
7.
7

Spatial Data Structures
for Computer Cartography

The Spatial Data Transfer Standard has provided cartographers with a consistent set of
terminology and concepts, known as a data model, around which data structures can be
developed. Although most data structures are expressed in published form as logical
models of data organization, in computer cartographic software they find their actual im-
plementation as computer programming data storage mechanisms, what we will call here
program data structures. These program data structures must relate to the goals of geoc-
oding discussed in Chapter 4,; they must relate physically to the actual methods of stor-
age and representation of digital data discussed in Chapter 5, and they also ideally should
be simple and effective to use in any programming environment.

Many of the nonstructured computer programming languages did not support sophis-
ticated data structures. More recent languages support these structures, especially the lan-
guages most likely to be used in most contemporary computing environments: Pascal and
C. In Pascal, the “record” is similar to the “structure” in C, and the advanced student will
be able to translate most of the computer programs discussed here between the languages
with relative ease.

In the C programming language, the “structure” is declared in the following way. We
take advantage of the C construct typedef, which allows us to name a structure as a
type of storage object or data structure (Function 7.1).

1 C LANGUAGE STRUCTURES FOR CARTOGRAPHIC DATA

/* Example of a C language structure declaration
/* kcc 5-93 */

Function 7.1

typedef struct {
float first;
int second;

} EXAMPLE;
115

Spatial Data S tructures for Computer Car tography Chap. 7116
To use this structure in a program, first a variable must be declared to have this particular
structure as its type (Function 7.2).

Each structure element is then used by linking subelements with periods. For example, to
assign a value to the first element and print the value of the second, assuming they exist,
the following program lines in Function 7.3 could be used.

A structure can be multidimensional, as in the example Function 7.4.

Function 7.2
/* Declaration of a variable to be of type EXAMPLE
/* kcc 5-93
*/
EXAMPLE hold_data;

Function 7.3

/* Example use of data stored in a structure (kcc 6-93) */
EXAMPLE hold_data;
hold_data.first = 3.1415927;
hold_data.second = 1;
printf(“The first element of the structure is %f\n”,

hold_data.first);

printf(“The second element of the structure is %d\n”,

hold_data.second);

Function 7.4

/* Example declaration of a multidimensional variable to be
of type structure kcc 6-93 */
typedef struct

{
float first; int second;
} EXAMPLE;

EXAMPLE hold_data[5];
for (i = 0; i < 5; i++)

{
printf("Structure element one sub %d = %f",i,

hold_data[i].first);
printf("Structure element two sub %d = %d",i,

hold_data[i].second);
}

Sec. 7.1 C Language Structures for Car tographic Da t a 117
FORTRAN programmers should note that C language arrays all start at a count of zero
The final concept for C language structures is that a structure can be part of the declara-
tion of another structure. An example of this is shown in Function 7.5.

The use of structures permits a high degree of organization in computer programs, es-
pecially because structures can be passed as arguments between functions or can be de-
clared outside the function definitions to make them available anywhere within a
program. To achieve this characteristic, somewhat similar to using COMMON blocks in
FORTRAN, the structure definition can be placed together in a separate file. C supports
such declarations, using the term header file for these files.

In the following declarations and functions, it is assumed that there exists a file called
cart_obj.h that consists of declarations of the C language data structures to be used
in this book. In each case, the structures are given uppercase names, so that when vari-
ables are declared to have this type of structure, they can use the same name in lowercase
without confusion.

For example, the first declaration defines the zero-dimensional primitive cartographic
object POINT. To declare a variable to be of type POINT, we can still call it Point
(mixedcase, because GKS reserves some lowercase only words such as link) and per-
haps give it multiple instances.

Thus a collection of points, a maximum of 50 for example, could be stored and used
in a C language structure Point as shown in Function 7.5. Because the digital carto-
graphic data standards divide the major cartographic object definitions into zero, one, and
two dimensions, the same subdivision will be followed for the C language structures.

The following sections outline C language structures suitable for storing cartographic
or spatial objects of zero, one and two dimensions. The purpose of these functions is to
encourage the use in computer programs of data stored in a manner consistent with the
SDTS data model. In each case, the objects are presented along with programming data
structures which will hold data, and in some cases, example programs are given that use
the structures to perform geographic operations.

