N

BY

'MICHAEL F. GOODCHILD
VALERIAN T. NORONHA

MONOGRAPH 8
DEPARTMENT OF GEOGRAPHY
THE UNIVERSITY OF IOWA

IOWA CITY, IOWA 52242

SEPTEMBER, 1983

 LocAaT10ON-ALLOCATION FOR
SMALL COMPUTERS

BY
MicHAEL F. GOODCHILD
AND
VALERIAN T. NORONHA

MONOGRAPH 8
DEPARTMENT OF GEOGRAPHY
THE UNIVERSITY oF Iowa
Towa Ci7y, Iowa 52242

OcToBER 1983

Other University of Iowa Monographs

No. & Rushton, Gerard, Michael F. Goodchild and Lawrence M. Ostresh,

Jr., (eds.). Computer Programs for Location-Allocation Problems,
1973, 321 pp. Price: 3%720.00.

Available from:

CONDUIT

The University of Iowa

P.0. Box C

Oakdale, Iowa 52319 U.S.A.

Also available from the same address is the package "Optimal
Location of Facilities." The package includes:

1.
2.

3,
4,

Monograph No. 6;

Technical documentation of the programs in

Monograph 6;

The book: G. Rushton, Optimal Location of
Facilities, (Wentworth, N.H.: COMPress, Inc., 1978);
A tape containing 14 source programs in ANSI

Fortran {approximately 1600 lines of code).

Price: $80.00.

No. 7 Hillsman, Edward L., Heuristic Solutions to Location-
Allocation Problems: A User's Guide to ALLOC IV, V and VI, 1980,

169 pp.

Price: $6.00.

Available from:

Department of Geography
The University of Iowa
Towa City, Iowa 52242 LU.S.A.

Also available from the same address are:

1.
2.

Source program 1istings in ANSI Fortran for Monograph 7;
Price: $8.00.

A tape containing 6 source programs in ANSI Fortran
(approximately 6,000 lines of code). The 6 source
programs are written as separate unlabelled files on
tape. The tape is recorded at 1600 bpi, in 80-character
logical records on a 9-track tape in EBCDIC code.

Price: $35.00.

i

T

Availability of programs for this monograph:

The generic source programs listed in the text are available
in machine-readable form on tape at a cost of $30 inciuding tape.
The tape includes the nine programs and the exampie data sets
described in the text. They are recorded as separate files at 1600
bpi, in 80-character Togical records blocked to 1600 characters per
block on unlabeled 9-track tape, in EBCDIC code.

Write to: Departmental Programmer
Department of Geography
The University of Iowa
Towa City, Iowa 52242
U.S.A.

Implementations of the codes for various microcomputer systems
are under development, beginning with APPLE. For details of
availability of diskettes write to

Michael F. Goodchild

Department of Geography

The University of Western Ontario
London, Ontario N6A 5C2

Canada

TABLE OF CONTENTS

Page
INTRODUCT ION 1
7.1 Microcomputers 1
1.2 Location-allocation ' 3
1.3 Problems in adapting location-allocation
algorithms to small computers 7
THE PROGRAM PACKAGE 8
2.1 Structure 8
2.2 Definitions 10
2.3 Data formats 12
2.3.1 Link data 12
2.3.1.1 Random link format (SPAZ, SPA4) 12
2 3.1.2 Ordered link format (SPAT, SPA3) 14
2.3.2 Node data 15
2.3.3 Weighted distance data 16
ALGORITHMS 17
3.1 Shortest paths 17
3.1.7 SPAl ‘ 19
3.1.2 SPA2 20
3.1.3 3PA3 21
3.1.4 SPA4 22
3,2 Location-allocation 22
3.3 Hillsman editing 27
3.4 Data generation 29
THE PROGRAMS 29
4.1 General 29
4.2 Variables - 30
4.2.1 Vectors and arrays 30
4.2.2 Scalars 32
4.3 Input and output statements 37

4.4 Functions ‘39

iv

Page

EXAMPLE APPLICATIONS ' 39
5.1 Simple problem 39
5.2 Llondon problem 4]
REFERENCES 53
THE CODES 54
7.1 GERNE 54
7.2 SPAl 56
7.3 SPA2 58
7.4 SPA3 60
7.5 SPA4 63
7.6 SPA5 65
7.7 HILLS 66
7.8 ALLOC 68
7.9 EVAL 71

Figure

f4a

4b

LIST OF FIGURES

Structure of the package

Example network
The matrix of possible swaps

Shaded elements of SUM are affected when a
candidate is encountered which is the ith current

solution node

Shaded elements of SUM are affected when a
candidate is encountered which is not currently

a solution node

Major streets, London, Ontario
Example run of ALLOC

Example run of EVAL

Vi

Page

13
23

26

26
a2
44
46

— —

pi
ar

ar
Wo
me
di
ot

it

Fou

PREFACE

The origins of this work go back to the 1973 NSF Summer Institute
at the University of Iowa, perhaps the first international meetings on
location-allocation. One of its more tangible results was a monograph
(Rushton et al., 1973} of computer codes and documentation, together with
a source code tape. This format proved highly successful, and over the
past ten years the programs have been applied to real planning probiems in
a number of countries, and used in many undergraduate and graduate courses.

The 1973 package was designed for mainframe computers, and for batch
operation. Perhaps the most significant conclusion from the recent popu-
larity of perscnal computers is their power to attract users who had never
previously had any contact with digital hardware. This is especially true
in the planning professions, and in therthird world. Cost, and the personal
control the user has over a microcomputer, are enormously persuasive factors,
and led us to the conclusion that there was an immediate need for small
computer versions of the location-allocation codes. The result is this
package of nine interactive programs, which are intended to be the nucleus of
any microcomputer imb?ementation. The documentation describes the algorithms
and coding in considerable detail, since it is Tikely that the programs
would be 'fine-tuned' to any specific system. We intend to develop imple-
mented versions for various systems, beginning with Apple II, and to
distribute the code on diskette together with implementation notes. The
code included in this monograph is 'generic', or as system-independent as
it is possible to be in this field.

The development of the package was supported by the National Science

Foundation®and The University of Western Ontario. We wish to thank
vii

Drs. Gerard Rushton, Michael McNulty and Vinod Tewari for initiating the

project and for many helpful suggestions.
Parts of an earlier draft of sections of this monograph, specifi-

cally those on algorithms, appear in a monograph titled "Spatial Algorithms

for Processing Land Data with a Microcomputer" published by the Lincoln

Institute of Land Policy, Cambridge, Massachusetts.

* NSF Grant INT-8017879, "Planning Techniques for the Efficient Location

of Pyblic Service Facilities in India.”
viti

in

Wi

ct

——

1. INTRODUCTION

1.1 Microcomputers

It seems clear that the microcomputers introduced in the Tate 1970s
have now produced what might be termed a revo1utibn in human technology.

Why this should bé so is not at all obvious at first sight. Microcomputers
differ from their ancestors, the mainframes and microcomputers of the 60s
and 70s, in more than one dimension, and offer advantages, and at the same
time disadvantages, at several different levels. It might be useful to
begin this monograph by identifying them.

First and most obviously, microcompgters are physically sma11,‘as
the term sﬁggests. This is the outcome of research during the 19505 and 60s
on miniaturization of electronic components for the space program, primarily
in the U.S. Some success had been achieved by reducing the size of individ-
ual components, helped by the replacement in the 1950s of the cumbersome
vacuum tube by the much smaller and more reliable transistor. But the real
breakthrough came with the development of large-scale integration of
components at the manufacturing stage. Electronic circuitry in digital
computers is highly repetitive, and lends itself well to the use of standard
integrated units, or ‘chips', containing many thousands of companents 1in
standard arrangements. .

Second, and perhaps surprisingly, chips proved to be extremely easy
and cheap to mass produce. By avoiding all of the highly 1abouf—intensive
work of wiring individually the large numbers of components of a modern
electronic computer, it became possible to produce an integrated circuit or

chip at a similar cost to that of a single transistor. A part of the

electronics market which had been lost by the U.S. because of high labour
‘costs in the 60s and early 70s was recaptured as a result.
Third, development of microprocessors coincided with similar develop-
ments in appropriate peripherals. Early work in interactive computing in
the 60s had made use of the teletype, printing at some 10 characters per
second using the 'golf-ball' technology more fully developed later in
electric typewriters. By the late 70s it had become possible to print at
speeds as high as 120 characters per second on plain paper using a dot matrix,
in which characters are formed by hammering a selection from an array of
pins onto a fabric ribbon. This technology is readily applicable to the use -
of various sizes and styles of lettering and to the production of simple
graphics. Other examples of small peripherals suitable for microcomputers
include casette tapes, floppy disks, and colour graphic display screens in
the form of standard TV sets. Each of these 1s.a cheap, physically compact
alternative to mainframe peripherals costing tens of thousands of dollars.
Fourth, microprocessors have extended significantly the range of
human activities able to make use of digital technology. They have been
incorpérated into household appliances such as microwave ovens and washing
machines, and into automobile carburetors and dashboards. E]ectroﬁic calcu-
lators have replaced slide rules, Tog tables and mechanical calculating
machines, and to a large extent hand calculation and mental arithmetic.
And manufacturers have been extremely successful at convincing office
managers of the advantages of word processing over thé_conventiona] typewriter.
Finally, microcomputers have captured the popular imagination in a
way that mainframes, with their air of remote and inaccessible authority

never could. A large market has developed for the personal, household

R

e et A et e -

computer, helped particularly among parents of young chi]dren_by a conviction
that the computer industry will continue to be a strong source oflemp]oyment.
Microcomputers are seen as a cost-effective alternative to mainframes in
high schools and even elementary schools, and in universities as a means of
avoiding the congestion that often surrounds centra]iéed facilities. And
video games reinforce the commonly held view that microcomputers are a
symbol of the future.

