the known ones. Another, based on
lofting in CAD/CAM, interpolates gradient lines inx andy, then smooths the elevations along each
of them by interpolating splines inz.

This section considers one conceptually easy method for raster data, which is to set up a system
of M = N2 linear equations to solve for either the unknown elevations or the flow through each
cell. To interpolate a missing point, letzi be the unknown elevation, andzl, zr, zu, andzd be
elevations of its four neighbors, some or all of which may also be unknown. This is reminiscent of
the use of matrices for surface smoothing in (Tobler, 1966). Here, we have the equation

zl + zr + zu + zd � 4zi = 0 (1)

This is equivalent to saying that the surface satisfies the Laplacian partial differential equation,

@2z

@x2
+
@2z

@y2
= 0

Sincezi depends directly on only 4 other points, its line in the matrix of all the coefficients of the
system of linear equations of the elevations will have 5 nonzeros, andN2�5 zeros. When we solve
this system of linear equations for the unknown heights, it is necessary to utilize the fact that, of the
N4 entries, only5N2 are nonzero.Matlab, a commercial interactive system designed to process
matrices, is one very useful tool for processing suchsparse(mostly zero) matrices, efficiently.
Matlab solves such problems forN = 500 or more. For largerN , multigrid techniques can handle
N over10; 000.

The above method will have an equation for each unknown point, to make it the average of its
neighbors, which makes the generated surface smooth there. However, since the known points are
known, they are not necessarily the average of their neighbors, and so the surface is probably not
smooth there. This is especially important when there are many adjacent known points, e.g., points
defining contour lines. The surface’s slope will not be continuous across the contours. Also, in the
usual case where the lower contours are longer than the higher ones, the generated surface will sag
between the contours, as if pulled down by gravity. Therefore, it would be desirable also to make
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the known points to be the average of their neighbors, but that would lead to more equations than
unknowns. If there areM points, of whichK have known elevations, we can set up a system of
M +K equations withM unknowns as follows.

1. Pretend that all theM points have unknown elevationszi.

2. Create an equation for eachzi, setting it to be the average of its neighbors as in equation 1
above.

3. For each of theK points whose elevationei we do know, create an additional equation

zi = ei (2)

The resulting system of equations isAz = b whereA is a (M + K) � M matrix. z is a
M � 1 vector, andb a (M + K) � 1 vector. Although the system is overdetermined, a solution
that minimizes the sum of the RMS errors in the equations, is possible. That is, findz to minimize
(Az � b)t(Az � b), wherevt is the transpose of the matrix or vectorv. The solution can be
expressed asz = (AtA)�1Atb although computationally better methods are used. Matlab can
solve these systems. In this least squares fit, the equationzi = ei no longer has the same effect as
100zi = 100ei. The latter form will have 100 times the weight in the solution, so thatzi will be
much closer toei. Hence, we can choose the relative importance of accuracy versus smoothness,
point-by-point.

Figure 8 on the next page shows this effect. Subfigure (a) shows the four nested square contour
lines to be approximated. The contours were made square to make the problem harder. As the
surface tries to remain continuous at the corners, it will become inaccurate. Subfigure (b) shows
the Lagrangian interpolation of the points between the contours. Note how the surface normals are
not continuous across the contours, and that the contours are quite visible, which is undesirable.
Subfigure (c) shows an overdetermined solution, with the smoothing equations, ( 1 on the preced-
ing page), made equally as important as the known-elevation equations ( 2). This surface is quite
accurate. However, since we can see the contours, especially along the silhouette, the surface is
not smooth enough. Some true surfaces may have slope discontinuities, but probably not exactly
at contour lines. On the other hand, this surface is higher inside the innermost contour, which is
very desirable, and which most interpolation schemes do not do. This inferred peak was caused by
forcing the continuity of slope across that contour.