Function 7.5

/* Example use of the POINT data structure kcc 6-93
/* The first statement states that structure definitions
/* are in cart_obj.h in this directory */
#include "cart_obj.h"
/* Now declare a structure point, with 50 elements of type

 POINT */
POINT Point[50];
/* Print, for example, the 30th elements of point (indexed
 by 29) */
printf("(x,y) of 30th element is (%f,%f)\n",Point[29].x,

Point[29].y);

Spatial Data S tructures for Computer Car tography Chap. 7118

7

La
po

N

The primitive object with one dimension is the point. SDTS specifies a point as a zero-
dimensional object that specifies geometric location. The location is specified by a coor-
dinate pair (x,y) or by a triplet (x,y,z). The rules for providing coordinates are
discussed in the standards document in Appendix C “Spatial Address Encoding.” A point
is inherently a vector data element. Many program applications require the coordinates
to be floating point numbers (for example latitude and longitude in decimal degrees). On
the other hand, storing two or three floating point values for every location requires sig-
nificantly more storage and computational power than using integers.

To accommodate both these formats all of the following functions use the C keyword
typedef, which leaves the choice up to the programmer. It is important to remember in
algorithms and programs which type is used. In the program examples in this book, nei-
ther type is assumed, and all programs perform type conversions where necessary. Care-
ful attention should also be paid to whether negative values are appropriate, what the
maximum values are likely to be, and whether there is a loss of precision involved.

Three special cases of a point are given, allowing the point to store an attribute asso-
ciated with it, either an entity, a label, or an area identifier. The final zero-dimensional
object is the node. The node is defined as a zero-dimensional object, that is, a topological
junction of two or more links or chains, or an end-point of a link or chain. Examples are
shown in Figure 7.1.

.2 ZERO-DIMENSIONAL CARTOGRAPHIC OBJECTS

M u d d y R i v e r

S t a t e F o r e s t

M u d v i l l e

Entity point

bel

Area point

int

Figure 7.1 Zero-dimensional cartographic and geographic objects.

Mineshaft

∗
∗

ode

Sec. 7.2 Zero-Dimensional Car tographic Objects 119
Function 7.6
/* ---
/* C language cartographic data structures
/* Based on FIPS 173 Terminology and data model
/* kcc 3-94 Revised from 5-88
/* ---
/* Define the constants for all objects */
#define MAXPTS 999
#define MAXROW 20
#define MAXCOL 20
#define MAXSTRING 400
#define MAXARC 100
#define MAXLINK 100
#define MAXCHAIN 100
#define MAXLABEL 20
#define MAXHOLE 4

/* Establish the coordinate type */
typedef coordinate {float | int }; /* NOT C, choose one */
/* Zero dimensional objects */
typedef struct {

coordinate x;
coordinate y; } POINT ;

typedef struct {
char entity_type[MAXLABEL];
char entity_attribute[MAXLABEL];
char included_term[MAXLABEL];
POINT Point;
} ENTITY_POINT;

typedef struct {
char label[MAXLABEL];
POINT Point;
} LABEL_POINT;

typedef struct {
int polygon_id;
POINT Point;
} AREA_POINT;

typedef struct {
int node_identifier;
POINT Node;
} NODE ;

Spatial Data S tructures for Computer Car tography Chap. 7120
 The normal means by which structure definitions are made in C language programs
is by placing them in a header file. The header files can then be included in each function
that uses the structure, and the data are available to all functions in the program. A generic
header file is built in this section to cover each of the objects defined in the Spatial Data
Transfer Standards. This header file (Function 7.6 and continued as Functions 7.10 and
7.12) is called cart_obj.h, for the cartographic objects header file.

In the cart_obj.h header file, the initial set of statements (the #defines) allow
the preprocessor to assign any constants to be used in the structure declarations. For ex-
ample, instead of allowing a fixed value of 20 as the maximum number of points, the con-
stant MAXPTS is used and is simply switched at compile time for the constant 20 by the
C preprocessor. Because only those constants and structures which the program will use
are loaded at run time, including the whole cart_obj.h file incurs no extra overhead.

An example of a point has already been given above. An entity point may contain a
feature type of “church”, identified in the feature code section of the data standards as
entity type BUILDING (a permanent walled and roofed construction), included term
Church (which has the attribute of EXISTING), for example at 1 degree 30 minutes
East, 55 degrees 20 minutes and 45 seconds North.

