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Data Structure Transformations

In virtually all mapping applications it becomes necessary to convert from one carto-
graphic data structure to another. The ability to perform these object-to-object transfor-
mations often is the single most critical determinant of a mapping system’s flexibility.
Why is this the case? A number of reasons dictate that the mapping process involve data
structure conversions, and these are related to data input and geocoding, data storage and
representation, the suitability of particular structures for different analytical and model-
ing demands, and finally the demands of a particular symbolization transformation.

Data input has already been noted as a primary determinant of data structure. Partic-
ular data capture devices, such as scanners and semiautomatic digitizers, generate data in
a specific form. Scanners, for example, generate grids, and semiautomated digitizers pro-
duce strings of (x, y) coordinates. Geocoding stamps a particular coordinate system, res-
olution, and map projection on the data. In virtually every case, the cartographer will find
that the available digital cartographic data are in the wrong structure for the required type
of cartographic object, are on the wrong map projection, or have the wrong resolution for
mapping or that the map rectangle needs to be rotated, scaled, or translated to produce the
map.

Analytical and computer cartography, unlike many other disciplines, have available
large reserves of common, generically digitized cartographic data. As a result, cartogra-
phers must change data structures simply to move the data into the correct geographic ex-
tent and from an input format into the format required by a particular piece of mapping
software.

In Chapter 5, consideration was given to the different mechanisms by which digital
cartographic data can be stored within a computer’s memory and to how different means
of data representation can save storage or improve data accessibility. Because one of the
distinguishing characteristics of cartographic and geographic data is sheer volume, the
conversion of data between structures, or between representations of a single structure,
can save considerable storage space and processing time. The time and space limitations
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become more apparent as cartographic software moves from larger to smaller computers. 
Although the amount of RAM and disk storage available to microcomputers has in-

creased and mass storage technology is making significant breakthroughs in volume ca-
pabilities, processing the millions of data points necessary for high-accuracy cartography
really strains the microcomputer. Precision or scale are usually sacrificed, with carto-
graphically unacceptable results. Transforming data between cartographic data structures
means that the application can optimize storage and processing time as is appropriate. Of-
ten the best data structure for a map depends on the demands placed on the data for ana-
lytical or display purposes. Good cartographic software does not force data into a single
structure, but retains the option to flip between structures on demand.

Analysis and modeling also require different data structures. As an example, the skel-
eton or medial axis transform of a polygon can be performed in both grid or polygon en-
tity-by-entity mode. In entity-by-entity mode, the locus of the largest enclosed circles
must be traced through the polygon. In grid mode, the polygons are simply eroded away
step by step from the edges while connectivity is maintained, until the medial axis is
formed. Each operation is fairly fast. Inverting the transformation in grid mode is simple.
Rebuilding the polygon from the medial axis, however, is difficult in entity-by-entity
mode. The grid data structure is suitable for modeling and analytical operations such as
Fourier and principal component analysis, filtering, and edge detection.

 The TIN structure is good for modeling overland and stream hydrology and for sim-
ulating erosion. Entity-by-entity definitions are good for high-precision output, with mul-
tiple-weight lines and elaborate shading. Continuous patterns are more suited to the grid.
The relative advantages and disadvantages of the various structures are many and even
depend on the implementation characteristics, such as language, computer, and operating
system. 

For symbolization, actually producing the map, again certain structures meet different
sets of cartographic demands, which implies that different types of map, different map
scales, and so forth, all have their different optimal cartographic data structure. Often, the
characteristics of the output device determine the best data structure. For example, raster
devices favor grid and quad tree structures, while plotters, laser-jet printers, and automat-
ic scribers require data in line or polygon entity-by-entity format. 

The type of representation is also important. Choropleth maps can be produced in any
structure, but hill-shading and perspective views are best using grids or TINs. As far as
symbolization is concerned, nowhere is the influence of data structure more obvious than
in map text labeling. Vector displays usually use the Hershey fonts and are capable of
some quite attractive precision lettering.

 Raster devices use bit-mapped graphics and as such produce blocky text (which looks
worse with enlargement). In addition, the bit-mapped graphics are restrained by their an-
gle on the screen. Just as many systems now support both raster and vector, the now com-
mon PostScript graphics merge vector draw commands with the raster capabilities of
laser-jet printers. Some paint programs support bit-mapped (raster) or “object” (vector)
modes within a single structure. It is with the text, again, that the differences are most
apparent, especially with enlargement. 

Clearly, there are many reasons to transform digital cartographic data between data
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structures. As such, we move from one type of cartographic object to another. Changing
data structure can result in a loss of spatial information. These data structure transforma-
tions may not be fully invertible. Information loss can come as the result of changing
scale, termed here resampling, as a direct consequence of changing data structure, or as
a consequence of the data structure transformational process or the algorithm itself. The
study of data structure transformations, and of course their perfection as a consequence
of their study, is an important goal for analytical cartography. In this chapter we will first
consider scale or resampling transformations, then the specific transformation between
vector and raster data structures. A classification of cartographic data structure transfor-
mations and their inverses will then be considered. To conclude, we will discuss the role
of error in data structure transformation.