Subfigure (d) shows an overdetermined solution with the equations (1) have 10 times the weight
of the equations (2). There is no evidence of the original contour lines. but the surface interpolates
the contours less accurately. The following table shows the mean absolute error and maximum error
for various weights�. In all the surfaces, the points of maximum error occur at the corner of the
contour lines. The rareness of the very inaccurate points is shown by the large ratio of maximum
error to mean absolute error.

� mean abs error max error
0.01 0.01 0.19

1 0.37 3.8
3 1.4 8.4
10 4.4 13.3
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Figure 8: Overdetermined Interpolation. (a): The Square Contours to be Interpolated. (b): La-
grangian Interpolation. (c): Overdetermined Solution, R=1. (d): Overdetermined Solution, R=10.
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This surface generation method appears to be very promising. Although the mathematics are
quite simple, with only one parameter (the relative weight of the two equation types), the generated
surfaces have peaks inside topmost contours, and show little or no evidence of the contours. The
main limitation, as this is written, is that the builtin Matlab routines cannot find overdetermined
solutions on grids of more than about200 � 200 points. However, that limit is expected to be
exceeded shortly.

2.4.4 Drainage

Consider a terrain elevation database, and assume some precipitation pattern. The problem is to
determine thedrainage patterns, where the streams and rivers will flow, (Mark, 1984; McCormack
et al., 1993). According to (L´opez, 1997), which has a detailed problem description with many
references, drainage patterns have been constructed in hydrology at least as far back as by R Rothe
in 1915.

On a grid, we may formalize the problem as follows. Letri be the rain falling on celli. The
variablei takes values from1 to N2 for anN � N grid of cells. Letaij = 1 if the water in celli
flows to cellj, otherwise 0. Letfi be the unknown flow out of celli, which is composed of the flow
into the cell plus the rain. Then

fi = ri +
X
j

fjaij

This can be rewritten thus:

r = f(I �A) (3)

wheref andr are vectors ofN2 elements,I is theN2�N2 identity matrix, andA is theN2�N2

matrix of theaij . This is a sparse system of linear equations. A Matlab function implementing
this complete process, from input elevations to output flows, takes 50 lines of code. Processing a
301� 301 grid takes ten CPU minutes on a 233-MHz Pentium. The advantage of Matlab compared
to the alternative of explicitly calculating the water flow with a C program is simplicity, but it’s a
little too simple.

It assumes that each cell’s water should flow to its lowest neighbor, provided that that neighbor
is lower than the current cell. (Removing that restriction causes loops in the water flow, which leads
to an inconsistent set of equations.) However, the large number of local minima trap so much water
that major river systems are prevented from forming. Various solutions are possible. US Geological
Survey (1996) fills in these local depressions, after checking that they are not an actual sink, such
as Lake Chad.

One efficient solution is aconnected componentalgorithm from computer science. Let us define
two grid cells to be connected if they are adjacent and water can flow from either one to the other, or
if they are connected to cells that are connected. Therefore, each drainage basin forms one connected
component. Connected components can be quickly determined from the adjacency relationships
even on grids larger than15000 � 15000 cells. Finally, some rule must still be applied to process
the water accumulating in each component, by modifyingA and re-solving equation ( 3).
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3 Themes

Several themes may be apparent from the previous applications.

1. Interplay between theoreticians and applications:Cartographers need computer science the-
oreticians to find algorithms to solve problems such as efficiently calculating Voronoi dia-
grams. The theoreticians need the cartographers to tell them what’s worth solving, and to
stop them from idealizing problems until they are unrealistic.

This loop is imperfectly closed. For a model of how things might operate better, consid-
er physics and astronomy. The theoretical physicists predict some phenomenon, such as the
gravitational red-shift, which the experimentalists then look for. In addition, the experimental-
ists observe anomalous phenomena, such as, in the 19th century, the precession of Mercury’s
orbit, which the theoreticians then try to explain. Not every anomaly leads to interesting the-
ory; there were several other 19th century orbital oddities, which had classical explanations
and therefore are now forgotten. Nevertheless, every so often general relativity results.