The dividing line between microcomputers and minis is not at all
clear. The earliest micros were distinguished by having all processing
cireuitry concentratedon a single chip, but this sort of large-scale

integration is now common for minis and even mainframes. Larly micros were

8-bit machines with a mere 8K (8 x 1024) bytes of storage, but micros are

now available with 16-bit and even 32-bit words. Speed is a distinguishing

factor, since a microprocessor takes orders of magnitude Tonger to execute

basic instructions. Microcomputers are usually single-user machines, whereas

minis and mainframes usually serve many users simuitaneously. But the most
useful definition is probably simply one of size and cost. The term micro-

computer is most often associated with a small, table-top machine costing

Tess than $70,000 including peripherals, and built around a micraprocessor.

1.2 Location-allocation

Location is an important factor in the success or failure of many

human activities. A retailer must choose a location which is accessibie to

his customers, in order to attract sufficient business, On the other hand

a school must be accessible in order for it to provide the Tevel of service

expected of a public facility. The geographer's historical interest in

location has been to explain existing patterns of human activities. Why,
for example, do some kinds of retail activity tend to cluster together while
others form a dispersed pattern? And how can the size and growth of certain

towns or cities be explained when others stagnate? The same knowledge can

be applied to the planning of future locations, in other words to prescription

rather than explanation, and location-allocation is the term given to a set
of techniques developed for thié purpose.

The aim of location-allocation is to determine the best, or optimal
Jocations for one or more facilities from which some service is to be
provided to a spatially dispersed population. The location problem is. the
question of where to locate, given knowledge of which people are to be served
from each facility: the aliocation problem is to decide which people should
be served from which facility. In most applications both problems must be
solved simultaneously, in a 'chicken and egg' fashion, although there are
unlimited variations on the basic theme.

More formally, suppose that the population requiring the service is
located at a series of points (Xi’ 7T i=1, n) with weights (wi, i=1, n).
The p facilities are to be Tocated at (uj, Vo j=1, p}, and of the w; people
at place 1, a number tﬁj make use of the facility at j. To do so they each
travel a distance dij’ or in some cases the ;ervice will be transported‘that
distance to them.

A Yarge number of applications have been modelled in this way since
the earliest work on location-allocation in the 1960s, including retail

stores, schools, recreation facilities, emergency services such as fire and

ambulance stations, government offices, gas stations and restaurants.

2)

The simplest models make the following assumptions:

A1l demand must be allocated to a facility,

Some applications imbly control of allocation patterns by the central
planner. For example, in many systems elementary school students are
assigned to a school according to their place of residence. In other
applications, including the majority of private sector examples,
allocation is by consumer choice. In either case, it is 6ften assumed

that allocation is to the nearest facility, i.e.

tij =W, if dij < dik’ k#3
tij = 0 otherwise
e can now write tij = w,i Xij where Xij =1 if demand at 1 is allocated

to j, 0 otherwise.

In the simplest models the objective to be optimized in seeking the best
solution is a function of distance alone. One example is to locate so
as to minimize total distance,

Min £ Z w, x.. d..
i J i Mg i3

In other cases it may be preferable to consider the worst Jevel of
service provided, rather than the average level, suggesting that one
should minimize the maximum distance over which service is supplied,

Min Max x.. d..
i,y N

Another 1is to assume that some standard distance $ exists, and to maximize

the number of peopie within this distance of a facility,

it

Max ? § W, 1 where xij 1 if dij £ S

and dij < dik’ k]

0 otherwise

1

Finally, one might wish to minimize total distance subject fo the
constraint that no person be further than a specified distance S from

a service,

Min izj Ws xij dij Xij dij < S

A1l four of these objective functions can be handled as examples of a
general form

Min I X.: Ci:
ij 9N

by appropriate definition of Cigs @N approach which allows one central

J
algorithm to solve all four problems. This strategy has been termed

"distance editing". The specific edits for the four problems above

are:

Min. total distance Cﬁ =w1.d1.j

Min. maximum distance c,ij = W dij if dij < S, L otherwise
where L is a Targe number. Solve
repeatedly reducing S until
solution is infeasible

Max. coverage Cij = W, if dij > 5§, 0 otherwise

Min. total distance c..=w. d... if d..< S, L otherwise

ij i 7ij iJ

subject to distance
constraint

Two largely independent literatures have developed in location-
allocation, taking different approaches to the treatment of space and thus
to strategies for problem solution. The continuous space approach assumes

that all points in the plane are feasible locations for facilities, that

n

tn

travel is possible in all directfons and that distance is measured by some
simple rule, usually along straight lines. The discrete space approach
assumes that travel is limited to a network, that distances are measured
on the network, and that locations are feasible only at a Timited set of
locations on the network, usually at the nodes. Clearly this is more
realistic. However, there are many examples for which the scale of the
probTem makes continuous space an acceptable approximation. Continuous

space is cheaper in terms of both data coliection and computer time, and the

cost of discrete space will often not be justified by its increased accuracy.

The concern in this monograph is primarily with discrete space methods,

although some continuous-space options are discussed.

1.3 Problems in adapting Tocation-allocation algorithms to small computers

From the point of view of speed and core memory capacity, micro-
computers offer similar resources to the early mainframes of the 1960s.
Because they are most commenly single-user systems, the issue of speed is
not particularly important: it is quite reasonable to consider probiems
requiring several hours of continuous processing. However the issue of core
memory capacity is much more critical and requires a more or less complete
restructuring of the familiar Jlocation-allocation algorithms.

Consider a typical microcomputer with 64K bytes (K denotes 1024) of
random-access central memory. The operating system is Tikely to use perhaps
16K, leaving 48K for the user. A real number will require 4, or perhaps
even 8 bytes of storage, which means that the system has the capacity to
store at most 12,000 real numbers. But the program itself must also be
stored in core, either as source code in the case of interpreters, or as

compiled code. In either case this is Tiable to use up several more K of

storage leaving very little for data. Yet in a location-allocation problem .
with 1000 nodes there are 106 distances in the matrix of dijs'

Microcomputer source languages are notoriously variable. The commonest
language, BASIC, has as many dialects as there are brands of microcomputers,
particularly fn the input and output statements for secondary memory, which
are additions to the original language. Some manufacturers offer compiler
languages such as FORTRAN, COBOL and PASCAL. And there is no standardization
in graphics features. With these points in mind, the subsequent sections
describe only the core algorithms: it is assumed that the user will write
his own peripheral programs for additional functions, such as graphic display,
which would be highly system-dependent. The core programs are written in a
dialect of BASIC which allows self-explanatory variable names, and remarks
have been inserted in the code. Again, it is assumed that the user will
shorten variable names and delete remarks when adapting the code for systems
with BASIC interpreters, in order to reduce unnecessary use of core memory.
The input and output statements for secondary memory are those used by
BASIC-PLUS on the PDP11/70 under RSTS-E, and their functions are explained
in a sebarate section. Also detailed are the domains of each array so that
use can be made of variable word length arithmetic, particularly integers

(often denoted by %) where they are supported.

2. THE PROGRAM PACKAGE

2.1 Structure

The package consists of 9 independent routines. In terms of the
typical application their Togical interdependence is summarized in Figure 1.

The user will normally begin by identifying a set of demand points. Two

GENE |

Node data
——"::.-"-/

SPA5

Weighted distance data

Figure 1:

HILLS }

—
ALLOC | —————> | EVAL .
I | i

Structure of the package

approaches are then possible. If the transportation network between these
boints is sufficiently dense, it may be possible to assume straight Tine
travel, and to evaluate distances by referen;e to coordinates. This is the
function of SPAS, which produces weighted distance data in the common data
format.

The alternative is to identify all 1inks in the transport network
between demand points, noting the origin, destination and length of each
1ink. The four shortest path-routines, SPAT to SPA4, provide alternate
versions of the Dijkstra (1959) shortest path a]gorithm in order to generate
the shortest distances between all pairs of demand points. The four routines
differ in the demands placed on central memory,’SPA1 being the most demanding
and SPA4 the least.

The function of GENE is to generate random test data for any of the
SPA routines, in a format compatible with their input requirements.

The Tocation-allocation algorithm is contained in ALLOC, and is a
modification of the vertex substitution class of algorithms for the p-median
problem first defined by Teitz and Bart (1968). ALLOC has options to fix

certain sites in the solution. HILLS can be used to edit the data prior to

ALLOC in order that the same basic routine can solve a wider ciass of problems.

Finally EVAL produces a detailed evaluation of a particular solution, optimal
or non-optimal, for a given data set.
The next sections describe the necessary terms, and then the common

data formats in detail.

2.2 Definitions

A node is a point at which demand exists. When using shortest path

algorithms SPAT to SPA4 it is necessary that nodes also be identified at

10

———y

Junctions in the transport network, even if these may have no weight, in
order to describe all of the 1inks. Also any feasible sites for centra]
facilities which do not 1ie either at demand points or at Junctions in the
network must be identified as nodes, because the search for feasible sites
will be limited to the set of nodes.

A Tink is a path of feasible direct transportation between two nodes,
with no intervening nodes. Links and nodes are therefore the basic elements
comprising the transport network. Where more than one feasible 1ink exists
between two nodes the shortest one should be used.

Weight is the amount of demand present at a node. It will usually
be a population count.