Generalization transformations are those in which the scale or equivalent scale of carto-
graphic objects is changed. Cartographic generalization is usually undertaken for one of
two reasons: first, so that a set of cartographic objects can be symbolized or used analyt-
ically at a scale different (usually smaller) from that at which geocoding took place; and
second, to generalize a map either for clarity of symbolization or for the reduction of the
data set size. It is important to realize that this transformation applies only to the map da-
ta, rather than to the attribute data involved.

At several stages in the discussion of cartographic data structures it has been neces-
sary to consider separately point, line, area, and volume data. Resampling transforma-
tions are within their own dimensional type, such as point to point, rather than between
types, such as area to point. 

12.2.1 Point-to-Point Transformations

A point-to-point transformation involves selecting one point to represent multiple points.
One such point is the centroid, discussed in Chapter 11. The centroid, perhaps with a scat-
ter parameter, is a summary of the locational characteristics of a point distribution. A pri-
mary use for the centroid is in the conversion of irregularly spaced data, or data collected
throughout a set of regions, into a continuous representation such as a grid. Population
density data, for example, are often computed for census tracts in a city and converted to
a grid by interpolation from point centroids selected in some manner. The point-to-grid
transformation will be covered in detail in Chapter 13.

Many grid-to-grid transformations are, in fact, point to point, as are changes between
map projections and coordinate systems. A transformational process that uses as input a
global data set of latitudes, longitudes, and elevations, usually organized at regular inter-
vals of degrees, minutes, or seconds, does not produce a regular grid after a map projec-
tion transformation. After the transformation into a map projection, the data must be
resampled into a grid based on the axes of the new coordinate system. Because point-to-
point transformations are so common, they are usually thought of as part of the geocoding
process. They are, however, important examples of cartographic transformations.

2.2 GENERALIZATION TRANSFORMATIONS



Sec. 12.2 General ization Transformations 229
12.2.2 Line-to-Line Transformations

Line-to-line transformations have received considerable attention. A general statement of
the problem would be to take a cartographic line, as represented as an object in a partic-
ular data structure, and to reduce the number of elements required to store the line in such
a way that the line symbolization produced carries the spatial properties of the line to the
map reader. Line character is important to preserve, yet difficult to define, and involves
a complex set of related approaches to generalization (Buttenfield, 1985). 

Function 12.1 performs the nth point retention generalization on a string in the
STRING data structure from Chapter 5. The function read_strings() was intro-
duced in Chapter 7. These functions are used with the main program in Function 12.2.
The GKS function draw_strings() shown in Function 12.3 is used to draw the re-
sults of the generalization, and produced the output in Figure 12.1. 

Function 12.1
/* generalize a line by N pt retention kcc 6-93 funct 12.1 */
#include “cart_obj.h”
#include “extern.h”
void generalize(number_of_strings)
int number_of_strings;
{
int n, k = 0, str, pt;
STRING gen_line;
printf(“Enter n, where every n-th point will be selected:”)
scanf(“%d%*1c”, &n);
for (str = 0; str < number_of_strings; str++) {
for (pt = 0; pt < line[str].number_of_points; pt++) {
if ((pt % n) == 0) {

gen_line.point[k].x = Line[str].Point[pt].x;
gen_line.point[k].y = Line[str].Point[pt].y;
k++;

}}
/* Add the last point */
gen_line.point[k].x = 
Line[str].Point[Line[str].number_of_points - 1].x;
gen_line.Point[k].y = 
line[str].point[Line[str].number_of_points - 1].y;
k++;gen_line.number_of_points = k; k = 0;
for (pt = 1; pt < gen_line.number_of_points; pt++) {
Line[str].Point[pt].x = gen_line.Point[pt].x;
Line[str].Point[pt].y = gen_line.Point[pt].y; }

Line[str].number_of_points = gen_line.number_of_points;
} return;

}
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Definitive treatments of the line generalization problem are available elsewhere (But-
tenfield and McMaster, 1993; McMaster and Shea, 1992). The simplest techniques for
reducing the number of points necessary to represent a line are nth-point retention and
equidistant resampling. In the first case, the nodes at the end of a vector line representa-
tion in entity-by-entity mode are retained as pivots, while for the remainder of the line
only every nth point is kept. Similarly, for equidistant resampling, the line is followed by
a distance tracking algorithm, and a point is retained at multiples of some key distance
along the line.

A number of techniques treat a line as adequately represented by the original data
points selected for its representation as a cartographic object, and then fit a smooth curve
through the points to make symbolization more attractive or easier to interpret. Splines,
polynomials, and Bezier curves are mathematical functions that have been used to per-
form smoothing. Buttenfield (1985) provided a list of references to the algorithms behind
these functions. Many automated contouring packages use these methods to smooth the
lines fed though a grid during contouring.

Among the various line generalization methods, one of the most long-standing is the
Douglas-Peucker method (Douglas and Peucker, 1973). This method uses the worst-case
generalization of a line as the starting approximation,that is, the line segment formed by
simply connecting the endpoints. Each point along the line has an orthogonal distance
from the line, that can be computed by simple trigonometry. The Douglas-Peucker algo-
rithm selects the point with the largest distance, breaks the line at this point, and then re-
cursively applies this criterion to the resulting segments.

 Recursion continues until either only a minimum number of points remain in the
string segment, or a tolerance level is reached, perhaps a proportion of the initial orthog-
onal distance (Figure 12.2).