2. Algorithm and data structure design principles:Various rules for creating software in analyt-
ical cartography are worth considering, especially since they are often ignored.

(a) Efficiency: This includes both asymptotic rate-of-growth time, and actual time on the
largest possible datasets, in contrast to on the toy-sized examples seen too often. Worst-
case efficiency, where an adversary selects the worst possible input, is easier to analyze.
However, expected efficiency, under some probability distribution, choosing which is
itself a hard question, is more useful.

(b) Simplicity: There is a temptation to complexify ideas, adding bells and whistles, since
bigger is obviously better. Wrong! “You need a lot of self-confidence to do simple
things.” Einstein said that an idea should be as simple as possible, but no simpler. If
a data structure can hardly be explained to another person, then it will be difficult to
implement, correctly. There are two ways to design something: It may be so simple that
there are obviously no errors. Or, it may be so complex that there are no obvious errors.

Optimal algorithms in Computer Science are often quite simple. When inserting a key
into a hash table,location = modulo(key, tablesize)is generally fine. An excellent vir-
tual memory page-replacement strategy is to page out the least recently used (LRU)
page. On the World Wide Web, the Hypertext Transport Protocol (HTTP) has largely
replaced the more complicated File Transport Protocol (FTP) and Gopher. Hypertext
Markup Language (HTML) has prevailed over PostScript and LATEX, even though they
can display text and equations in ways that HTML cannot.

Simple algorithms have the advantage that we don’t spend all our time getting the pro-
gram syntactically legal, let alone executing correctly. After getting the algorithm im-
plemented correctly, there is time to play with the program to understand its behavior
and improve it. Simple algorithms also often parallelize more easily.

Simple data structures are also often smaller, so more data elements will fit into the pro-
cessor’s cache memory. Cache is much faster, and much smaller, than main memory, but
this important design consideration is often ignored, (Bentley, 2000). Finally, simplicity
leads to greater parallelizability, (Kankanhalli, 1990; Narayanaswami, 1991).
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Complexity is tolerable in the algorithms’ analysis and design, if that makes the imple-
mentation simple, asSimulation of Simplicity(SoS) demonstrates, (Edelsbrunner and
Mücke, 1990). Simulation of Simplicity handles degenerate geometric cases in algo-
rithms. A degeneracyis a geometric coincidence, such as a point incident on a line. If
that point is(x0; y0), and the line is defined by the two points(x1; y1) and(x2; y2), then
there is a degeneracy when the determinant

������
x0 y0 1

x1 y1 1

x2 y2 1

������ = 0

Consider a point-in-polygon algorithm designed for general points, where a ray is ex-
tended from the test point,p, up to infinity, the number of polygon edge crossings is
counted, andp is inside if and only if the number is odd. There is a degeneracy when
the ray crosses a polygon vertex. SoS transforms this algorithm into an algorithm that
is still correct. Its method is to pretend to perturb the coordinates by an infinitesimal
amount, so that the ray doesn’t quite touch the vertex, and the degeneracy vanishes.
Each perturbation uses a different order of infinitesimal, so that new degeneracies are
not created.
An infinitesimal, �, in this context, is a positive number that is smaller than any positive
number we can use for a coordinate. The difference between any two coordinates, if
positive, will be larger than�. A second-order infinitesimal,�2 is smaller than any first-
order infinitesimal. If we add� to the test point’s x-coordinate, then the coordinate can-
not now be equal to the x-coordinate of any vertex. Therefore, the only practical effect
is on conditional tests for equality. SoS analyzes the infinitesimal’s effect those changes
on these boolean tests, and changes the code accordingly. In the point-in-polygon case,
the only change is that one ’<’ test becomes a ’�’. In this case, though not always, the
code is no larger or slower; all the complexity lay in the code derivation. One unexpect-
ed property of such code, since its derivation is unobvious to other programmers, is that
they may easily corrupt it when translating to another language. This provides a crude
form of intellectual property protection.