Function 7.7a

/* Program segment to demonstrate an entity point
/* structure kcc 6-93 Revised from 12-88 funct 7.7a */
#include “cart_obj.h”
(void) show_entity_point()
{

ENTITY_POINT Feature;
Feature.entity_type = “BUILDING”;
Feature.entity_attribute = “EXISTING”;
Feature.included_term = “Church”;

Feature.Point.x = (coordinate) 1.3000;
Feature.Point.y = (coordinate) 55.2045;
/* Note DD.MMSS Global coord. format */

(void) printf(“Entity type %s Included term %s with
attributes %s is located at %f %f\n”,
Feature.entity_type, Feature.entity_attributes,
Feature.included_terms, Feature.Point.x,
Feature.Point.y);

return;
}

Sec. 7.2 Zero-Dimensional Car tographic Objects 121
The declaration and assignments shown in Function 7.7a would store this informa-
tion. Similarly, the same church may have a specific name to be placed next to a symbol
for a church on a map, such as “St. Paul’s Church”. In this case, a label point should be
used (Function 7.7b).

In the case of the area point, the identifier is a pointer to a polygon which is associated
with the point. For example, the pointer could be to a polygon defining the boundaries of
the church parish. Similarly, the node simply defines the location and gives an identifier
so that the node can be found by other, higher-dimensional objects. The first encounter
within a computer program in the C language with these structures is when the data are
read from files. We will use ASCII files throughout this discussion, although very much
faster input and output to files is possible if binary reads and writes are used. As noted
above, ASCII data files can be edited, examined, modified, and corrected with the use of
your favorite text editor. A function to read a single file containing a large number of

Function 7.7b
/* Program segment to demonstrate a label point
/* structure kcc 4-94 Revised from 12-88 funct 7.7b */
#include “cart_obj.h”
(void) show_label_point()
{

LABEL_POINT Feature;
Feature.label = “St. Paul’s Church”;

Feature.Point.x = (coordinate) 1.3000;
Feature.Point.y = (coordinate) 55.2045;
/* Note DD.MMSS Global coord. format */

(void) printf(“Label Point: Label %s is located \
at %f %f\n”,
Feature.label, Feature.point.x, Feature.point.y);

return;
}

Function 7.8
File: point_data
Format: ASCII

1.3000 55.0000 St. Paul’s Church
2.1023 56.1012 Water Tower
-1.1213 57.1123 Bench Mark (45.4 meters)
-1.1557 55.5927 Radio Tower
2.1519 54.1314 Radar Reflector

Spatial Data S tructures for Computer Car tography Chap. 7122

7

point features with their labels follows. Assume that the file called point_data as
shown in Function 7.8 exists in the users current directory. Function 7.9 will load the data
into the structure label_point. This function, read_label_points(), should
be declared in the calling function to be of type int. The function returns the number
of points read from the file via the return statement, plus the structure containing the
data through the argument list. The calling function should provide in the argument list
the address of a structure ready to receive the data.

The one-dimensional cartographic objects are more varied, serving a large number of car-
tographic needs (Figure 7.2). The generic name for a one-dimensional object is a line,
which can consist either of a locus of points defined by a function such as a polynomial
or a b-spline (an arc) or as a sequence of connected primitive objects known as line seg-
ments. The line segment is simply a straight line connecting two points, and we define it
to be simply two points stored together.

Function 7.9

/* Read a file of latitudes and longitudes in DDD.MMSS
/* format with point labels and load the data
/* into a structure of label points
/* kcc 4-94 revised from 12-88 funct 7.9 */
#include <stdio.h>
#include "cart_obj.h"
int read_label_points(label_point)

LABEL_POINT Label_point[];
{
int i=0, number_of_points;
FILE *file_pointer;
/* Open the input file and abort if non-existing */
if ((file_pointer = fopen("point_data","r")) == NULL)

{ printf("Unable to open file ’point_data’\n");
exit(); }

/* Read the point data, counting entries */
while (fscanf(file_pointer,"%f%f%s",

&Label_point[i]->Point->x,
&Label_point[i]->Point->y,
Label_point[i]->label) != EOF) i++;

number_of_points = i;
/* Close the file */ fclose (file_pointer);
/* Return the number of points */
return (number_of_points);

}

.3 ONE-DIMENSIONAL CARTOGRAPHIC OBJECTS

Sec. 7.3 One-Dimensional Car tographic Objects 123
∗
∗

∗
Figure 7.2 One-dimensional cartographic and geographic objects.