A number of researchers have suggested and used different criteria for evaluating line
generalization methods both subjectively and objectively. McMaster (1986) used a quan-
titative measure based on the areas of the triangles formed between triplets of points in a
line and in its generalization. Muller (1986) has suggested as a criterion the ability of an 

Function 12.2
/*
/* Main program for generalize & draw strings */
* kcc 6-93 function 12.02 */
#include “cart_obj.h”
extern STRING Line[MAXSTRINGS];
main()
{
int read_strings(), number_of_strings;
void generalize(), draw_strings();
number_of_strings = read_strings();
(void) generalize(number_of_strings);
(void) draw_strings(number_of_strings);

}
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Function 12.3
/* draw a set of strings using GKS kcc 6-93 funct 12.03 */
#include <gks/ansicgks.h>
#include “cart_obj.h”
void draw_strings(number_of_strings)
int number_of_strings;

{
Gchar *conn = NULL; Gchar *wstype = “postscript”;
Gws ws = 1; Gwlimit win; Gnlimit viewport;
int transformation = 1, i, j;
float aspect_ratio;
/* Open up GKS */ if (gopengks(stdout, GMEMORY)) exit();
/* Open the workstation */ gopenws(ws, conn, wstype);
/* Activate the workstation */ gactivatews(ws);
/* Find the bounding reactangle of the points */
win.xmin=line[0].point[0].x; win.xmax=line[0].point[0].x;
win.ymin=line[0].point[0].y; win.ymax=line[0].point[0].y;
for (i = 0; i < number_of_strings; i++) {
for (j = 0; j < line[i].number_of_points; j++) {

if(Line[i].Point[j].x<win.xmin)win.xmin=Line[i].Point[j].x;
if(Line[i].Point[j].y<win.ymin)win.ymin=Line[i].Point[j].y;
if(Line[i].Point[j].x>win.xmax)win.xmax=Line[i].Point[j].x;
if(Line[i].Point[j].y win.ymax)win.ymax=Line[i].Point[j].y; 
} }
gsetwindow(transformation, &win);
aspect_ratio = (win.ymax-win.ymin)/(win.xmax-win.xmin);
viewport.xmin = 0.0;viewport.ymin = 0.0;
if (aspect_ratio < 1.0) {/* Landscape */
viewport.ymax = aspect_ratio;viewport.xmax = 1.0;

} else {/* Portrait */
viewport.xmax = aspect_ratio;viewport.ymax = 1.0;};

gsetviewport(transformation, &viewport);
gselnormtran(transformation);
for (i = 0; i < number_of_strings; i++) 
gpolyline(Line[i].number_of_points, Line[i].point)

gmessage(ws, “quits after 35 seconds”);sleep(35);
/* Deactivate the workstation */gdeactivatews(ws);
/* Close the workstation */ gclosews(ws);
/* Close down GKS */ gclosegks();

}
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algorithm to preserve the fractal dimension of the line. The fractal dimension, a value re-
flecting the degree of scale invariance of a line, seems related to line complexity.

Although line generalization by resampling reduces the number of points in the car-
tographic object representing the line or in its symbolization, several authors have de-
vised methods to actually increase the number of points. Dutton (1981) proposed an
algorithm that computes midpoints for segments and then moves the midpoints using the
values of four controlling parameters. Dutton pointed out that fractalization allows lines

Figure 12.1 Line generalization by n-point retention.

North America n = 2

North America n = 15

North America n = 45



Sec. 12.2 General ization Transformations 233
to have features exaggerated and allows the introduction of smaller scale features with
enlargement. The introduced features, being self-similar, have similar properties to the
existing line. 

12.2.3 Area-to-Area Transformations

Resampling areas to yield areas is a resampling transformation of considerable value to
analytical and computer cartography and to GIS. A general statement of the goal is to
merge multiple data sets into a set of regions such that the merged data allow comparison
between maps. Usually, at least for sets of geographic areas, this means computing a set
of greatest common geographic units, or areas that need no longer be partitioned to rep-
resent spatial data as cartographic objects.

As a practical expression, consider nonnested regions such as census tracts, school
districts or police districts. A crime study may wish to collate population characteristics
by police district, only to find that the boundaries do not coincide with census tracts. Sim-
ilarly, when data have to be compared between different time periods, invariably change
in the geographic extent of regions has taken place. How analytical and computer cartog-
raphy deals with this problem is largely a function of the data structure used to store the
various map layers and the data structure in which the map comparison is to be conduct-
ed. Clearly, for two maps in two different structures there are two strategies.

First, we can transform both maps into a common data structure that allows compar-
ison directly. Often this is done by converting to a set of topological or entity by entity
most common geographic units or to a grid. In the case of the grid, we actually perform

Original line Step 1 Step 2

Step 3 Step 4 Generalized line

Tolerance
reached

No points
left

Tolerance
reached

No points
left

No points
left

Figure 12.2 Douglas-Peucker line generalization.
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an area-to-point transformation, so that the points coincide for two or more sets of re-
gions. The second strategy is to convert one of the maps into the structure of the other.
Thus a polygon entity-by-entity map can be gridded to compare with another grid. As the
number of layers increases, the first of these strategies becomes more suitable, especially
when inverse transformations are required. 