(c) Robustness:Data are imprecise, and sometimes completely wrong. Floating point num-
bers have roundoff errors. Real data may correlate in ways worse than if it were random.
For example, consider a sweep-line algorithm testing a street network for intersections.
An algorithm designed to handle the number of active streets that would occur if streets
were random might fail on a regular grid, such as in Chicago. An fragile implementation
may process small, test, cases, while failing on large, realistic, examples, perhaps be-
cause a neglected roundoff error deep inside the code caused a topological inconsistency
that, much later, was fatal.

(d) Things we know that are not so:According to Will Rogers, these are worse than the
things that we know that we are ignorant of. Example: It’s a truism that compressing a
large database in one piece is much more efficient than partitioning it into several small
pieces and compressing them separately. The advantage of the latter would be that we
could recover a small piece of the data without the time and space needed to uncompress
the whole database.
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However that isn’t generally true. E.g., thegzip program compressed the 28058-byte
source file for one version of this paper into a 11515-byte file. When it was split into
seven pieces that were compressed separately, the total of their sizes was 11500 bytes,
which is actually slightly smaller! The image processing community is aware of this;
the JPEG image compression partitions the image into8 � 8 pixel blocks, which it
compresses separately.

Higher points in a terrain not necessarily being more visible than lower points is another
example of unobviousness, (De Floriani et al., 1986; Franklin and Ray, 1994).

(e) Interplay between different formats:It’s not clear, certainly not in advance, what the
appropriate data structure may be. Although this author followed Peucker’s and Dou-
glas’s ideas to implement the first TIN in cartography, in 1973 (Franklin, 1973; Peucker
and Chrisman, 1975), has worked extensively with, the competing, elevation matrices
and grids, and has looked at contour interpolation, he is still not certain which of the
best method to represent terrain elevations. Then there is the issue of formal standards
for data transfer, (Moellering, 1991). The Spatial Data Transfer Standard, (US Dept of
the Interior and US Geological Survey, 2000), designed for portably transferring spa-
tial data, allows for several data types, such as topological vectors, 2-D raster data sets,
transportation nets, and points. Guerrieri (1989) presents one general methodology for
portable software.

4 Future Applications

The research needs of analytical cartography remain considerable; this section describes only a
sampling.

1. The question of the proper representation of terrain elevation data is still open. De Floriani
(1987) uses Triangulated Irregular Networks (TINs). Goodchild (1980) shows how complex
geomorphological terrain, including scale-variance and the long-range correlations of river
basins can’t be modeled directly by fractals, without extensions. Arrays of elevations, such
as the USGS Digital Elevation Model (DEM). Gittings (1994) has a large catalog of digital
elevation data. This format appears much more compact and easier to work with. However,
the resolution is inherent in the data structure. Either technique may be made hierarchical; (De
Floriani et al., 1984) shows hierarchical TINs. Compact representations for the TIN topology
are available, (Speckmann and Snoeyink, 1997), which answer the objection that, in the TIN,
the topology can require ten times the storage that the geometry does.

2. Is a conceptually deeper representation, based on the geomorphological forces that created
the terrain, possible. Might we devise a basis set of operators, such as uplift, and downcut?
Then we might deduce the operators that created the particular terrain under consideration,
and store them. This approach is quite successful in mathematics, where various different
sets of basis functions, each with particular strengths, are used. They includesin and cos
functions used in Fourier transforms, square wave functions used in Walsh transforms, and
arccosfunctions used in Chebyshev approximations. While all the above basis sets can also
be used for terrains, the hope is that exploiting the richer structure of geomorphology will
lead to more economical representations.
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3. Slightly differently, can we represent the terrain by the features that people would use to
describe it? Again, this is not a novel idea, but it may be solvable. The problem is that we
can’t just say that there is a hill over there, it is necessary to specify the hill in considerable
detail. That might take more space than simply listing all the elevations with a grid or TIN.