A candidate node is a node which may be selected as a facility site.

A1l nodes may be candidates, but it is preferable in the interests of
minimizing computing time and data storage to be as restrictive as possible.

Two of the versions of SPA require the study area to be divided
into a set of regions. This is purely to improve computational efficiency.
In practice the number of regions should be determined by test runs and
shouldrbe chosen to optimize computing time. The regions are delimited by
assigning a region number to each node. GENE creates regions by overlaying
a simple grid, for which the user is asked to specify the number of rows and
the number of columns. The number of regions is then simply the product of
these.

The term string denotes a Tist of the candidates reachable from a
given node within a distance of ZLIMIT, and their associated weighted dis-
tances. A string is the logical record from which a weighted distance file

is constructed.

1

2.3 Data formats

2.3.1 Link data

Link data is used by SPA1, SPA2, SPA3 and SPA4. There are two ver-
sions of the format, depending on whether 1inks are arranged in order by
origin or randomly. In the ordered form, used by SPA1 and SPA3, the links
originating in each demand node are placed together and all links therefore
occur twice in the file. The random forﬁ is used by SPAZ and SPA4, and in
this version of the format each 1ink occurs only once in the file. Note
that in this version there is the implicit assumption that 1inks are un-
directed, that is, that the distance from A to B along a 1ink is identical

to the distance from B to A. This need not be true for the ordered 1link

format.

2.3.1.1 Random link format (SPA2, SPA4)

Fach record contains three items: origin node number, destination
node number and 1ink length. The example network shown in Figure 2 would
give the following data (compare section 5.1):

Origin Destination Distance

6
1
11

5

8
12

7

5

5
13

W Ul s W N e =
—

o o
O WY O oUW

—

—
mn

I's

O,

5

@

12

"y
1
s

@

11

13

‘Region 2

Region 1

Weight

Node

N Or~ — MO NG |

1*

2

—

K
4

Lo

5%
6

7%
8

g%
10

—

T A

(h

44

*denotes candidate node

Example network

Figure 2:

13

Note that the order of any origin and destination pair could be reversed

and the records could be shuffled without changing the meaning of the data.

2.3.1.2 Ordered 1ink format {SPAT, SPA3)

In this format all 1inks originating or terminating at a given node
are listed together. The valency of a node is the number of 1inks listed
for the node. The data must be ordered with the nodes in sequence, and for
each node there must be three records, as follows:

1) Identifying node number and va1ency.
2) Identifying numbers of nodes reached by each link.
3) Length of each 1ink.

The network in Figure 2 would give the following data (compare section 5.1):

node 1 % ; 1
records (6

node 2 E % g 5
records (6 1 1
node 3 E g ﬁ 6
records (11 5 8
node 4 E g 1%
records { 5 12

ete.

The sequence of records must correspond to the sequence of nodes, but
the order in which links are specified for each node could be changed. without

affecting the meaning of the data.

14

2.3.2 MNode data

A node data file contains a record for each node, and the records
must be arranged in order of node identifying numbers. Fach record contains
six items of information, as follows:

1) node identifying number.

2) region number. If no system of regions is defined, these can all
be set to 1.

3) node weight.

4) candidacy, 1 if the node is a candidate for a site and 0 if not.

5) x coordinate of node.

6) y coordinate of node.

Note that coordinates are processed only by SPAS and dummy numbers may be
substituted if this routine is not used.

The data in Figure 2 would give the following file {compare section

5.1):]
Node Region Weight Candidacy X Y E
1 1 _ 7 1 0 0 é
2 1 3 0 0 0
3 2 10 1 0 0
2 51 0 0 0 '{

1 1 1 0 0

6 2 5 0 0 0

7 1 3 1 0 0

8] 0 0 0 0

9 2 2 1 0 0

10 2 18 0 0 0

15 ;

2.3.3 \lWeighted distance data

Weighted distance data is produced by each of the SPA programs and
HILLS, and vread by HILLS, ALLOC and EVAL. It is organized by node, but
nodes with no weight are omitted except as possible candidates. Distances
are given from each node to each candidate node in order of increasing
distance, up to a specified 1imiting distance ZLIMIT, in the form of the
product of distance and weight, as a string. A weighted distance of zero
between a node and itself occurs whenever a node is also a candidate.

The three records for each node are organized as follows:

Record 1 1) node identifying number.
2} number of weighted distances given for this node,

in other words the string length.
3) weight.
4) candidacy, 1 if node is a candidate, else 0.

List of candidate nodes in order of ascending distance

Record 2
from this node, up to a distance of ZLIMIT.

Record 3 Weighted distances to candidate nodes in record 2.

Note that with a very restrictive ZLIMIT it is possible that a node with

non-zero weight may have no weighted distances listed, or a string length

of zero. Nodes with zero weight may appear only as candidate nodes.

The example of Figure 2 gives the following weighted distance data,

for a distance constraint (ZLIMIT) of 20 units (compare section 5.1):

node 1 (| 3 / 1
records ((E} Hg ng
node 2 (2 3 3 0
records %]; 3% 33
ode 3 (3 1 10 1
records % g 1 33 1 58 1 73)

16

=

m
ri

s
re

no
re

No

ALl

w
—r

bet
Tin
the
shor
of a
dist
fied

node 4 (4 2 51 0
records E 25? 86?

node 5 (5 5] !
records E ST S v
node 6 (6 3 3 0
records E 22 32 43

node 7 { 7 2 3 L
records % 6 52

node 9 { 9 3 Z 1
records E g 22 22

node 10 { 10 3 18 0
records E % w6 300

Note the absence of node 8, which has no wefght and is not a candidate.
The next sections describe the algorithms of the SPA prograﬁs and

ALLOC.

3. ALGORLITHMS

3.1 Shortest Paths

Shortest path algorithms find the shortest path or shortest distance
between one or more nodes in a network. The input consists of a 1ist of
Tinks, giving the length of each 1ink by one or more modes of transpork, and
the output is part or all of the matrix of distances between the nodes. A
shortest path atgorithm is normally used as the first step in the solution
of a discrete-space location-allocation problem, in order to find the
distances between sach node at which service is needed and each node identi-

fied as a possible site for the service {candidate node}. SPA (Rushton et al.,

17

1973) is an example of such a program designed to run on a large computer.

nk in core memory-

It stores each 1i
a typical highly connected

demand nodes,
Each link Tength

der of 3N 1inksl
es or 32 bits in an 8-bit

In a prob1em_with N

etwark would have on the or

transport n
would be a veal number , occupying probably 4 byt
microcomputer - The origin and destination rodes could be jdentified by
F bits, if that js permitted by

but at minimum 8 bytes would

ed to store

sequential integers in a smalier number O

the programming language of'the'mﬁcrocomputer,

In total 24W bytes would be requir

be necessary for each link.
it is diffi

Clearly, them,
(N v 103) with algarithms W
omputers with only 32K or 6

cult to handle shortest-path

the 1ink data set.
nich require every

probiems of a realistic size
4K bytes

1ink to be in core memory, using microc

of core.
With a problem involving
d nodes and all possible ca

powever as M increases,

M candidate nodes the matrix of distances

ndidates contains MN entries,

between all deman
the distance separating

increasing 1inearly with M.
es and the 1ocations from which services are provided decreases,

demand nod
The user may be able to

stances become redundant .
t distances between candida
The shortest path alg

and many of the MmN di
y a value ZLIMIT such tha

eed this value can be igno

te nodes and demand

suppl
orithm

nodes which exc red.
need not normally calculate the chortest distance for all MM node pairs,

for those with shortest-di
on which each of SPAY L

stance 1ess than ZLIMIT.

but only
hrough SPA4 is based is that

The algoritim
t finding the distances

rithm is most efficient a

of Dijkstra (1959). This algo

origin node to all possib]

e destination nodes. It uses the

from a given

folilowing steps:

1) Label the origin noc
2) Examine all nodes cu
by traversing a sing
to it by adding the
“at the 'reached' nod
3) Find the shortest of
associated node 'reac
shortest distance.

4) 1f any nodes remain '
In each of the SPA routin
the shortest distance fou
order in which distances ;
order in which informatior
The differences be
a different approach to th

d . .
escribed in the Tollowing

3.1.7T SPAj

2.1 orAb

SPAT stores all 11
Each Tink is stored twice,
vectors COREDE and COREDT s
lTnk, and the vectors ADDRE
first 1ink and the valency,

Figure 2 would be stored as

1) Label the origin node 'reached’, with distance from the origin zero.
2) Examine all nodes currently ‘unreached'. If the node can be reached
by traversing a single 1ink from a 'reached’ node, compute the distance
to it by adding the Tength of this 1ink to the distance from the origin
at the 'reached' node. Such nodes will be referred to as 'reachable'.
3) Find the shortest of the distances computed in step 2. Label the
associated node 'reached' with a distance'from the origin equal to this
shortest distance.
4) If any nodes remain ‘unreached', return to step 2.
In each of the SPA routines, execution will return to step 2 only as Tong as
the shortest distance found in step 3 is less than ZLIMIT. Note that the
order in which distances are found and nodes are reached in step 3 is the
order in which information is found in the distance file.
The differences between the four pPrograms occur because each uses
a different approach to the storage of the 1ink data. The approaches are

described in the following four sections.

3.1.1 SPAl

SPA1 stores all 1inks in core in sequential order by node number.
Each 1ink is stored twice, once for each of the nodes it connects. The
vectors COREDE and COREDI store the destination node and length of each
1ink, and the vectors ADDRESS and LENG keep track of the position of the
first 1ink and the valency, for each origin. For example the network in

Figure 2 would be stored as follows:

19

element COREDE COREDI element
1 2 6 1
2 1 6 2
3 3 1 3
4 5 11 4
5 2 11 etc.
6 4 5
7 6 8
) 3 5
9 10 12
etc.