Overlaying two maps to generate a set of most common geographic units in vector
mode is not a trivial task (Goodchild, 1978). Central to the problem is the processing of
line data to determine intersection points between overlapping polygons so that they can
be added to both polygons in the correct place. The points then become nodes in the net-
work of lines that constitute the most common geographic units. A summary of the con-
tributions of computational geometry to these problems is the book by Preparata and
Shamos (1985). By the late 1970s, polygon overlay was available within a number of
GISs and automated mapping systems (Franklin and Wu, 1987), especially within
theWhirlpool module of Odyssey (White, 1978).

The procedure for polygon overlay, illustrated in Figure 12.3, consists of three sepa-
rate subproblems. First, the intersection points between lines must be found. Usually, this
is done using a line segment intersection routine such as that shown in Chapter 10, recur-
sively for all pairs of line segments in the two chains. A way to save considerable com-
putation time is first to check the bounding rectangles of the two chains for overlap. If
there is no overlap between bounding rectangles, then there is no need to test each line
segment for intersection. When intersections are found, the chains must be split, and the
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Figure 12.3 The polygon overlay problem.

New Nodes Added
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intersection point must be labeled as a node and included as the endpoint of the new sub-
divided chains. Many mapping systems compute and save the map coordinates of the
bounding rectangles of lines and areas automatically on data entry for this purpose.

In the next stage, the partitioned chains are reassembled into the new set of polygons
that make up the most common geographic units. Finally, each polygon must be rela-
beled, either with a new set of sequential or other labels or with labels that record the par-
titioning history. Particularly difficult to process are polygons that cross and recross
boundaries, and islands. A FORTRAN implementation of polygon overlay was published
by Baxter (1976). Numerous improvements and refinements have been reported over the
last few years, and the polygon overlay problem remains the topic of considerable work
in analytical cartography. 

12.2.4 Volume-to-Volume Transformations

Volumetric representation is rare in cartography because there are few truly three-dimen-
sional means by which to symbolize cartographic objects. The usual volume-to-volume
resampling transformations are changes in the grid spacing associated with grid data
structures or changes in a TIN surface representation. Within a TIN, rarely is the set of
points originally used to depict the surface changed, because the points are locations of
real data observations and the data structure is fairly compact in the first place. When
TINs are compared with data in other formats, such as grids, either the TIN is interpolated
to a grid, or the data are points and are allocated to TIN triangles using a point-in-polygon
test. 

Grids are, however, frequently resampled to change size, to retrieve a subset, or to
change the grid spacing. Invariably, unless the change is simple, such as taking every oth-
er row and column, the new grid is generated by computing the location of the new grid
intersections in the coordinate space of the map and then by interpolation from neighbor-
ing grid cells. Usually, the four neighbors and a simple unweighted average are sufficient
for the resampling. 

We have seen in the previous chapters that data structures for analytical and computer
cartography often reflect the demands of the hardware and software they support. Just as
display devices can be categorized as vector or raster, so can the cartographic data struc-
tures used by software be characterized in this way. In the past, a broad division was
made between raster and vector data structures. Each structure has its advantages and dis-
advantages and has also had its proponents. Since the development of algorithms for ef-
ficient data structure transformation, however, the vector-versus-raster debate has
become largely irrelevant.

The reasons for transformation are many, and in many automated mapping systems
the conversion of raster to vector data, or vice versa, is a major consumer of computer
time. The raster structure is a grid format and stores a map as individual pixels on lines
similar to a television picture and a satellite image. The vector structure stores maps line
by line, feature by feature. The vector format is most suitable for storing as objects and

.3 VECTOR TO RASTER DATA AND BACK AGAIN
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symbolizing the cartographic entities familiar to human thought (Peuquet, 1979). Most
cartographic objects represent boundaries, rivers, coastlines, railroads—distinct lines or
groups of lines. On the other hand, raster devices operate reliably and flexibly and have
advanced data handling capability. For data storage, the manipulation of data in raster
mode is quite straightforward. 

The repertoire of vector algorithms for cartographic transformations was more quick-
ly developed than for raster algorithms (Peuquet, 1979). This difference, however, rapid-
ly diminished during the 1980s. Normally, spatial data stored in vector formats take less
storage space than does their raster mode equivalent. The graphic output devices in vector
form are relatively accurate and distinct, but the speed of output depends on the length of
lines on a map. 

The greatest need for transformation is that automatic scanners produce raster data,
but vector digitizing requires human control. Therefore, to capture large data sets for car-
tography systematically , the conversion from a raster data structure to a vector form be-
comes necessary. 

12.3.1 Vector-to-Raster Transformations

The conversion of vector data to raster or grid form is usually termed rasterization. Ras-
terization involves four distinct steps. First, the vector data must be read into the comput-
er for processing. The processing can take place one polygon or line at a time or
simultaneously for a whole map. Second, the appropriate scales and map transformations
should be applied. Normally, the map projection transformation and any resampling
transformation will have taken place before this step is reached; for example, a world map
may have been transformed to a Mercator projection, clipped at 84 degrees north and 80
degrees south, and the map resampled using the Douglas-Peucker method. 