∗ ∗

∗ ∗Right polygon

Left polygon

End
Start ∗ ∗Right polygon

Left polygon

Line segment String

Arc Link

Complete chain

G-ring GT-ring

Area chain

Network chain

∗ ∗
End

Start

Spatial Data S tructures for Computer Car tography Chap. 7124
Function 7.10
/* ---
/* C language cartographic data structures
/* Based on FIPS 173 Terminology and data model
/* kcc 6-93 Revised from 5-88 function 5.10 (7.7 Ctd.)
/* --- */
/* One-dimensional objects */
typedef struct {

POINT Point[2]; } LINE_SEGMENT;
typedef struct {

int number_of_points;
POINT Point[MAXPTS]; } STRING ;

typedef struct {
int arc_identifier;
STRING String;
int *function; } ARC;

typedef struct {
NODE Node[2];} LINK;

typedef struct {
NODE Node[2];
int left_polygon, right_polygon;
STRING Chain;} COMPLETE_CHAIN;

typedef struct {
NODE start;
NODE end;
int left_polygon, right polygon;
STRING Chain;} AREA_CHAIN;

typedef struct {
NODE start;
NODE end;
STRING Chain;} NETWORK_CHAIN;

typedef struct {
int number_of_strings, number_of_arcs;
STRING String[MAX_STRING];
ARC Arc[MAX_ARC];} G_RING;

typedef struct {
int number_of_chains;
COMPLETE_CHAIN Chain[MAX_CHAIN];} GT_RING;

typedef struct {
STRING Ring;} RING;

Sec. 7.3 One-Dimensional Car tographic Objects 125
The string, a group of connected segments, without any other topological informa-
tion, makes up the building block for the more complex one-dimensional objects. When
a string closes upon itself, it is termed a ring, and rings can be created from strings, arcs,
links, or chains. The link is a network primitive, consisting of a single edge of a connected
graph. Direction within a link is simply by the sequence of points as stored.

This is a complex group of objects, and there is a need to break the list down. A simple
division is by those objects that store topology, and those which are designed largely sim-
ply to reflect geometry. Traditionally, cartography has been concerned with using geom-
etry-only objects to represent cartographic data which is destined solely for display.
Nevertheless, topology is often required for consistency checking, sequenced color fills,
and symbolization. Topology is also required for some data structure conversions. The
geometric objects of one dimension are the line segment, the string, and rings of arcs and
strings.

To read a string, assume a file containing data in the format of one string per line, with
the first record being the number of points in the string (n), and the next records being
the coordinate pairs, as (x1,y1), (x2,y2), (x3,y3) up to (xn,yn). Such a
file, containing the decimal latitudes and longitudes of the outline of North America, is
contained on the companion disk in the file namerica. Similarly, a G-ring is identical
to the string except that the first and last point x and y values match exactly and that the
string may contain arcs.

Function 7.11 shows the two functions that perform the task of reading a string. The

Function 6.11
/*
/* Return a selected line segment from a string
/* kcc 6-93 Revised from 5-88 funct 6.11 */
#include “cart_obj.h”
void get_segment_from_string (line_segment, line, seg_num)
struct LINE_SEGMENT *line_segment;
struct STRING *line;
int seg_num;
{
/* Assumes that seg_num is segment connecting n-th with n+1-
th point in string */

if (seg_num+1 >= MAXPTS)
{printf(“Error in get_segment_from_string(), segment\
is too long for string\n”);
exit();}
line_segment->point[0]->x = line->point[seg_num]->x;
line_segment->point[0]->y = line->point[seg_num]->y;
line_segment->point[1]->x = line->point[seg_num+1]->x;
line_segment->point[1]->y = line->point[seg_num+1]->y;
return;

}

Spatial Data S tructures for Computer Car tography Chap. 7126
function get_pts() reads a single string into a structure of type STRING and assumes
that the header file cart_obj.h both defines STRING and declares MAXSTRINGS.
Here inclusion comes by being in the same file. The actual structure containing each
string, called line, is declared here outside the brace defining the function. The func-
tion read_strings makes successive function calls to get_pts(), each time stor-
ing an additional STRING structure into line. When the function finds the
end_of_file marker, the function read_strings() returns the number of suc-
cessfully stored lines in the structure.

