

Measurement

- Shape
 - Miller
 - Bunge
 - Boyce-Clark
 - Fourier measures
- Distribution
 - Quadrat analysis
 - Nearest neighbor analysis

Geographic Information Systems and Ciguatera Fish Poisoning in the Tropical Western Atlantic Region John F Stinn, Donald P de Sylva, Lora E Fleming, Eileen Hack

To evaluate the geographic distribution by residence at the time of illness, cases from 1978 to 1981 within Miam-Dade County, a ciguatera endemic region, were analyzed (Figure 1). Of the 304 index cases, 169 occurred in Miami-Dade County, with 102 (60.4% of Miami-Dade County, with 102 (60.4% of Miami-Dade County, and the second time period. A nearesh-nejhotor analysis was performed in an attempt to show a random distribution of cases in the county, However, despite various attempts to adjust for population density and lack of habitability (e.g., aiprost, Everglades, and ocean areas), the R-value was 0.10, indicating a strong clustering pattern. Nevertheless, the clustering pattern dosely followed densely populated roadways that

pass through highly varied neighborhoods.

Nearest-Neighbor Analysis

- Unlike quadrat analysis uses distances between points as its basis
- The mean of the distance observed between each point and its nearest neighbor is compared with the expected mean distance that would occur if the distribution were random
- · Also needs a reference area

	Nearest	Distance		Nearest			Nearest	
Point	Neighbour	(r)	Point	Neighbour		Point	Neighbour	
1	2	1	1	3	2.2	1	2	0.1
2	3	0.1	2	4	2.2	2	3	0.1
3	2	0.1	3	4	2.2	3	2	0.1
4	5	1	4	5	2.2	4	5	0.1
5	4	1	5	7	2.2	5	4	0.1
6	5	2	6	7	2.2	6	5	0.1
7	6	2.7	7	8	2.2	7	6	0.1
8	10	1	8	9	2.2	8	9	0.1
9	10	1	9	10	2.2	9	10	0.1
10	9	1	10	9	2.2	10	9	0.1
		10.9			22			1
r	1.09		r	2.2		r	0.1	
ea of			Area of			Area of		
gion	50		Region	50		Region	50	
ensity	0.2		Density	0.2		Density	0.2	
xpected			Expected			Expected		
ean	1.118034		Mean	1.118034		Mean	1.118034	
	0.9749256		R	1.9677398		R	0.0894427	
RANDOM			UNIFORM $NNS = 2 \times \frac{\sum_{i=1}^{npts} d_i}{npts \times \sqrt{A}}$		CLI	JSTER	ED	

Advantages of Nearest Neighbor over Quadrat Analysis

- No quadrat size problem to be concerned with
- Takes distance into account
- Problems
 - Related to the entire boundary size
 - Must consider how to measure the boundary
 Arbitrary or some natural boundary
 - May not consider a possible adjacent boundary

Measurement

- Does A relate geographically to B
- Spatial Correspondence
 - Coefficient of areal correspondence (Set theory, intersection / union
 - Chi-square
 - Yule's Q

Example Test of Spatial Pattern

- Is there a relationship between the distribution of rainfall and the wheat yield in the area shown?
- NULL HYPOTHESIS: There is no relationship
- ALTERNATIVE HYPOTHESIS: There is a relationship

Calculating Chi-Squared : text p193 Observed frequencies

Right: Wheat Yield Below: Rainfall	High	Low	Total
High	8	2	10
Low	5	13	18
Tatal	40	45	
Total	13	15	28

	lating Chi-So ved and Exp		
Right: Wheat Yield Below: Rainfall	High	Low	Total
High	8 (5)	2 (5)	10
Low	5 (8)	13 <mark>(10)</mark>	18
Total	13	15	28
	1	1	1

	ating Chi-So ved and Exp	•	•
Right: Wheat Yield	High	Low	Total
Below: Rainfall			
High	8-5=3	2-5=-3	10
	[9/5]	[9/5]	
Low	5-8=-3	13-10=3	18
	[9/8]	[9/10]	
Total	13	15	28

Chi-squared
Chi-square = $\Sigma[(O-E)^2/E]$
For the example = 9/5 + 9/5 + 9/8 + 9/10 1.8 + 1.8 + 1.125 + 0.9 = 5.625
is value is then compared to a table of chi-squared to

This value is then compared to a table of chi-squared to See if the value allows us to reject the null hypothesis that the observed values are not those expected based on proportions

	Chi-squared tables									
V	0.995	0.990	0.975	0.950	0.900	0.100	0.050	0.025	0.010	0.005
1	0.000	0.000	0.001	0.004	0.016	2.705	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
- 4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1 3 4 4	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
		0.00	2 700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
				-					- 93 300	35 199

Two by two table has four values so three degrees of freedom

Chi-squared of zero is no relationship. Higher the value the stronger the relationship.

Conclusion

- Using Chi-squared it is not possible to reject the NULL hypothesis that there is no relationship between wheat yield and high precipitation
- Test statistic fails, but only just
- Use another method?

- Divide world into high/low (2 classes)
- Overlay two maps gives four classes
- Count quadrats in the four classes in a 2 x 2 table (with cells a,b,c,d) (i.e. Observed only)
- Q = (ad bc) / (ad + bc)
- Value lies between -1 and +1
- -1 is perfect inverse relationship, +1 is perfect positive

Calculating Yule's Q : text p193 Observed frequencies

High	Low	Total
8 (a)	2 (b)	10
5 (c)	13 (d)	18
13	15	28
	8 (a) 5 (c)	8 (a) 2 (b) 5 (c) 13 (d)

Calculating Q

• Q = (ad - bc) / (ad + bc)(8 x 13) - (2 x 5)

(8 x 13) + (2 x 5)

Close to +1, so can conclude that there is a positive relationship

Testing spatial relationships

- Is there a relationship between geographical location and the price of gas?
- Are apartment rents less as distance from the campus increase?
- Are grocery store prices higher in poorer areas?
- Are the increased cancer death rates in a district caused by water contamination?
- Is there a relationship between hydrocarbon emissions and decreased upper atmosphere ozone in the polar regions?

Summary

- Distributions can be quantified, using NNS or other means
- Maps can be compared using Chisquared, Yule's Q etc.
- Allows cartometry of higher order structures on maps: shape, distribution, arrangement and pattern