We can now assume that the alignment of the grid will be to the axes of the coordi-
nates used by the input data. The only remaining decision is how many pixels the map
will be converted into, and this is determined either by the desired map resolution or the
number of rows and columns. Rectangular pixels are sometimes desired, especially to
meet the demands of a particular display device, algorithm, or application. This step es-
tablishes the geometry of the rasterization. The third stage depends upon technique. In
many cases, the grid is partitioned as an array in the computer’s memory, and as the
points, lines, and polygons are rasterized, the zeros stored initially are changed to ones,
or to an index number for the line or polygon.

 For very large arrays a second method is used. In this method, the locations of pixels
with value one, with their indices if necessary, are stored, either as a file or internally in
[row, column, index] format. These data are then sorted by row and column, and
an array is constructed by reading the sorted data, filling rows and columns either with
the stored value or with a zero. An option is to fill a polygon with an index value. The
final step is to store the array in the required format, such as with run-length encoding or
as a bit map.

Several steps can speed the rasterization process. First, if the distance between two
points in the original coordinate system is smaller than half the grid spacing, the second
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point can be eliminated. This reduces unnecessary data and saves processing time. A
careful choice of sorting technique can also make a large difference in the processing
time used. 

Another step is to process the vector data, computing and storing linear equations of
each two points. The purpose of the step is to compute in advance the linear equation con-
stants for each line segment. These can be stored as real numbers, although Bresenham
(1965) has shown that only integers are necessary. One problem is the special case of ver-
tical lines, that have an infinite gradient and tend to be common on maps. In this case, the
programmer can store the fact that the line is vertical.

The rasterization is now complete, yet for symbolization, the line often needs to be
thickened. Simple thickening can parse the whole array and change from zero to one (not
line to line) any pixel that borders a line pixel. Unfortunately, this tends to fill in the fine
details of wiggly lines. Another technique, which in some display devices can be per-
formed in hardware, is to fill in these neighboring pixels with values to be displayed at a
lower light intensity than the line pixels themselves, a technique known as anti-aliasing.
Anti-aliasing removes some of the effect of stair-stepping along diagonal lines in raster
mode, an effect usually called the “jaggies.” 

Alternatively, an algorithm that has produced thick lines will be thinned so that all
raster lines are of a constant width of one pixel. The degree of fatness of the lines depends
on the character of the line, the orientation of the grid, the resolution of the grid, and the
algorithm used. For example, in the case of a polygon being rasterized, we could assign
an edge pixel to any two or more polygons depending on the algorithm in use. If edges
of polygons are treated as lines, then a significant number of pixels may be edges, rather
than taking on the attributes of a polygon. If the edge pixels are to be assigned to the poly-
gons, we can use a “dominant” criterion (the polygon owning the majority of the pixel
area takes the pixel), a “center point” criterion (the polygon covering the pixel center
takes the pixel), or any of several other criteria. Line thinning after the fact can be depen-
dent on the processing direction through the array and other factors.

The algorithm rasterize contained on the companion disk to this book probably
uses the simplest approach. The earlier function read_strings() is used to read the
North America data set. Function extremes() computes the bounding rectangle for
the strings, useful for computing the grid characteristics. 

Function get_gridspecs() prompts the user for two points defining the grid ex-
tents and the x and y grid spacing. This function computes and returns the sampling dis-
tance appropriate to the grid. Sampling at any distance greater than this runs the risk of
missing cells along string segments. A loop over all strings first computes the straight line
equation of the line segment, testing again for vertical segments, and then applies the
sampling into the grid apparent in Figure 12.4. Finally, the grid is written as an ASCII
array of ones or zeros. Display of these grid files are covered later in the book.

Output from the function is shown as Figure 12.5. The North America outline, un-
projected into a map projection, was gridded at three different resolutions. Notice in this
figure how the level of detail decreases and the number of fat lines increases as the cell
size becomes larger. Also notice the tendency for lines to be rasterized toward the cardi-
nal directions, especially when they are only slightly diagonal, a good example being the
U.S–Canada border.
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12.3.2 Raster-to-Vector Transformations

Conversion of vector data to raster is comparatively simple compared with the inverse
transformation. The demand for the raster-to-vector transformation is increasing as raster
input devices such as scanners and remote sensing devices become more widespread. As
a result, the raster-to-vector transformation is being built into automated mapping sys-
tems and GISs. This process is very CPU intensive and can yield topological and other
errors in the resultant vector data set regardless of the quality of the input data. Analytical
cartography has been slow to research issues related to this important transformation, and
as a result, the published work is mostly in image processing. Peuquet (1981) noted the
lack of efficient algorithms and poor computer coding in this area, a deficiency that has
not been fully addressed.

Converting from raster to vector data involves three major steps. These stages, shown
graphically in Figure 12.6, can be termed skeletonization or line thinning, line extraction,
and topological reconstruction. Line thinning is necessary because vector lines are purely
geometric, that is, they have zero width as cartographic objects yet have a width deter-
mined by the grid cell size when they appear in raster mode. The grid representation of
the lines, therefore, must first be thinned so that the line consists merely of a one-cell-
width sequence of connected pixels. This connectivity is usually in one of the eight major
directions dictated by the eight-cell connectivity of grid cells.