The same function will work for a G-ring, but a check should be implemented to en-
sure closure and to ensure that no arcs are involved. The primary purpose for a G-ring is
for either the computation of an area or the coloring, shading, or filling of the area delim-
ited by the G-ring with a pattern.

To read an arc, the user should first read an identifier for the arc, next read a string in
the same way as in function get_pts(), and finally, read a pointer to a function. The
user must determine how the function’s parameters are stored. For example, if we are
limited to circular arcs, we could store the (x,y) of the circle center, the circle radius,
followed by the starting and ending circular arc bearing, clockwise from north, and the
number of points to be generated along the arc. Thus four floating point numbers, one
coordinate pair, and one integer would be needed to define the arc. The STRING part of
the structure can then hold the points that are generated, at any given increment.

Sec. 7.3 One-Dimensional Car tographic Objects 127

Spatial Data S tructures for Computer Car tography Chap. 7128
Function 7.11
/*==
* Read a string from a file into a structure
* kcc 6-93 funct 7.11
/*== */
#include <stdio.h>
#include “cart_obj.h”
#define INPUT_FILE “namerica”
/* read_strings : reads strings into structure */
STRING Line[MAXSTRINGS];
int read_strings()
{

STRING get_pts();
int i, j, number_of_lines = 0;
FILE *fp;
fp = fopen(INPUT_FILE, “r”);
while (!feof(fp)) {

Line[number_of_lines++] = get_pts(fp);};
number_of_lines--;
(void) printf(“%d lines read from %s\n”,

number_of_lines, INPUT_FILE);
return (number_of_lines);

}

/* get_pts : reads points for one string */
STRING get_pts(fp)

FILE *fp;
{
STRING get_line;
int i, j;
(void) fscanf(fp, “%d%*1c”,&get_line.number_of_points);
for (i = 0, j = 1; i < get_line.number_of_points; i++) {

fscanf(fp, “%f%f”, &get_line.Point[i].y,
&get_line.Point[i].x);
if (j++ == 6) {j = 1;(void) fscanf(fp, “%*1c”);}

}
if (j != 1) fscanf(fp, “%*1c”);
return (get_line);

}

Sec. 7.4 Two-Dimensional Car tographic Objects 129

7

The RING structure in Function 7.10 is not explicitly part of the SDTS definitions,
but is included here because by far the majority of simple applications use G_RINGs con-
sisting of only one string to define a topology-less polygon. Storing multiple strings and
arcs for every instance of a G_RING would use an unnecessarily large amount of storage
in these cases. The burden of ensuring closure is then left to the user. Closure in the RING
can be implicit (that is, the software will duplicate the first point as the last) or required.

The remainder of the one-dimensional objects are designed to store both topology and
geometry. These are the link, the complete chain (called simply a chain here), the area
chain, the network chain, and the GT-ring. The latter objects are included as components
of aggregate spatial objects, considered in Section 7.4. The simplest of these is the link.

A link consists simply of two nodes, stored here as a line segment with an implied
ordering by the order of storage. A very common application of the link is to show traffic
flow. A traffic flow network in Manhattan has a series of links, because each street from
intersection to intersection is a straight line segment. Where streets curve, as in Central
Park, the network chain would replace the link.

Taken together, the whole street network would be described by the network, one of
the aggregate spatial objects defined in the Spatial Data Transfer Standards. For such a
network, the geometry is important for computing lengths and drawing the map, but
much of the topology can be computed simply from the endpoints of the network chains
stored separately as links.

The various versions of the chain, other than the network chain, are usually encoun-
tered in applications that plot chain by chain rather than string by string or polygon by
polygon. Although it is possible to check for topological continuity using the chain struc-
tures, their format is inherently one-dimensional; that is, it says little about the areas en-
closed by the chains.

 In the case of the GT-ring, it is known that the chains connect together perfectly to
produce a ring, a property that differs from the G-ring because a string component of a
G-ring does not have to be free of crossovers or intersections by definition. This sort of
distinction is often important in digitizing, where endpoints are snapped together to main-
tain connectivity along chains. Usually, the digitizer operator must separately signal a
chain beginning and end, perhaps by pressing different cursor buttons, and must some-
times enter connecting chain information from the keyboard.