4. The major creative force for terrestrial terrain is water erosion. This does not apply to the
moon, to Jupiter’s moons, or to Venus, data for which is becoming increasingly available,
(Zimbelman and Tanaka, 1999). Since those surfaces’ terrains should be statistically different,
what impact will this have on the speed and output distribution of our algorithms and data
structures?

5. We often have a database containing separate layers of information, such as both coastline and
elevation, or both elevation and slope, or both contours and rivers. These layers are correlated
with each other. E.g., rivers should cross contours perpendicularly.

Note that we might want to store a layer explicitly even when it can apparently be derived from
another layer. For example, the slope is the magnitude of elevation’s derivative. However
taking the derivative increases any errors. Since some questions, such determining whether
a helicopter can land and also take off, are sensitive to the slope, we may want to store it
explicitly.

One difficult but important problem is how to lossily compress this database, while main-
taining internal consistency. If the layers are compressed separately, they will be inconsistent
when restored. This can be seen in some commercial PC-mapping products, where blue pixels
may occur on the land side of a coastline, and rivers intersect contours obliquely.

This idea can be generalized to include other desirable data restrictions. For instance, when
reconstructing a surface, not creating or destroying gulleys, which may affect mobility, and
in which people may hide, may be more important than minimizing the RMS error.

6. Can analytical cartography help us to develop three-dimensional data structures in geology?
There are serious technical difficulties. Geometry in 2D differs from 3D in several respects,
such as the following. A 2D Voronoi diagram on N points has a linear number of edges, while
a 3D Voronoi diagram on N points may easily haveN2=4 faces. (This occurs ifN=2 points
are on the X-axis, and the otherN=2 points are in a circle in theX = 0 plane. In the 3D
Voronoi diagram, every point in the first half is adjacent to every point in the second half.)

Again, all (2D) polygons are decomposable into triangles by adding only interior edges, w-
hole not all (3D) polyhedra are decomposable into tetrahedra by adding only interior faces.
Finally, for polygons, all such decompositions have the same number of triangles, while some
polyhedra can be decomposed different ways into different numbers of tetrahedra.

7. Establishing error bounds on output as a function of approximations in the algorithm and
uncertainties in the data is critical, (Chang and Tsai, 1991; Fisher, 1993). For example any
visibility algorithm on a DEM must decide how to interpolate elevations when lines of sight
pass between posts. When this algorithm is used to site an observer, what are the odds that he
will have blind spots that we didn’t calculate?

8. Considerjust good enoughcomputation, or, how do we turn input uncertainty and output
sensitivity to our advantage? Given the above-mentioned input uncertainty and algorithm
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sensitivity, precise output is not warranted. This apparent problem is, rather, an opportunity,
to design faster, just accurate enough, algorithms. A sufficient quantitative speedup will en-
able a qualitative growth in the set of solvable problems, perhaps including the intervisibility
problem defined earlier.

9. Finally, an open theoretical issue is why some simple algorithms, which have intolerable
worst-case times, work so well in practice. Edge segment intersection and visible surface de-
termination with a uniform grid are examples, (Franklin, 1981; Franklin et al., 1989). What
doesin practicemean? It’s unfairly optimistic to assume the data to be uniform and uncor-
related, but unfairly pessimistic to make no assumptions at all. Most analytical cartography
implementations that everyone uses every day can be made to fail by an adversary who selects
the worst possible input.

We tolerate that because we work in the real world, not the theoretical world of algorithms
analysis. Nevertheless, a theoretical characterization of these algorithms might enable them
to perform better in the real world.

5 Summary

The various applications presented above do not function in isolation, but are energized by a synergy
between them. Techniques developed to solve one problem assist the solution of another. Analytical
cartography draws on computer science, but also presents it with new difficult, yet worthwhile,
problems to solve. Finally, the research needs continue because old solutions become dated as
larger databases become available to be processed by faster machines.
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