The first stage, skeletonization, can be performed in one of three ways. Peuquet
termed these peeling, expanding, and the medial axis methods. The medial axis method
is the fastest, but it works on one line at a time and not on the whole grid simultaneously,

Figure 12.4 Algorithm rasterize. String is sampled along segments at half the grid resolution, and the 
resulting points are converted to integer grid indices. See the Rasterize directory of the companion disk.
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and inconsistencies occur in very thick lines. Peeling and expanding methods are the in-
verse of each other. Peeling deals with systematically eroding the edges of lines, wheras
expanding deals with expanding the space between lines.

A highly efficient peeling method is Pavlidis’s asynchronous thinning algorithm
(Pavlidis, 1982). This technique is not completely parallel in operation, however, and in
order to maintain connectivity accepts lines with a width of more than one grid cell.
Rosenfeld and Kak’s thinning algorithm (Rosenfeld and Kak, 1981) is as fast as asyn-
chronous thinning and results in a line of single-grid-cell width. This method works iter-
atively, at each pass deleting border grid cells that do not disconnect the local (three by
three cell) neighborhood. The result of this first step is a single-cell-width line, but some-
times the thinning process introduces artifacts into the geometry of the lines.

Line extraction, the second stage, involves determining where individual lines begin
and end in the thinned image, so that the lines can be rewritten as vectors connecting the
endpoints in the correct sequence. Points are usually generated at the centers of the line
grid cells, and long straight sequences can be eliminated to reduce the number of points
in the line. Topological reconstruction is the process of generating the topological con-
nectivity of the lines to rebuild a topological definition of the lines and polygons from the
entity-by-entity objects that come from the previous two stages. As such, the third step is
identical to the transformations from entity-by-entity to topological data structure dis-
cussed in the Section 12.4.
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Line extraction can be accomplished in one of two ways. Line following seeks a node
that forms the beginning of a line and attempts to follow the line to another node. One of
its disadvantages is that when a node is reached and the line terminated, no use is made
other lines normally beginning at this point. The scan-line approach uses the same logic
as line following, but it processes multiple lines simultaneously. 

Once the lines have been extracted, they are usually written as vector lines, and any
topological processing takes place in vector mode. The writing of vectors involves find-
ing the absolute or world coordinate location of each grid cell. This can be accomplished
by taking the grid cell row or column number, dividing by the number of rows or columns
respectively, multiplying by the size of a grid cell in that direction, and adding the world
coordinate of the lower left corner of the map. When the grid is not aligned with the co-
ordinate system, the four values stored in the Grid.corners[] part of the GRID
structure can be used to compute the affine transformation necessary to convert to world
coordinates.

Errors associated with the conversion to a finite raster resolution and the use of the
various algorithms can result in a significant number of errors, such as collapse lines,
spikes, and false links (Figure 12.6). These errors depend on the resolution of the rasters
and particularly on the thinning stage of conversion. Where cartographic lines are simple,
such as contour lines, this may not be a significant problem. In other cases, such as along
a contorted coastline or where contours run close together, the errors can be major and
usually require operator intervention. In many systems that do automated line extraction,

a b
c

c
c

Figure 12.6 Stages and problems of raster-to-vector conversion. 
Point a: collapsed loop. Point b: false link. Point c: collapsed spike.

Vector lines Raster scan of lines

Thinned Image: Endpoints located Conversion to topological vectors
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the conversion process will stop when an ambiguous topological junction is created and
wait for the operator to guide the raster-to-vector converter.

When point data rather than vectors are processed, the coordinate transformation is
the only one that needs to be applied. A special case is when the data to be processed are
coverage polygons without boundaries. Data such as spectral classification and clustering
of remote-sensing data , or data from existing raster mode GISs, are often in this format.
An approach to finding the boundaries is to scan the grid from top to bottom and from
side to side to reveal the boundaries 

 A simple algorithm to do this is illustrated in Figure 12.7. Alternatively, the grid cell
can be filtered using an edge detecting filter, which emphasizes breaks in value. A disad-
vantage of this method is that one row and one column from each edge of the image are
lost for every time the filter is applied. Clearly, when a grid cell is wholly within a poly-
gon, the grid cell is assigned the index for that polygon. 

This process is the exact inverse of the way in which polygons are created as grids
from vector data. In the vector-to-raster section above, we considered only line rasteriza-
tion. Points can be gridded simply as individual grid cells, but areas are different. When
cells fall into two or more polygons, one way of making the assignment is to compute the
area of the cell occupied by each polygon and to assign the cell to the polygon that occu-
pies the most area.

Alternatively, the polygon boundaries can be processed as above and the indices for
the polygon interior assigned by filling the bounded area within each polygon. In this
case, the boundaries would remain as such and would not be considered part of the poly-
gon. This distinction is made in the Spatial Data Transfer Standards between the ring de-
fining a polygon and the polygon’s interior area. For applications where input data are
classified remotely sensed imagery, the lack of boundaries is normal, as also is a profu-
sion of small and even single-cell clusters, which would make poor vector equivalents.
These can be eliminated by filtering or by assigning small clusters to larger, neighboring
clusters if certain criteria are met, such as diagonal connectivity. As remotely sensed data
get better resolution, the connecting problem will diminish in significance, although it
will remain for small-scale mapping, such as land-use coverage. The elimination of finer
detail or “salt and pepper” will become more important with higher resolution.