For example, the Tinks fo

LENG(2} of them (compare the ordered Vi

This metho

achieved only by makin

spal builds a table of all !

nodes reachable by one Tink from ‘reached’

need only scan this
scan the entire set of nodes.
at the expense of central memory.

vectors RTO (th
origin) and is of Tength RNUM.

3.1.2 SPAZ

SPAZ stores
order and without duplication.
the origin node,
With ¥ nodes and b

data whereas SPA1 musi store 4bl

20

¢ of storage is highly efficient for fast
g heavy use of central memory.
reachable’ nodes, that is,

nodes, so step 2 of the algorithm

table in searching for the shortest distan

Again this results in computational effici

e node identifying number) and RDIST {the

all links in central memory Vike SPAT bu

Links are stored in three vectors,

DE for the destination node a
N unique 1inks SPAZ will store 3bN numbe

N numbers plus 2N address pointers and va

ADDRESS LENG
Q 1
1 3
4 3
7 2

r node 2 start at ADDRESS(2)+1 and there are
nk data given in section 2.3.1.2).

computation but this is

‘unreached’

ce, rather than

ency

The set of reachable nodes is stored in

distance from the

£ in randem

0G for

nd DI for the 1ink Tength.

rs in its Tink

lencies.

|
|
|

In general b can be e
highly connected tran
numbers, which are in
bytes than distances,
B =2 and that the sys
number the requirement
for SPAT,.

Because the 17
gained by building a ¢
1inks in each executio
connect a ‘'reached' ng

efficient than SPAT, b

3.1.3 5PA3
SPA3 and SpAg4 ;
achieved by defining a
in the nodes file. On:
in central memory at a
npdes in the same regic
As soon as a node is re
reread to append the Tf
be computed to alj dest
in centra] memory. Its
restrict the set of dis

SPA3 is the most

links and builds a tabl

store the starting loca

In general b can be expected to take 3 value of roughly 2 for a typical
highly connected transport network. Note however that in many systems node
numbers, which are'integers with Timited domains, may be stored in fewer
bytes than distances, which are Tikely to be real numbers, Assuming that

b =2 and that the system requires 4 bytes per real number and 2 per node
number the requirements in bytes of central memory are 16N for SPAZ and 26N
for SPAT.

Because the Tinks are stored randomly there would be no advantage
gained by building a table of reachable nodes. So SPAZ must examine ail
links in each execution of step 2 of the algorithm. finding those which
connect a 'reached' node with an 'unreached' one. SPA2 is inevitably less

efficient than SPA1, but is also tess demanding on central memory.

3.1.3 SPA3
SPA3 and SPA4 avoid storing all links in central memory. This is i
achieved by defining a set of regions and allocating each node o its region
in the nodes file. Only those regions which contain reachable nodes need be
in central memory at any one time. At the outset all 17nks with one or both
nodes in the same region as the origin node are brought into central memory.
As soon as a node is reached which is in & new region the links ¥ile is
reread to append the 1inks of this new region. Of course, if distances must
be computed to all destimations this method will eventually require all links
in central memory. Its potential efficiency Ties in the use of ZLIMIT to
restrict the set of distances.
SPA3 is the most complex of the four routines because it uses ordered
1inks and builds a table of reachable nodes. The vector POINT is ysed to

store the starting Tocation in central memory of the links for a given node,

21

N I LK A P e TR N ety

T S AT U byl 1A i 3 A DA

when the node is in one of the regions currently in core. ADDRESS and LENG

are used in SPA3 for the starting Tocation and Tength of the first, second

etc. node in central memory.

3.1.4 SPAL

SPAG takes the same approach of dividing the study area inte regions,
but assumes the links to be in random order. Like $PA2 there would be no
advantage in building a reachable node table so every Tink in central memory

is examimed in each execution of step 2 of the hasic algorithm.

3.2 Location-allocation

The Teitz and Bart algorithm (Teitz and Bart, 1968) is one of the
most commonly used procedures for discrete space location-allocation. Given
a network of N demand nodes, M of which are identified as candidates for
selection as centres, and given the M x N natrix of shortest paths between
demand nodes and candidates, it makes a systematic search for the subset of
P candidate nodes which optimize an objective function. The objective func-
tion is the traditional one of location-allocation, the total weighted
distance separating each demand node from its nearest.solution node. The
data set of sﬁortest distances is assumed tp be organized by demand node,
and to include for each demand node the weight and a 1ist of weighted dis-
tances to candidate nodes in ascending order, usually truncated at some upper
bound. This is the form of distance data generated by the shortest path
algorithms described in section 3.1.

The algorithm requires a starting solution, which is often a random
subset of P candidate nodes-or an intuitive guess. Thé major cycle of the

algorithm then examines each of these solution nodes in turn. A swap is

22

made by dropping this S
nodes not Currently in

Consider the 5: 3]
candidate nodes and eact

Inalt, mxp SWaps are

the M candidates, althoy

solution node by itself ¢

Candidate nodes

M

Figure 3:

There are several po

0
f swaps, Ip the originaj Te

W
as seTected, and swapped 1p

th
e best sWap produced an imp

ern
bermanent. Tpe next candidat,

the swap matrix thig correspor
A .
?ternatively one could take ¢

ment by each Candidate node
matrix, ,

i

made by dropping this solution node and replacing it by one of the candidate
nodes not currently in the solution. '

Consider the matrix shown in Figure 3, in which the rows represent
candidate nodes and each column represents one of the current solution nodes.
In all, M x P swaps are possible between the P current solution nodes and
the M candidates, a'l though P2 of these are swaps which would replace a
solution node by itself or by a candidate which is already in the soiution.

Solution nodes

Candidate nades

Figure 3: The matrix of possible swaps

There are several possible approaches to the systematic examination
of swaps. In the original Teitz and Bart algorithm the first candidate node
was selected, and swapped in as a replacement for each soTution node. If
the best swap produced an improvement in the objective function, it was made
permanent. The next candidate node was then examined in the same way. In
the swap matrix this corresponds to the examination of one row at a time.
Alternatively one could take the first solution node, and consider its replace-

ment by each candidate node, in other words examine one column in the swap

matrix.

23

With the distance matrix in core there is Tittle difference between
the two methods. But with the distances stored in secondary memory it is
essential that the number of passes through the weighted distance data be
kept as low as possible, by examining the greatest number of swaps at once.
The approach used is to‘c31cu1ate the value of the objective function for
every possible swap during one pass of the weighted distance data.

The program assumes that it may not be possible to store all of the
swap matrix in core. The parameier MAXSIZ, which is the number of elements

in SUM, is the maximum number of -‘entries of the matrix which can be held in

core. If M x P exceeds MAXSIZ the program automatically makes additional i
passes in each cycle; NUMBER is the number of entries being processed in the

current pass. At the end of each pass the value of each element of SUM is 1
the value of the objective function if a specific candidate node is swapped

in as replacement for a specific solution node. Solution nodes can be

defined as permanent by setting the appropriate element in IN to 2, in which

case the objective function will still be evaluated for the swap, but the

swap will never be.selected as best at the end of a cycle.

In each pass of the data set the program reads sequentially through !
the weighted distance data, in each case reading the weight and the 1ist of
weighted distances to candidate nodes in ascending order. A number of steps
are executed for each demand node. First the signs of a11 elements of SUM

are made negative. They will be made positive when a solution node is

found to serve that demand node. Since the set of solution nodes is differ-

ent for each element of SUM because of swaps, the resetting of signs is
complex and depends on several conditions. The candidate nodes and associated

weighted distances are processed in the opder in which they are read for each

24

-
) U

demand node, i.e., in ascending order of distance. For each one three

conditions are possible:

1) The candidate node is in the solution and not permanent, and is the
first such node encountered. It is possible that this solution node
will become the one providing service to this demand node when a
current solution node is swapped out. Thus all elements of SUM
other than those in the colﬁmn occupied by this node must be incre-
mented. This is shown in Figure 4a.

2) The candidate node is not in the solution. In this case the elements

affected are those in the appropriate row of SUM, since in each of
these cases this candidate node will enter the solution and may be
closer than the solution node currently providing service. This is
shown in Figqure 4b.
3) The candidate node is the second solution node encountered. In this
case the affected elements of SUM are those not affected by the
first condition above, i.e., the column occupied by the first solution

node encountered (Figure 4a).

In each case the affected elements are examined in turn. If an
element is negative, its sign 1s reversed and it is incremented by the
weighted distance of the candidate node from the demand node. If the ele-
ment is already positive then it is already being served by a closer

candidate node identified earlier and can be skipped. All elements of SUM

will be positive when two solution nodes have been encountered. However it

is possible that the 1ist of candidates for a demand node does not contain

two solution nodes. In this case the remaining negative elements are made

positive and incremented by a large constant PENALTY, flagging them as

infeasible swapsf

25

Solution nodes

—_
Y

\:\\\

candidate
nodes

7 A / //
; < I
s / R
S
g < 7 s
M /S /

Figure 4a: Shaded elements of SUM are affected when a candidate is
encountered which is the ith current solution node.

Solution nodes

1 p

']
|
|

candidate s
CES
nodes A/,/<’f. o

Figure 4b: Shaded elements of SUM are affected when a candidate is
encountered which is not currently a solution node.

