

Measurement

- Shape
- Miller
- Bunge
- Boyce-Clark
- Fourier measures
- Distribution
- Quadrat analysis
- Nearest neighbor analysis

Nearest-Neighbor Analysis

- Unlike quadrat analysis uses distances between points as its basis
- The mean of the distance observed between each point and its nearest neighbor is compared with the expected mean distance that would occur if the distribution were random
- Also needs a reference area

Distance to the nearest neighbor

Advantages of Nearest Neighbor over Quadrat Analysis

- No quadrat size problem to be concerned with
- Takes distance into account
- Problems
- Related to the entire boundary size
- Must consider how to measure the boundary
- Arbitrary or some natural boundary
- May not consider a possible adjacent boundary

Measurement

- Does A relate geographically to B
- Spatial Correspondence
- Coefficient of areal correspondence (Set theory, intersection / union
- Chi-square
- Yule's Q

Example Test of Spatial Pattern

- Is there a relationship between the distribution of rainfall and the wheat yield in the area shown?
- NULL HYPOTHESIS: There is no relationship
- ALTERNATIVE HYPOTHESIS: There is a relationship

Chi-square

- Make assumption that there is no relation between maps A and B
- Compute statistics that allow the assumption to be rejected
- Chi-square is the sum of the (Observed value Expected value)^2/Expected value
- Can check value against table for actual likelihoods

Calculating Chi-Squared : text p193 Observed frequencies			
Right: Wheat Yield Below: Rainfall High Low High 8 2 Total Low 5 13 Total 13 15			

Calculating Chi-Squared : text p193 Observed and Expected frequencies			
Right: Wheat Yeid Below: Rainall High Low Total High $8(5)$ $2(5)$ 10 Low $5(8)$ $13(10)$ 18 Total 13 15 28			

Calculating Chi-Squared : text p193 Observed and Expected differences			
Right: Wheat Yield Below: Rainfall High Low High $8-5=3$ $[9 / 5]$ $2-5=-3$ $[9 / 5]$ Low $5-8=-3$ $[9 / 8]$ $13-10=3$ $[9 / 10]$ Total 13 15			

Chi-squared

$$
\text { Chi-square }=\Sigma\left[(O-E)^{2} / E\right]
$$

For the example $=9 / 5+9 / 5+9 / 8+9 / 10$

$$
1.8+1.8+1.125+0.9=5.625
$$

This value is then compared to a table of chi-squared to See if the value allows us to reject the null hypothesis that the observed values are not those expected based on proportions

Chi-squared tables

v	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.705	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	0.651	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955

Two by two table has four values so three degrees of freedom
Chi-squared of zero is no relationship.
Higher the value the stronger the relationship.

Conclusion

- Using Chi-squared it is not possible to reject the NULL hypothesis that there is no relationship between wheat yield and high precipitation
- Test statistic fails, but only just
- Use another method?

Yule's Q

- Divide world into high/low (2 classes)
- Overlay two maps gives four classes
- Count quadrats in the four classes in a $2 x$ 2 table (with cells a,b,c,d) (i.e. Observed only)
- $\mathrm{Q}=(\mathrm{ad}-\mathrm{bc}) /(\mathrm{ad}+\mathrm{bc})$
- Value lies between -1 and +1
- -1 is perfect inverse relationship, +1 is perfect positive

Calculating Yule's Q : text p193
Observed frequencies

Right: Wheat Yield Below: Rainfall	High	Low	Total
High	8 (a)	2 (b)	10
Low	5 (c)	13 (d)	18
Total	13	15	28

Calculating Q

- $\mathrm{Q}=(\mathrm{ad}-\mathrm{bc}) /(\mathrm{ad}+\mathrm{bc})$
$(8 \times 13)-(2 \times 5)$
--------------------- = 94/114=0.82
$(8 \times 13)+(2 \times 5)$

Close to +1 , so can conclude that there is a positive relationship

Testing spatial relationships

- Is there a relationship between geographical location and the price of gas?
- Are apartment rents less as distance from the campus increase?
- Are grocery store prices higher in poorer areas?
- Are the increased cancer death rates in a district caused by water contamination?
- Is there a relationship between hydrocarbon emissions and decreased upper atmosphere ozone in the polar regions?

Summary

- Distributions can be quantified, using NNS or other means
- Maps can be compared using Chisquared, Yule's Q etc.
- Allows cartometry of higher order structures on maps: shape, distribution, arrangement and pattern