Left to right edges Top to bottom edges

Figure 12.7 Sweep method for edge location.
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Data structure transformations are usually necessary because of the demands of a partic-
ular mapping system and as such are pertinent to computer cartography. The need for ef-
ficient transformationsand the in-depth understanding of the cartographic implications of
the transformations, however, are very much a part of analytical cartography. The multi-
tude of data structure transformations performed during the mapping process fall into one
of three types. Of these, scaling transformations are transformations of cartographic ob-
jects by their scale alone. Data structure transformations such as line generalization and
grid resampling fall into this category. Resampling transformations, such as the rewriting
of cartographic data in the same data structure at a different resolution, are the digital ex-
pression of the scale phenomenon. The study of such scale transformations has made im-
portant contributions to analytical cartography.

A second type of cartographic data structure transformation, dimensional transforma-
tions, involves a dimensional change. A dimension change is a change in the type of car-
tographic object itself rather than a data structure transformation. Such a transformation
is a logical data compression. For example, a dimensional data structure change may be
the selection of a point to represent an area. 

Such a transformation involves considerable loss of data and information, yet gives
the clarity or simplicity sometimes required during cartographic generalization. Such a
transformation is invertible. We could, for example, generate Theissen polygons from the
points to take the place of the original polygons, but the inverse transformation is an im-
perfect one and results in error. These types of transformations were considered in Chap-
ter 11 as map data transformations,because they involve actual manipulation of the
spatial properties of the cartographic objects.

A third type of data structure transformation, structural transformations, move carto-
graphic objects between structures as part of the mapping process without much change
of scale. For example, a gridded digital elevation model could be processed for signifi-
cant points such as peaks, saddles, and pits, from which to extract and generate a TIN.
The areal coverage is identical; essentially the same cartographic object, the terrain, is
available for symbolization or analysis, the object’s Euclidean dimension remains the
same, yet the data structures are radically different.

The four major data structures we have covered can be classified into entity by entity,
topological, TIN, and grid. The grid includes all raster-based structures such as quad
trees, and the entity by entity covers some of the hybrid structures, such as Freeman
codes. Given these four types of data structures, a matrix of transformations can be com-
piled that shows the 16 possible transformations (Figure 12.8). The leading diagonal of
this matrix involves transformations without a change of data structure and as such these
transformations must be scaling. 

Of the remaining 12 cells in the matrix, four fall into the grid cell to entity by entity
and topological structures and their inverses, which were considered above as raster-to-
vector and vector-to-raster transformations. The remaining eight cells in the matrix are
four transformations and their inverses. These are entity by entity to topological, entity
by entity to TIN, topological to TIN, and TIN to grid. 

.4 DATA STRUCTURE TRANSFORMATIONS
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The first of these transformations, entity by entity to topological, is the normal way
by which topology is added during the geocoding process. When maps are digitized, the
topology can either be entered explicitly, as in the DIME files, as separate records, or it
can be extracted from the points, lines, and polygons as they are digitized. For strings,
topological attributes are forward and reverse linkages and the labels of the neighboring
polygons.

 The linkages to other strings can be determined by storing separately the beginning
and ending nodes of the strings, and then matching them against each other. Because
manual digitizing results in small differences in the exact coordinate values at points,
usually some tolerance is used, and matching points are given the same average location
(snapping) (Figure 12.9).

 Many digitizing programs maintain and check this information as each string is en-
tered, and these programs prompt the user if an endpoint match cannot be found with the
existing strings. The endpoint and topological information can be stored in a structure
such as the CHAIN, introduced in Chapter 7.

Finding the names of the neighboring polygons is more difficult, and the usual meth-
od is either to prompt the user for the left and right polygon information when a new chain
is accepted or to have the user digitize a set of label points, one per polygon. These label
points can be stored separately, with the attribute data for the polygons, for example.
When polygons need to be referenced, or when attributes are required in the symboliza-
tion transformation, the label points can be tested using a point-in-polygon test for inclu-
sion within a group of chains. The relevant data structures are the CHAIN, the
AREA_CHAIN, and the NETWORK_CHAIN.
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Figure 12.8 Possible data structure transformations.
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The inverse of this transformation is the extraction of the simpler structures, such as-
STRINGs, ARCs, and RINGs, from the topological structures. Because the to_node
and from_node information is already available, this conversion is simply a rewriting
of the information already contained within the structure. In some cases, chains would 
 have to be written into the RINGs in opposite sequence or backwards, that is, from the
end_point to the begin_point, so that the sequential nature of the RING is main-
tained. This is especially important if the motive for the transformation is to symbolize
the polygon as a filled area under GKS or if the polygon area is to be computed. 

The six remaining transformations all involve the TIN structure. They are topological
to TIN, entity-by-entity to TIN, and TIN to grid and their inverses. To date, no real ex-
ample of a topology-to-TIN transformation is available, although the inverse, in which
the TIN is used to generate a stream, ridge line, or connected set of polygons representing
visible or invisible areas, seems analytically valuable. This transformation is closer to a
dimensional transformation, because the topological data structure is usually two-dimen-
sional while the TIN is three-dimensional. The network, having no partial triangles in-
volved, could be generated using links, with link order being downhill, for streams or
ridge lines. For intervisibility problems, however, the splitting of triangles into polygons
would be necessary, and simple or complex polygons would have to be formed to store
the visible or invisible areas.