26

3.3 Hillsman editing

1
The function of Hillsman editing is to modify the set of weighted

distances W; dij‘ When 1éput to ALLOC, weighted distances result in a
solution of the p-median problem, in which the objective is to minimize the
total distance travelled. By editing the input it is possible to use the
same ALLOC code to solve a variety of different problems with different
objectives. HILLS implements six of these options, as follows:
1) p-median with maximum distance constraint (Khumawala, 1973)
The problem is to locate centres to minimize total distance from each
node to the nearest centre, while ensuring that no one travel further

than a distance S. Let the weighted distances be denoted by Cij

i3 = Wy dy;

Then this prob]em can be solved by substituting a Targe penalty whenever
dij would be gredter than S, that is,
Cij = Wy dij if dij E)

Cij = PENALTY if dij

> 5
In HILLS the value of PENALTY is set to 1020
2) Minimize centres with maximum distance constraint (Toregas and
Revelle, 1972)
This problem seeks to find the minimum number of centres needed to cover

a set of nodes with a minimal level of accessibility. The editing is

as follows:
Cij = ?f i=]
Cij =0 if i#3 and dij <S5
Cij = PENALTY if 1 # 3 and dij > 5

27

3}

4)

5)

Maximal covering probiem (Church and Revelle, 1974)
This problem seeks to maximize the number of persons within a distance
S of at least one centre, or alternatively to minimize the number who

are more than a distance S away. The editing is as follows:

Cij 0 if dij <€ 5

Cij =Wy if dij >

S

Maximal covering with maximum distance constraint (Church and Revelle,
1976)

This problem locates centres so as to maximize the number of individuals
within distance S of a centre while ensuring that all individuals are

within distance T of a centre. The editing is as follows:

Cij = Q if dij < 8
Cij = W if S« dij < T
Cij = PENALTY if dij > T

Attendance maximizing (Holmes et al., 1972)

Centres are Tocated to maximize attendance, on the assumption that

attendance falls off Tinearly with distance. The editing is as follows:
Cij = A - W (- bdij)

where b is a constant, and A is a Jlarge number. In each row of the

distance matrix A is set equal to the Targest value of Ws 1 - bdi.),

ensuring that all values of Cij are posiﬁive. If bdij is greater than

1, W, (- bdij) is set to zero.

Minimize total powered distance (Morrill, 1974)

This editing allows ALLOC to locate centres to minimize aggregate squared

or cubed distance, or any other power of distance. The required trans-

formation is:

~N
The general approach used by HILLS is to read a weighted distance
data set, and make the necessary edits to create a new data set with the

same format. The program prompts for ali necessary parameters.

3.4 Data generation

The purpose of GENE is to provide easy access to random test data
for the package. It places a prescribed number of nodes randomly on an area
100 by 100, overlays a grid of regions, and randomly assigns weights to each
node. Candidacy is determined randomly using a probability per node pre-
scribed by the user. Links are generated systematically, each node being

Jjoined to a number of its nearest neighbours.

4. THE PROGRAMS

4.1 General

As noted in the introduction, the programs have been written in an
expanded BASIC which permits self-explanatory variable names, and have been
commented throughout. It is assumed that ‘fine-tuning' will be necessary to
adapt and optimize the code for specific machines, and this section is
intended to provide additional information with that in mind.

Variable names are used consistently throughout the package. The
next section gives the domain of each variable as a guide to users of
machines on which the number of bytes used to store a number can be varied,
either by the use of integer arithmetic or by declaring variable precision.
None of these features were present in the earliest BASIC, which assumed all
variables to be real.

The subsequent section describes the use of input and output commands
with respect to secondary memory, since these are not standardized among the

various dialects of BASIC.

29

Each of the programs has checks which compare input parameters to
fhe available memory. The dimension statements and associated 1imits should
be adjusted to the capacity of the system being used. Once this is done, it
will be possible to determine which of SPA1 through SPA4 should be used in
any particular application. Tt can be assumed with some confidence that
SPAT will always be faster than SPAZ, SPAZ than SPA3, and SPA3 than SPA4,
so the choice between them should be based simply on central memory capacity.
The optimal number of regions to be used in SPA3 and SPA4 depends on the
characteristics of secondary memory input and output for each system, and

will have to be established by experiment.

4.2 Variables

4.2.1 Vectors and Arrays

Name Programs Dimension Domain Meaning
ADDRESS SPAT MAXN{ SPAT) Integers 1 to address of first link of"
MAXN (SPAT) each origin whose
SPA3 MAXIN(SPA3) Integers 0 to links are in core
MAXIN{SPA3)
CANDIDATE SPA MAXN 0,1 1 if a node is a candidate
(scalar in ALLOC,GENE)
cID ALLOC MAXP integers 1 to N identifying node number
EVAL of each site
COREDE SPAT MAXCORE integers 1 to N destination node for
SPA3 each Tink in core
COREDI SPAI MAXCORE real positive length for each Tink
SPA3 numbers in core
DE SPA2 MAXLINKS integers 1 to N destination node of
SPA4 each Tink in core
DI SPAZ MAXLINKS positive real length of each Tink
SPA4 numbers in core
FLAG GENE MAXN 0,1 1 if distance already
SPAb output

30

1l

n

TN

LE
LE

06

ORC

POI

RDI:

REG]

RTO

STRL

SUM

Name

IN

INDEX

INDIST

INNODE

INREG

LEGEND$
LENG

0G

ORDER

POINT

RDIST

REGION

RTO

STRL

SUM

Programs Dimension

ALLOC MAXN

EVAL

ALLOC MAXN

SPA1 MAXVCY

SPA3

SPA] MAXVCY

SPA3

SPA4 MAXREG

EVAL 2

SPA1 MAXN(SPAT)

SPA3 MAXIN(SPA3)

SPA2 MAXLINKS

GENE MAXLEN

SPA (MAXN by
MAXVCY in
GENE)

SPA3 MAXN

SPAT MAXLIST

SPA3

SPA3 MAXN

SPA4

SPA1 MAXLIST

SPA3

GENE MAXN
{scalar in
other programs)

ALLOC MAXSI1Z

Domain

g,1,2
integers 1 to M
positive real

numbers

integers 1 to N
0,1

string

integers T 1o
MAXN(SPAT)

integers 0 to
MAXIN(SPA3)

integers 1 to N

integers 1 to N

" integers 0 to

MAXIN
positive real

numbers
integers 1 to R

integer 1 to N

integers 0 to M

positive and
negative real
numbers

31

Meaning

T if node is currently a site.

2 if a site is fixed at node

pesition of node in
candidate Tist

lengths of links for
each origin

destinations of 1inks
for each origin

1 if region's Tinks
are in core

lTegends for output

valency of each origin
whose Tinks are in
core

origin node of each
Tink in core

candidates reached in
ascending order of
distance

if node's 1inks are in
core, pointer to first
1ink, else 0

distance to each
reachable node

region number for each node
{scalar in GENE)

table of reachable nodes

number of candidates within
ZLIMIT of node, or string
Tength

value of objective
function following
swap

Name Programs

TONODE ALLOC
HILLS
EVAL

WEIGHT SPA

WIDIST ALLOC
HILLS
EVAL

X GENE
SPAS

Y GENE
SPAS

z GENE
SPA

TOTDEM EVAL

TQTDIST

MAXDIST

FAR

TOTDIST?

MAXDISTZ

FARZ

4.2.2 Scalars

Name . Programs

A HILLS

ADD ALLOC

B HILLS

BEST ALLOC

CANDIDATE GENE
ALLOC
HILLS
EVAL

CENTERS ALLOC
EVAL

Dimension

MAXLEN
MAXN
MAXLEN

MAXN
MAXN

MAXN

MAXP

Domain

positive real
positive real
positive real

positive real

0,1

0,1,2

Domain

integers 1 to

positive real
numbers and
Zero

positive real
numbers and
Zero

positive real
numbers

positive real
numbers

positive and

negative real

numbers

positive real
numbers and
zero

Meaning

candidates reached in
order of ascending
distance from a node

node weight

(scalar in ALLOC,GENE})

weighted distances to
candidate from a node

%x coordinate of node
y coordinate of node

distance to each node

sums used in computing
statistics (see comments)

Meaning
numbers
number
number
number

32

offset to option &
weighted distance
distance power

objective function for best swap
found

1 if node is a candidate

number of sites already processed
for this node

Name

| DEST

DIST

DISTI
DIST?
‘ DUMMY

FILET:

