

- In many fields, biology and ecology for example, "scale" is used as a more general term than in cartography
- Large scale = global, extensive
- Small scale = detailed, localized
- Usage is opposite in cartography
- My solution is never to say "scale"
- Use "map scale" or "cartographic scale"
- · Use detailed or extensive scale
- Scale gives us a sense of how big

Map Scale

- *Map scale* is based on the representative fraction, the ratio of a distance on the map to the same distance on the ground
- Most maps fall between 1:1 million and 1:1000
- Digital and web maps are scale-less because maps can be enlarged and reduced and plotted at many scales other than that of the original data
- But in fact, all maps when displayed have a scale

Non-scientific Quiz #3

- If a globe is one meter around (circumference), what is its approximate scale?
- a. One inch to five feet
- b. 1:250 000
- C. 1:24 000
- d. 1: 1 million
- e. 1:40 million

Non-scientific Quiz #3

- If a globe is one meter around (circumference), what is its scale?
- One meter on the map corresponds to 40 million meters on the ground
- RF = map distance / ground distance
- RF = 1meter /40 000 000 meter
- Globe scale is 1 to 40 million
- Or 1:40 million or 1/40 million

Three ways of communicating scale

• The RF

- As a ratio e.g. 1:200,000
- As a fraction e.g. 1/200,000
- Often abbreviated e.g. 1:24K
- Beware of periods and commas
- Equivalent lengths
- E.g. Inch to a mile
- E.g. One inch to 2000 feet
- As a graphic

Advantages of a graphic scale

- Can be used for direct measurements on the map
- Is true at whatever enlargement or reduction you use on the map
- Can show different units, e.g. miles and kilometers
- BUT cannot account for scale differences on the map
- May be directionally biased

- English units standardized for mapping and surveying
- Inch-foot-yard-rod-chain-furlong-mile
- 12-3-16.5ft-66ft-10-8
- A mile is 5280 ft
- International Nautical mile
- = 6076.11549 ft = 1852 m
- Nautical mile (6080 ft.) =
- one minute of arc of a great circle

Remember Datums?

- Three markers on the steps of the Colorado State Capitol that identify this point.
- The first marker was installed in 1909 on the fifteenth step, but was stolen several times before a more permanent "ONE MILE ABOVE SEA LEVEL" marker was engraved in 1947.
- The second marker was placed in 1969 by Colorado State University engineering students on the eighteenth step, after resurveying the elevation.
- Third marker was placed in 2003, after surveyors using the new national vertical datum, determined that the thirteenth step was exactly at one-mile above sea level.

A note on areas

- 144 square inches = one square foot
- Note 10 square feet is not ten feet square
- 9 sq. ft. = 1 square yard
- 160 square rods = 10 sq. chains = 1 acre
- 640 acres = one square mile
- Baseball diamond around the bases = 90 feet square=8100 sq. ft.=752.49 square meters

Fortunately, we have the metric system

- 1000 mm = 1m
- 1000 m = 1 km
- 1000 mm x 1000 mm = 1 square meter (metre)
- 10 000 square meters = 1 hectare
- NOTE: 10 square meters is NOT 10
 meters squared

The mantra

The representative fraction is the map distance divided by the ground distance in the same units

Burn in!

The representative fraction is the map distance divided by the ground distance in the same units The formula

RF = MD / GD

Only issue: different units feet, yards, miles; mm, m, km

Calculating scale from a map

Known distances, calculate scale

- Bridge to cemetery on map = 126 mm
- Bridge to cemetery on the ground = 3024m
- RF = MD / GD = 126 / 3024000
- RF = 1: 24 000

Scale of a baseball earth

- Baseball circumference = 226 mm
- Earth circumference approx 40 million meters
- RF is : 1:177 million

Known scale, calculate distances

- Map distance = 300mm
- Map scale = 1:50 000
- RF = MD / GD so GD = MD / RF
- 1/RF is the denominator
- GD = 300 mm x 50 000 = 15 000m

Some common map scales Round numbers makes life easier

- 1:24 000
- 1:50 000
- 1:100 000
- 1:62 500
- 1:63 360
- 1:250 000
- 1:500 000
- 1: 1M

The take-home

- The map scale transformation is the first, and changes data about the earth into a representation at a particular scale
- Don't use the terms large and small scale
- Most maps are between 1:1000 and 1:400M
- RF = MD / GD
- The paper strip trick works
- Most maps are at standard scales, like 1:50 000
- Computer-based maps can be zoomed