The transformation from entity by entity to TIN is also a dimensional transformation,
because the only real example of this transformation is the transformation from point en-
tity by entity to TIN, and vice versa. The forward transformation in this case is Delaunay
triangulation, while the inverse is again simply a relisting of the entities contained in the
TIN structure. Finally, the grid-to-TIN forward and reverse transformation is a true struc-
tural transformation, since neither dimensional change nor resampling takes place. This
transformation can be accomplished in the forward case by selecting significant points,
perhaps by filtering or special case searching, which with their elevations form the basis

Figure 12.9 Node snapping in entity-to-entity to topological 
transformations.
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of the resultant TIN. The inverse transformation is accomplished by linear or other inter-
polation of elevations at grid cell locations from the TIN’s triangles. 

This three-type classification of the transformations possible between the four major
cartographic data structures can be used to understand the interrelationship among the
power, flexibility, efficiency, and storage size of data structures, and it helps determine
when data structure transformations are appropriate within a mapping system. Analytical
cartography can assist in this understanding by allowing the cartographer quantitatively
and theoretically to model and predict the amount and distribution of error to be expected
as a result of data structure conversions. The contention is that a cartographic entity is a
complex phenomenon, and the means by which this entity is converted to a cartographic
object as digital data within a cartographic data structure are both controllable and pre-
dictable. With correct understanding of these transformations, cartographers should be
able to provide error models and reliability estimates along with maps that are the geo-
graphic equivalent of the statistician’s normal curve and tests of significance. 

Much recent research in cartography has been centered on the problem of errors in digital
cartographic databases. The focus of the problem is that because digital cartographic da-
tabases can be highly precise, many users of the maps produced from the databases also
believe them to be accurate. In fact, the data stored as digital maps are often unbelievably
faithful reproductions of each and every one of the human errors created in the making
of papers maps. 

Beard (1989) classified map errors into source errors, use errors, and process errors.
Source errors are errors in the original map sources, in the digital cartographic source da-
ta, or in the data capture and geocoding processes. Use errors are caused by a lack of in-
formation about a mapping system, unexpected deviation from cartographic convention,
the use of maps with a scale which is too small, a lack of timeliness, and a lack of user
documentation. Beard proposed that increased attention be devoted to use error, especial-
ly because users of GIS are typically not always cartographers. 

The Spatial Data Transfer Standard is designed to ensure that the source errors are re-
vealed. The standards uses a “truth in labeling” approach, which also makes the provider
of digital cartographic data responsible for providing, either internally or externally, doc-
umentation in the form of a quality report. The quality report should contain information
on lineage of the data, on positional accuracy of the data, on the accuracy of the attributes
associated with the data, and on the completeness of the data. SDTS assists in the task of
reducing error by providing a standard set of entity and attribute terms for cartographic
features that, if used, reduce ambiguities about digital cartographic data. Also, the stan-
dards establish the nomenclature and definitions for digital spatial data transfer, so that
data acquired from government or other sources will be in a consistent structure, as doc-
umented in the standards. 

The final type of error in Beard’s classification is process error, the error resulting
from the digital conversion, scale change, projection change, or the type of symbolization
used. These errors are those attributable to one or more of the cartographic transforma-
tions described in this and the preceding two chapters. This type of transformational error

2.5 THE ROLE OF ERROR
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clearly relates to the types of transformation discussed above. As we have seen, carto-
graphic transformations can pertain to the map or the data structure, and can involve
changes in resolution and changes in object dimension. Three types of process error can
therefore occur. 

First, errors can occur in the geometry of the map; that is, features can become mis-
located in the three-dimensional geometry of the world. These mislocations are some-
times unknown, but can be the result of a controlled distortion, such as changing the map
projection or statistical space fitting. 

Second,  errors can be due to scale change. An ideal situation would be to have a sin-
gle, very high resolution database from which all others are generated using some objec-
tive generalization function (Beard, 1987). This is rarely the case, and maps will continue
to be digitized from a large number of sources at different scales. Again, some errors are
unknown, such as the removal of islands as they become smaller and smaller with scale,
but others, such as the gridding error associated with vector-to-raster conversion, are
measurable. In many cases, cartographers have suggested means for defining and mea-
suring errors in these cartographic transformations so that they can be reduced (McMas-
ter, 1986). 

Third, errors occur due to the transformation of cartographic objects in digital form
between data structures. The case can be made that none of these errors is due to un-
knowns, because the conversion is under the full control of the cartographer. With the en-
coding of topology, many consistency checks can become integral parts of GISs and
computer mapping systems, ensuring that cartographic errors are more simply detected
and corrected (Wagner, 1988). This approach is an integral part of the TIGER files dis-
cussed in Chapter 4. 

Errors due to changes in data dimension are substantial, but are deliberate in the sense
that they allow analysis or display that would otherwise be impossible. It is the straight
data structure transformation errors that are most obviously manageable, and part of an-
alytical cartography is clearly the pursuit of data structure transformations that minimize,
or at least give complete accounts of, the error they introduce. The standards suggest the
use of a quality map, one that maps out the error expected in the cartographic data. Only
by fully understanding and modeling cartographic error can cartographers ensure that
their products survive the tests of time as today’s digital cartographic databases become
the historical archives of the future. 
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