FILE2S

FILE3$
FIRST

FORMS$
I

ID
INCORE

IR

JR

Name

DEST

DIST

DISTI
DIST2
DUMMY

FILETS

FILEZ2S

FILE3$

FIRST

FORM$
1

1D

INCORE

IR

dJR

Programs

GENE
SPA4

GENE
SPA4
HILLS

EVAL
SPA

GENE
ALLOC
SPA
HILLS
EVAL

GENE
SPAT
SPA2
SPA3
SPA4

SPA
HILLS

ALLOC
EVAL

EVAL

ALLOC
SPAS

ALLOC
EVAL

SPA3
SPA3
SPA4

ALLOC
EVAL

SPA4

Domain

integer 1 to N

positive real number

positive real numbers

positive real numbers

string

string

string
integer 1 to N

string

integer 1 to M
integer 1 to N
integer

integer 1 to R

integer 1 to P

integer, 1 to R

33

Meaning

a destination

a distance

distances to nearest and second
nearest centres

an input parameter read but not
processed

name of input file (weighted

distances for ALLOC, HILLS, EVAL,
nodes data for SPA, GENE)

name of 1inks file

name of file for weighted distances
node of first site found

format for printed output

a candidate node

candidate selected as a site in
initial solution

number of nodes whose 1inks are
in core

a region

a site

a region

Name

KHIGH

KK

KL

KLOH
KREAD
KSAVE

LAST
LC

LINK

LPN

M

MAXCORE
MAXIN

MAXLEN

Programs

ALLOC
ALLOC
GENE
ALLOC
SPA
HILLS
EVAL

GENE
SPA

ALLOC
SPA
ALLOC
ALLOC
SPA
HILLS
EVAL
ALLOC
SPAZ
SPA4
GENE
SPA1
SPA3

GENE

ALLOC

SPA1
SPA3

SPA3

ALLLOC
SPA
HILLS
EVAL

Domain
integer 1 to NUMBER
integer 1 to M*P

jnteger 1 to N

integer, 1 10 N

integer 1 to M*P
integer
{nteger 1 to M*P

integer 1 to STRL

integer 0 to M%P
integer 1 to WLINKS

integer 1 toO LPN or
VALENCY

integer 1 to MAXLEN

jnteger 1 to N

integer
integer

integer

34

Meanin
a swap
jndex of last swap in a column

a node

a node

index of first swap in a column
node number as read from input
index of best swap

a candidate in a string

number of swaps processed in
previous passes

a 1ink in core

a 1link

number of 1inks to be generated
per node

number of candidate nodes

maximum number of 1inks in core
in a run

maximum number of nodes whose
1inks are in core

maximum number of candidates within

ZLIMIT of any node

Na
MA.

MA;

MA}

MAX

MAX
MAX:

MAXA

MOST
MOST

N1

N2

NEWRI

NEWS
NH

NLINK

Name

MAXLINKS

MAXLIST

MAXN

MAXP

MAXREG
MAXSIZ

MAXVCY

MOST1
MOST2

N1

N2

NEWREG

NEWSTRING
NH

NLINKS

Meaning

maximum number of links to' be
stored in core

maximum number of reachable
nodes in a run

maximum number of nodes

maximum number of sites in solution

maximum number of regions

maximum number of swaps considered
in one pass '

maximum valency of a node

most disposable centres

number of nodes in this run

position in core of first link
for this node

position in core of Tlast link
for this node

new region to append

Tength of new string

number of columns in the arid of
regions

integer, 1 to MAXLINKS number of 1links in core in this run

Programs Domain

SPAZ integer

SPA4

SPAI integer

SPA3

GENE integer

ALLOC

SPA

EVAL

ALLOC integer

EVAL

SPA4 integer

ALLOC integer

GENE integer

SPAT

SPA3

EVAL integers, 1 to P
GENE integer, 1 to MAXN
ALLOC

SPA

SPA1 integer, 0 to MAXIN
SPA3

SPAT integer, 0 to MAXIN
SPA3

SPA3 integer, 1 to R
SPA4

GENE integer T to MAXLEN
GENE integer

SPAT

SPAZ

SPA3

SPA4

35

Narnte Programs Domain Meaning

NUMBER ALLOC integer 1 to M*P nunber of swaps being processed
in this pass
NV . GENE integer number of rows in the grid of
regions .
OLDOBJ ALLOC positive real number objective function of current %
solution) |
OPTION GENE integer option number (
HILLS . 1
EVAL -
ORIG GENE integer 1 to N an origin
SPA4 ;
P ALLOC integer, 1 to MAXP number of sites in this run f
EVAL
PENALTY ALLOC positive real number penalty when demand cannct be
HILLS served |
PROP GENE real number between 0 proportion of nodes which are ,
and] candidates]
R GENE integer number of regions
SPA3
SPA4L
REACH GENE integer 1 to N node with shortest distance
SPA
REGION GENE integer 1 to R a region
RM SPA1 integer 1 to RNUM an entry in the reachable node
SPA3 table
RNUM SPA1 integer, 1 to N number of reachable nodes
SPA3
RNUM] SPAT integer, 1 to N number of reachable nodes after
SPA3 compression of list
) HILLS positive real number distance constraint
SECOND EVAL integer, 1 to N node number of second nearest

36

centre

Name Programs Domain --* Meaning

STRL ALLOC integer 1 to MAXLEN number of candidates within ZLIMIT
SPA of a node, or length of string
HILLS
EVAL
T HILLS positive real number distance constraint
VALENCY SPAT integer, 1 to MAXVCY valency of a node
SPA3
WEIGHT GENE positive real number weight of a node
ALLOC ‘
HILLS
EVAL
ZLIMIT SPA positive real number maximum relevant distance
ZMIN GENE positive real number shortest distance found
SPA
ZT0T SPA2 positive real number total distance
SPA4
NOSERVE EVAL positive real numbers sums: see comments
NOSERVE?Z
SFAR
DISPTOT
DISPMAX
STOTDEM
STOTDIST
SMAXDIST

4.3 Input and output statements

. INPUT .
OPEN string FOR OUTPUT AS FILE expression

The file named in the specified character string is opened for
input or output on the channel given by the value of the expression.
Channel 1 is used for input by all programs. Channel 2 is used by GENE and
SPAT through SPA4 to input Tlink data, and channel 3 is used by SPA and
HILLS to output weighted distances

ON ERROR GO TO Tine number

37

This statement is used to detect and recover from an end-of-file
condition in ALLOC, SPA2 and SPA4, HILLS and .EVAL. The value of ERR is
set to 11 and control transfers to the specified line number. These
programs check that control has not been transferred because of some other
error on the input channel.

RESUME 1ine number

This statement is used to continue execution after an ON ERROR
statement has transferred control following an end-of-file condition.
CLOSE expression
The file on the specified channel is closed.
INPUT # expression, 1ist
The values of the variables given in the Tist are input from the
‘channel given by the expression. Each INPUT statement causes a move to a
new record. Data is free-formatted, delimited by commas.
PRINT # expression, 1ist
The value of the given variables are output on the specified
channel. Note that each PRINT statement must specifically include the
output of delimiters (commas) in order for the data to be read successfully
by an INPUT statement in a subsequent program. This is an awkward feature
of the PDP11/70.
PRINT USING string, 1ist
This form of the PRINT statement is used in EVAL to produce formatted

output, in order to organize the printed output of the program in columns

with headings.

38

|

St

4.4 Functions

Four system functions are used at various points in the package.
INT, SQR and RND are Tikely to be available in every version of BASIC, but
ERR may not have an equivalent.

INT(X} truncates the value of X to an integer (GENE, SPA5).

SQR(X) takes the square root of X (GENE, SPA5).

RND returns a random number in the range 0 to 1 (GENE).

ERR returns an integer indicating the condition which has
caused an ON ERROR statement to transfer controi. An
end-of-file gives a value of 1] (ALLOC, HILLS, EVAL,
SPAZ, SPa4).

5, EXAMPLE APPLICATIONS

5.1 Simple problem

The simple network shown in Figure 2 was used for the first set of
examples. The shortest path algorithm produced a 10 x 10 distance matrix,
which was processed by HILLS and ALLOC to obtain solutions to a number of

different two-site problems, as follows.

5.1.1 p-median

The two-site p-median solution is nodes 3 and 9, with a total
distance of 594. The maximum distance travelled is 20, from node 7 to

node 9.

5.1.2 p-median with maximum distance constraints

A distance constraint of 20 or more will not affect the p-median

solution. Editing using HILLS for a maximum of 17 through 19 produces a

38

soiution of nodes 3 and 7, with a maximum distance of 17. This is the
minimum feasible distance constraint for 2 sites, so {3,7) is the solution

to the 2-centre problem.

5.1.3 Minimize centres with a maximum distance constraint

Two centres are necessary to cover all nodes with a distance con-

straint of 17. At 16, 4 centres are necessary: adding a third centre alone

does not reduce the distance limit below 17.

5.1.4 Maximize coverage

The shortest Tink in the network is of length 5, so the solution for
coverage problems with distances Tess than 5 is to place the two sites at
the candidates with the highest weight, that is, nodes 1 and 3. For distances
between 5 and 16 the best sites are 3 and 9. At a distance of 17 the maxi-
mal covering problem becomes identical to the m-centre problem as all of the

demand can be covered from nodes 3 and 7.

5.7.5 Maximal covering with maximal distance constraint

Suppose it is required to cover as much demand as possible within

10 units, but with the constraint that noone be more than 18 distance units

from a site. The solution is nodes 3 and 7, leaving a total demand of 31 ¢l
uncovered. Note that without the distance constraint the solution would an
have been (3,9) as above, with only 14 uncovered. by

' Eac
5.1.6 Attendance maximizing cre

Since the maximum distance travelled in the p—medfan solution is 20,

any value of the friction of distance b less than .05 will produce the ces:
p-median solution, (3,9). Raising b to 0.1 implies that many of the demand 3 that

40

_

points are too far away from a site to produce any demand, but the solution

remains (3,9).

5.1.7 Minimizing total powered distance

A distance power of 1.0 will produce the p-median solution. Integer
powers as high as 10 were tried, but each produced the same solution (3,9).
In general, higher powers wil] force the solution sites closer to the points
of greatest weight, but the p-median solution already occupies the candidate

nodes closest to the nodes of highest demand.

5.2 London problem

This section describes a problem of more realistic $ize, with 150
nodes and 9 sites to be located. London, Ontario is a city of approximately
250,000 population and in 1976 was served by 97fireistatiqns,reach equipped
"witﬁrarﬁiﬁimumréfrbﬁé puﬁpér tfuék. The pattern of fire alarms in the city
and the suitability pf the existing nine locations to deal with them were
the subject of a Ph.D. dissertation by Waters (1977) from which this example
is taken.

