Today's Theme: transformations

Small scale and large scale

- In many fields, biology and ecology for example, "scale" is used as a more general term than in cartography
- Large scale = global, extensive
- Small scale = detailed, localized
- Usage is opposite in cartography
- My solution is never to say "scale"
- Use "map scale" or "cartographic scale"
- Use detailed or extensive scale
- Scale gives us a sense of how big

Map Scale

- Map scale is based on the representative fraction, the ratio of a distance on the map to the same distance on the ground
- Most maps fall between 1:1 million and 1:1000
- Digital and web maps are scale-less because maps can be enlarged and reduced and plotted at many scales other than that of the original data
- But in fact, all maps when displayed have a scale

Non-scientific Quiz \#3

- If a globe is one meter around (circumference), what is its approximate scale?
a. One inch to five feet
b. 1:250 000
C. 1:24 000
d. 1: 1 million
e. 1:40 million

Non-scientific Quiz \#3

- If a globe is one meter around (circumference), what is its scale?
- One meter on the map corresponds to 40 million meters on the ground
- RF = map distance / ground distance
- RF = 1meter $/ 40000000$ meter
- Globe scale is 1 to 40 million
- Or 1:40 million or $1 / 40$ million

Three ways of communicating scale

- The RF
- As a ratio e.g. 1:200,000
- As a fraction e.g. 1/200,000
- Often abbreviated e.g. 1:24K
- Beware of periods and commas
- Equivalent lengths
- E.g. Inch to a mile
- E.g. One inch to 2000 feet
- As a graphic

Advantages of a graphic scale

- Can be used for direct measurements on the map
- Is true at whatever enlargement or reduction you use on the map
- Can show different units, e.g. miles and kilometers
- BUT cannot account for scale differences on the map
- May be directionally biased

A note on areas

- 144 square inches = one square foot
- Note 10 square feet is not ten feet square
- 9 sq. ft. = 1 square yard
- 160 square rods $=10$ sq. chains = 1 acre
- 640 acres $=$ one square mile
- Baseball diamond around the bases $=90$ feet square=8100 sq. ft.=752.49 square meters

Fortunately, we have the metric system

- $1000 \mathrm{~mm}=1 \mathrm{~m}$
- $1000 \mathrm{~m}=1 \mathrm{~km}$
- $1000 \mathrm{~mm} \times 1000 \mathrm{~mm}=1$ square meter (metre)
- 10000 square meters $=1$ hectare
- NOTE: 10 square meters is NOT 10 meters squared

Burn in!
The representative fraction is the map distance divided by the ground distance in the same units

Known distances, calculate scale

- Bridge to cemetery on map $=126 \mathrm{~mm}$
- Bridge to cemetery on the ground = 3024m
- RF = MD / GD = $126 / 3024000$
- RF = 1: 24000

Known scale, calculate distances

- Map distance $=300 \mathrm{~mm}$
- Map scale = 1:50 000
- RF = MD / GD so GD = MD / RF
- $1 / \mathrm{RF}$ is the denominator
- $\mathrm{GD}=300 \mathrm{~mm} \times 50000=15000 \mathrm{~m}$

Some common map scales Round numbers makes life easier

- 1:24 000
- 1:50 000
- 1:100 000
- 1:62 500
- 1:63 360
- 1:250 000
- 1:500 000
- 1: 1M

The take-home

- The map scale transformation is the first, and changes data about the earth into a representation at a particular scale
- Don't use the terms large and small scale
- Most maps are between 1:1000 and 1:400M
- RF = MD / GD
- The paper strip trick works
- Most maps are at standard scales, like 1:50 000
- Computer-based maps can be zoomed