Two-dimensional objects under the final version of the Spatial Data Transfer Standards
differ to the greatest extent from the draft version of the standard in 1988. An area is
defined as a bounded, continuous, two-dimensional object that may or may not include
its boundary. The defined two-dimensional objects are the interior area, the G-polygon,
the GT-polygon, two special case polygons (void and universe), and finally the raster
objects the pixel, and the grid cell (Figure 7.3).

The interior area is an area excluding its boundary. This area is filled when a poly-
gon is colored or shaded. It is also the area within which some algorithms, such as point-
in-polygon tests, provide a simple solution. The G-polygon is defined as an area consist-
ing of an interior area, one outer ring, and zero or more nonnested inner rings. The ring

.4 TWO-DIMENSIONAL CARTOGRAPHIC OBJECTS

Spatial Data S tructures for Computer Car tography Chap. 7130
is the standard representation of the polygon for shading, area computation, and filling in
most cartographic applications.

The GT-polygon is similar to the G-polygon, with the exception that the boundary is
topologically defined as a GT-ring built from chains rather than simply a G-ring. Two
degenerate forms of the polygon are the universe polygon and the void polygon. The uni-
verse polygon makes up the area within the bounding area of the map’s extent, but it is
outside the area for which attributes and objects are defined. On maps, this area is often
bounding countries, states, oceans, and so forth. The void polygon is an area without at-
tributes within the figure of the map. Thus a map of North America may consider the
Great Lakes as void polygons, especially if the map depicts a land-related variable such
as population density or land use.

The two final two-dimensional cartographic objects accord well with the GKS stan-
dard for graphics and are designed to facilitate the handling of raster and grid data. The
pixel is a picture element consisting of the smallest nondivisible element of an aggregate
object called a digital image. The grid cell is the final object and is an element of a regular
or nearly regular tessellation of a surface, an aggregate object called a grid. Thus for
DEM data, for example, the grid cell is an elevation observation spaced 30 meters apart

∗

∗

VOIDUNIVERSE

PIXEL

GRID
CELL

INTERIOR AREA GT-POLYGON

Figure 7.3 Two-dimensional cartographic and geographic objects.

G-POLYGON

Sec. 7.4 Two-Dimensional Car tographic Objects 131

from its neighbors on a square tessellation, while multiple pixels could be in use in a dig-
ital map to symbolize the grid cell. The two-dimensional objects can be represented by
the C language programming data structures shown in Function 7.12, which continues the
definition of the cart_obj.h header file mentioned previously.

The interior area is represented as a G-ring. Algorithms for computing area and test-
ing a point for inclusion within an area or on the boundary are considered in Chapter 10.

Function 7.12
/* ---
/* C language cartographic data structures
/* Based on FIPS 173 Terminology and data model
/* kcc 6-93 Revised from 5-88
/* function 7.12 (Continues 7.10)
/* --- */
typedef struct {

G_RING interior;
} INTERIOR_AREA;
typedef struct {

int polygon_identifier;
char polygon_descriptor[MAXLABEL];
struct G_RING Boundary;
int number_of_holes;
struct G_RING Hole[MAXHOLES];

} G_POLYGON;
typedef struct {

int polygon_identifier;
char polygon_descriptor[MAXLABEL];
struct GT_RING Boundary[MAXCHAIN];

} GT_POLYGON;
typedef struct {

char grid_descriptor[MAXLABEL];
int nrows, ncols;
POINT corners[4];
int datum;
int z[MAXROW][MAXCOL];

} GRID;
typedef struct {

int nrows, ncols;
unsigned char *pixels; /* Assumes 8 bit data */

} IMAGE;

Spatial Data S tructures for Computer Car tography Chap. 7132
The G-polygon structure represents a normal nontopologically constructed polygon. This
structure contains an identifier, a descriptor (such as the label “New York State”), and a
single structure of type G_ring to contain the boundary. In addition, the number of holes
must be stored, and the G_RING structure is multidimensional to store the holes.

A maximum number of holes must be specified, stored in cart_obj.h as MAX-
HOLES. We could use C’s pointer capabilities to store holes, that is, to store within the
structure a pointer to a structure of type G_RING that constitutes a hole. Although such
a structure is elegant and allows complex polygons to contain any number of holes with-
out wasting storage, this addition will be left to the more advanced C programmer. The
pixel, being largely device dependent, is excluded from the list of structures.This is be-
cause the GKS standard provides a means for symbolizing a grid without reference to pix-
els.