A1 2,459 alarms occurring in 1973 were recorded and geocoded. The
city street network was reduced to a set of some 250 major arterial 1inks
and 150 associated intersections {(Fig. 5). These are the]inks followed
by fire trucks from the responding station to the neighbourhood of the fire.
Each alarm was then allocated to the nearest of the 150 intersections to
create a set of demand weights.

The Tengths of each 1ink were coded in units of 50 feet, and pro-
cessed by SPA1 in ordered format. Studies of the London area have shown

that the speed of a responding truck is aTmost constant over the city, so

4]

B9
t) & !
7 % | N 7 11 |
¥ L i
IS AN e |
: ¥ g 0 £k —-j i
i
[" 3 _Z v TS 16 1T ramen 18 ,,,ml %%&, / ;l
s 13 T T ™ I T
3 H (] THIT :
e \%I LD EIICH GER|] «rWEF' B
(S ~ g QE T T T [il
H H - L,
I ‘I%@?f \\l 24 25028] [37H G e EEPEN 33123 0 owoem _sun |
‘1 i A A |35 E § 37 3
: arll § _[S 64
I ROT S I T —fcra
1IN VY F oras 1D + B f
72 |3 HFETS 76]]_En T 78 T}
88197 ¥antTas OO = 7
== S
> BSFEO bR e e
§fse a8 = PR T L - |7 e sgan 1 d
3 1} 103 S 113 L 13 118 W:zn 121
15 .
3 H Py 4] 1R T0s I & il \\\,\ H
~. 4 4 it 107 i, R T
] £ 190 [~
— f_fn o _ !:;“":';:r BT 1?-? Ny iy rows
= H 125 £ 137 i
R 2 ; g123
e dM y 127 129 .]
inght! o 128 130] : t

7
j 145 2 J
", 3 o £) City of London £
! g 146 ; :
! £ 14T ;
f S s . : ‘ t
i 5 .y el
L.)
; e ! Y - ;
i " i -
- 150 i = % :
T i | Pe
= —. Swrim g o o o o Larstm, A9 L 99, e Pty PIL 3

anc
Figure 5: Major streets, London, Ontario nec
red
Wit
witt

42

distance can be taken as a surrogate for time. Thus solving the p-median
problem will result in a solution which minimizes expected response timé to
a randomiy chose fire.
Three solutions are described below:
1) relocate all 9 existing stations to minimize expected response time,
2) locate a tenth station, holding the existing 9 fixed, so as to redyce
expected response time as much as possible,
3) as 2, but with maximum rather than expected response time as the
objective.

Each solution will now be described in turn.

5.2.1 Relocating 9 fire stations

Using the existing Tocations as a starting solution, ALLOC required
8 cycles to obtain a solution to the p-median problem (Figure 6). The total
distance travelied was reduced from 268907 units to 228242. MNote that two
sites, at nodes 95 and 145, were not changed and that one site was moved
twice (from 111 to 119 to 77).

. The existing sites and the final solution were compared using EVAL.

Part of the output of EVAL for the solution is shown in Figure 7.

5.2.2 Locating fire station 10 using the p-median solution

ALLOC was run for 10 sites, using the existing 9 as fixed locations
and introducing node 120 as a possible tenth site. Only one iteration is
necessary for this problem, aﬁd the solution found was node 119. This
reduced the total distance travelled from 268901 with 9 sites to 241157
with 10. The maximum distance was reduced from 469 with ¢ sites to 367

with 10.

43

Figure 6: Example run of ALLOC

Ready

RUN NALLOC

NUMBER OF NODES? 150

NUMBER OF SITES TO BE LOCATED? 9
SOLUTION NODE 12 8

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 27 24

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 37 30

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 42 45

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 57 84

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 67 88

ENTER '1"' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 7? 95

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 87 111

ENTER '1' IF MOBILE, '2' IF FIXED? 1
SOLUTION NODE 9?7 145

ENTER '1' IF MOBILE, ‘2" IF FIXED? 1

NAME OF INPUT FILE? DIST. 4 . 11,

150 CANDIDATES FOUND
OJBECTIVE FUNCTION IS 268901
BEST SWAP IS 119 TH CANDIDATE FOR 111
119 TH CANDIDATE IS NODE 119

44

LoD

Figure 6: continued

OBJECTIVE FUNCTION IS 249973

BEST SWAP IS 83 TH CANDIDATE FOR 84
83 TH CANDIDATE IS NODE 83

OBJECTIVE FUNCTION IS 244824

BEST SWAP IS 114 TH CANDIDATE FOR 88

114 TH CANDIDATE IS NODE 114

OBJECTIVE FUNCTION
BEST SWAP IS 47 TH

47 TH CANDIDATE
OBJECTIVE FUNCTION
BEST SWAP IS 13 TH

13 TH CANDIDATE
OBJECTIVE FUNCTION
BEST SWAP IS 43 TH

43 TH CANDIDATE
OBJECTIVE FUNCTION
BEST SWAP IS 77 TH

77 TH CANDIDATE
OBJECTIVE FUNCTION
BEST SWAP IS 35 TH

35 TH CANDIDATE
OBJECTIVE FUNCTION
NO BETTER SOLUTION

Stop at Tine 2910

Ready

IS 241115
CANDIDATE FOR 24
IS NODE 47

15 237656 _
CANDIDATE FOR 8
IS NODE 13

IS 233014
CANDIDATE FOR 30
IS NODE 43

IS 230151
CANDIDATE FOR 119
IS NODE 77

IS 228966
CANDIDATE FOR 45
IS NODE 35

IS 228242

EXISTS

; SOLUTION IS: 13 47 43 35 83 114 95 77

45

145

Figure 7: Example run of EVAL

Ready

RUN

NEVAL 17:33 31-JUL-83

NAME OF INPUT FILE? DIST. 4

NUMBER OF SITES, OR O TO NEXT EXIT? 9

- SOLUTION NODE 1 7 13

SOLUTION NODE 2 ? 47
SOLUTION NODE 3 ? 43
SOLUTION NODE 4 7 35
SOLUTION NODE 5 ? 83
SOLUTION NODE 6 2 114
SOLUTION NODE 7 7 95
SOLUTION NODE 8 ? 77
SOLUTION NODE 9 ? 145

OUTPUT OPTIONS:

1 SUMMARY OMNLY

2 ALLOCATION AND SUMMARY
OPTION? 2

NODE WEIGHT CANDIDATE NEAREST DISTANCE SECOND DISTANCE

i 5 YES 13 289 43 461
2 6 YES 13 175 43 313
3 8 YES 43 212 13 324
& 17 YES 35 260 43 357
5 4 YES 43 235 13 302
6 1 YES 43 163 13 281
7 16 YES 3 203 83 462
8 22 YES 13 88 43 244
9 13 YES i3 112 43 220
10 4 YES 43 126 13 238
11 6 YES 35 170 43 274

46

Figure 7: continued
NODE WEIGHT CANDIDATE
12 16 YES
13 49 YES
14 19 YES
15 8 YES
16 27 YES
17 19 YES
18 37 YES
19 29 YES
20 30 YES
141 30 YES
142 17 YES
143 7 YES
144 27 YES
145 22 YES
146 12 YES
147 17 YES
148 15 YES
149 27 YES
150 16 YES

UNSERVED DEMAND O
DEMAND WITH NO ALTERNATE SITE O

SITE 1 IS AT NODE 13
DEMAND ALLOCATED 203
DISTANCE TRAVELLED 20083
MEAN DISTANCE 98.931
MAXIMUM DISTANCE 289
FURTHEST NODE ALLOCATED 1
DISTANCE TRAVELLED TO NEAREST ALTERNATE 52730

NEAREST

13
13
43
43
43
35
35
77
43

145

47

DISTANCE
120

0
127
101

42
131
85
168
84

48
119
199
163

0

58
144
143
135
280

SECOND

83
83
83
83
35
43
43
35
35

47
145
145

85

83
114
114

114
114

DISTANCE

379
269
187
213
230
142
189
233
272

271
280
200
236
310
360
274
453
437
410

Figure 7: continued

MEAN DISTANCE TO NEAREST ALTERNATE 259.754
MAXIMUM DISTANCE TO NEAREST ALTERNATE 462
FURTHEST NODE FROM AN ALTERNATE 7

SITE 2 IS AT NODE 47

DEMAND ALLOCATED 132

DISTANCE TRAVELLED 12223

MEAN DISTANCE 92.5985

MAXIMUM DISTANCE 271

FURTHEST NODE ALLOCATED 39

DISTANCE TRAVELLED TO NEAREST ALTERNATE 32708
MEAN DISTANCE TO NEAREST ALTERNATE 247.788
MAXIMUM DISTANCE TO NEAREST ALTERNATE 350
FURTHEST NODE FROM AN ALTERNATE 23

SITE 3 AT NODE 43

DEMAND ALLOCATED 280

DISTANCE TRAVELLED 23720

MEAN DISTANCE 84.7143

MAXIMUM DISTANCE 235

FURTHEST NODE ALLOCATED 5

DISTANCE TRAVELLED TO NEAREST ALTERNATE 53120
MEAN DISTANCE TO .NEAREST ALTERNATE 189.714
MAXIMUM DISTANCE TO NEAREST ALTERNATE 324
FURTHEST NODE FROM AN ALTERNATE 3

SITE 4 IS AT NODE 35
DEMAND ALLOCATED 210

48

Figure 7: continued

DISTANCE TRAVELLED 19871

MEAN DISTANCE 94.338]