The remaining structure is the grid. The grid has as its elements a grid descriptor
(which could be the header lines from the USGS DEM data files), POINT references to
the ground map coordinates of the four grid corners (which could, for example, be UTM
values) and a two-dimensional array of integers to store the values. Elevations on land
range from 400 meters below sea level on the shore of the Dead Sea to 8,846 meters at
the summit of Mount Everest.

In case the range of values required does not fit into the range of an integer, the datum
value is provided. This integer value should be added to the grid value to give the actual
elevation. For most DEM data, this is zero, but for ocean depths, elevations on other plan-
ets, and other geographic variables, other values may be necessary.

Although the grid data structure is a logical construct for the grid, for practicality, the
data in a grid are structured independently of the map reference information. Variants on
the grid structure that conserve the significant amount of storage necessary when an array
is allocated in computer memory are possible. When a grid data set is detached from its
spatial frame of reference, it can be called an image, a term not used in the Spatial Data
Transfer Standards.

An image can be of varying size and needs to be able to store different values in each
pixel (note that grids have grid cells; images have pixels). An image with a given type
can have its storage size precomputed, and then allocation can be made only for the space
it requires. The data structure here is borrowed from Myler and Weeks (1993) to which
the interested reader is referred for a cornucopia of image-based algorithms, including the
reading and writing of several industry-standard image formats and basic and advanced
image-processing algorithms.

 The value of using the structure of an image is that allocation of image space can be
made dynamically within a program, and that types of different sizes can be accommo-
dated. The type of the pixel need not always be an integer, which often uses far more stor-
age than is necessary. Common types are short, unsigned int and unsigned
char. For example, a grid’s elevations can be allocated to an image in the following way
(Function 7.13).

Spatial Data S tructures for Computer Car tography Chap. 7133

7

At least one major problem with the data standards is the lack of three-dimensional car-
tographic objects. Fortunately, a small set of cartographic data structures for three-di-
mensional objects exists, covered in Chapter 13. In CADD, and in computer graphics
generally, data structured for three-dimensional objects are a vital part of their symbol-
ization or rendering as pictures. The GKS graphics standard has been extended to three-
dimensional graphics (GKS-3D), which may tend to favor particular three-dimensional
data structures in the future.

The C language structures introduced in this chapter are used extensively in the chap-
ters that follow. In Chapter 8, they are used to give examples of the data structures in
common use, while in Chapters 10, 11, and 12 these basic programming structures are
built upon with transformational algorithms and symbolization methods using GKS. Al-
though their understanding is not critical to students of computer cartography, students
of analytical cartography are strongly encouraged to use them to experiment with their
own software for computer and analytical cartography.

Function 7.13

/* Function grid_to_image: Allocate a set of grid cells
 to an image function 7.13 kcc 4-94 */
IMAGE grid_to_image (grid)
GRID grid;
{

IMAGE *image;
int i, j;
if (image = malloc (2 * sizeof (int) +

(grid.nrows * grid.ncols *
sizeof (*image->pixels))) == NULL) {

printf (“Unable to allocate memory in function \
grid_to_image()\n;
return(1)

}
/* Image allocated dynamically, now copy grid to image */

image->nrows = grid.nrows;
image->ncols = grid.ncols;
for (i=0; i< grid.nrows;i++) {

for (j=0; j<grid.ncols;j++)
*(image->pixels++) = grid.z[i][j];

}
return (image);

}

.5 DATA STORAGE AND DATA STRUCTURES

Spatial Data S tructures for Computer Car tography Chap. 7134

7

Department of Commerce (1992). Spatial Data Transfer Standard. FIPS PUB 173, Fed-
eral Information Processing Standards Publication, Computer Systems Laboratory,
National Institute of Standards and Technology, Gaithersburg, MD.

Guptill, S. C. ed. (1990). An Enhanced Digital Line Graph Design. Department of the In-
terior, U.S. Geological Survey Circular 1048. Washington, DC: U.S. Government
Printing Office.

Myler, H. R. and A. R. Weeks (1993). The Pocket Handbook of Image Processing Algo-
rithms in C. Englewood Cliffs, NJ: Prentice Hall.

National Committee for Digital Cartographic Data Standards (1988). “The Proposed
Standard for Digital Cartographic Data. ” American Cartographer, vol. 15, no. 1,
pp. 9–142.

.6 REFERENCES