MAXIMUM DISTANCE 260

FURTHEST NODE ALLOCATED 4

DISTANCE TRAVELLED TO NEAREST ALTERNATE 37217
MEAN DISTANCE TO NEAREST ALTERNATE 177.224
MAXIMUM DISTANCE TO NEAREST ALTERNATE 357
FURTHEST NODE FROM AN ALTERNATE 4

SITE 5 IS AT NODE 83

DEMAND ALLOCATED 700

DISTANCE TRAVELLED 53807

MEAN DISTANCE 76.867]

MAXIMUM DISTANCE 240

FURTHEST NODE ALLOCATED 53

DISTANCE TRAVELLED TO NEAREST ALTERNATE 129076
MEAN DISTANCE TO NEAREST ALTERNATE 184.394
MAXIMUM DISTANCE TO NEAREST ALTERNATE 249
FURTHEST NODE FROM AN ALTERNATE 81

SITE 6 IS AT HODE 114

DEMAND ALLOCATED 400

DISTANCE TRAVELLED 37221

MEAN DISTANCE 93.0525

MAXIMUM DISTANCE 296

FURTHEST NODE ALLOCATED 131

DISTANCE TRAVELLED TO NEAREST ALTERNATE 78707
MEAN DISTANCE TO NEAREST ALTERNATE 196.768
MAXIMUM DISTANCE TO NEAREST ALTERNATE 409

49

Figure 7: continued

FURTHEST NODE FROM AN ALTERNATE 131

SITE 7 IS AT NQDE 95
DEMAND ALLOCATED 166

DISTANCE TRAVELLED 16064

MEAN DISTANCE 96.7711

MAXIMUM DISTANCE 199

FURTHEST NODE ALLOCATED 143

DISTANCE TRAVELLED TO NEAREST ALTERNATE 39529
MEAN DISTANCE TO NEAREST ALTERNATE 238.127
MAXIMUM DISTANCE TO NEAREST ALTERNATE 304
FURTHEST NODE FROM AN ALTERNATE 140

SITE 8 IS AT NOBE 77

DEMAND ALLOCATED 185

DISTANCE TRAVELLED 20515

MEAN DISTANCE 110.892

MAXIMUM DISTANCE 321

FURTHEST NODE ALLOCATED 138

DISTANCE TRAVELLED TO NEAREST ALTERNATE 41682
MEAN DISTANCE TO NEAREST ALTERNATE 225.308
MAXIMUM DISTANCE TO NEAREST ALTERNATE 404
FURTHEST NODE FROM AN ALTERNATE 138

SITE 9 IS AT NODE 145
DEMAND ALLOCATED 183
DISTANCE TRAVELLED 24798
MEAN DISTANCE 135.508

50

Figure 7: continued

MAXIMUM DISTANCE 280

FURTHEST NODE ALLOCATED 150

DISTANCE TRAVELLED TO NEAREST ALTERNATE 56778
MEAN DISTANCE TO NEAREST ALTERNATE 310.262
MAXIMUM DISTANCE TO NEAREST ALTERNATE 453
FURTHEST NODE FROM AN ALTERNATE 148

TOTAL DEMAND SERVED 2459

TOTAL DISTANCE TRAVELLED 228242

MEAN DISTANCE: TRAVELLED 92.819

MAXIMUM DISTANCE TRAVELLED 321

FURTHEST NODE FROM ALLOCATED CENTRE 138

MOST DISPOSABLE CENTRES
TOTAL DISTANCE CRITERION - CENTRE 4 AT NODE 35
MAXIMUM DISTANCE - CENTRE 3 AT NODE 43

NUMBER OF SITES, OR O TO EXIT? O
Stop at line 1150

Ready

51

5.2.3 Locating fire station 10 using the p-centre solution

The p-centre problem was soived by starting with the solution of
the previous problem, holding 9 sites fixed and with one at 119, and suc-
cessively reducing the maximum distance constraint from an initial value of
360. Each step 1nvo1ved the use of HILLS to edit the distance data, followed
by ALLOC. The lowest possible maximum distance constraint is 340, with the
10th site located at node 118. Total distance is correspondingly increased,
to 241437 from 241157. The city's tenth fire station is now located between
nodes 118 and 119.

52

We

6. REFERENCES
Church, R.L. and C.S. Revelle, 1974, The maximal covering location problem.

Papers, Regional Science Association, 32, 101-118.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269-271.

Holmes, J., Wiiliams, F.B. and L.A. Brown, 1972, Facility Tocation under a
maximum travel restriction: an example using day care facilities.

Geographical Analysis, 4, 258-266.

Khumawala, B.M., 1973. An efficient algorithm for the p-median problem with

maximum distance constraints. Geographical Analysis, 5, 309-321.

Morrill, R.L., 1974. Efficiency and equity of optimal Tocation models.
Antipode, 6, 41-46.

Rushton, Gerard, Goodchild, Michael F. and Laurence M. Ostresh Jr., eds., 1973,
- Computer programs for location-allocation problems. Department of
Geography, University of Iowa, Monograph Number 6.

Teitz, M.B. and P. Bart, 1968. Heuristic methods for estimating the gener-
alised vertex median of a weighted graph. Operations Research, 16,

955-961.

Toregas,C. and C. Revelle, 1972. Optimum Jocation under time and distance

constraints. Papers and Proceedings, Regional Science Association,

28, 133-144.
Waters, Nigel M., 1977. Methodology for Servicing the Geography of Urban
Fire. Unpublished Ph.D. dissertation, Department of Geography,

University of Western Ontario.

53

7. THE CODES
7.1 __GENE

1009 | GEHE -~ GEHERATES RAHDODH MUDES AMD LIHKS

1010 TIH Z2(200)

1020 DI X(200)eY(200)sFLAGITOO) yDRPERI200, 50} 3TRL(200)
1030 HAXN=200

1040 HAXVCY=10

1030 IHFUT "HUMEER OF NODES*IN

1059 IF Ni=HAXR THER 1090

1070 PRINT *TOD MANY HOVES - LIMIT 1S° HHAXH

10BC¢ GO TD 10350

1090 PRIMT *HODES LOCATEL RANGOMLY IN A 100 BY 100 AREA®
1100 INFUT *WUHAT FROPORTION ARE CAMDIDAYES®iFROP

1110 FRIMT °"WEIGHTS ASSIGHED KANDOHMLY EETWEEN © AND 100"
1120 INFUT *HUNBER OF LIMKS FER HODE“iLPR

1130 IF LPN<=HAXVUCY THEW 1170

1140 PRINT “TOO HAMY LIHKS = LIMIT 18" FHAXVCY

1150 G0 70 1090

1150 | GET REGIOHS

1170 FRINT °"BEFINE THE REGIONS A% & SUPERIHWFDSED QRIL®
1180 INMFUT *HUHBER OF DIVISTONS DOF X AXIS"iHH

1190 INFUT "HUHEER OF DIVISIOHS OF Y AXIS®"iNV

1200 FR=HHiNV

1210 PRINT *THERE WILL IME"}RF*REGIDNS*

1220 ! DEFIHE NODES FILE

1239 INPUT “HAME DF HODES FILE®iFILE1S

1240 QFEM FILE1S FOR QUTPUT AS FILE 1

1250 | DEFINE LINKS FILE

1260 IHPUT "HANE OF LIMKS FILE"}FILE2S

1270 OPEN FILE2% FOR OUTFUT AS FILE 2

1280 FPRINT "ENTER t FOR RAHDOH LINKS (SPA2/SPAA)™
- 12906 INPUT "DR 2 FOR ORDERED LINKS (SPARI/SPAZ)I*FOPTIDN
1300 | GENERATE COORDINATES AND ZERO STRING LENGTHS
1310 FOR KK=1 70 N

1320 STRLIKK)=0

1330 X(KX1=RND*100

1340 Y(RK)=RNDX100

1350 HEXT KK

13460 LOOF FOR EACH ORIGINMN

1370 FOR KK=%1 TO N

1380 | FIND DISTANCES TO EACH DESTINATION

1370 FOR KL=1 TO N

1400 ZARLY=SOR{ (X (XRY-X (KLY YRR+ (Y (KK -Y(KL)Y) ¥¥2}
1410 f RJUND DISTANCE TO IRNTEGER

1420 ZLKLI=INT(ZIKLY $0.5)

1430 { SET HODE UHREACHED

1440 FLAG(KL =0

1450 NEXT KL

1460 ! LOUP FLR EACH LINK ASSIGNED

1470 FOR LINK=1 TQ LPH

1380 ZHIN=1.0E20

1490 ! FIND MEXT CLOUSLCSY HODE

1500 FOR KL=1 TO N

1510 {1 I& NODE ITSELF?

1520 EF KK=KL THEN 1490

1330 ! IS ROLE ALREADY REACHED?T

1540 IF FLAG(KLY=1 THER 1500

1550 ! 18 HORE CLOSER THAN CURRENT CLOSEST?
1560 IF ZAKL) >=ZMIN THEN 15800

1570 1 NGDE IS ECLOSEST

1530 ZMIN=Z{(KL)

1590 . REaCH=KL

1500 NEXT KL

1510 ! FLAG NODE nS REALCHED

1420 FLAG{REACH)=1

1630 ! INCREMENT STRING LENMGTH FOR DRIGIN
1840 STRL{KKY=STRL(KK}+1

1650 ! CHECK STRING LENGTH

1550 IFf STRL{KK}<=HAXVLY THEWH 1700

15670 FRINT "TOO MANY HODES 1IN OUTPUT STRING - LINIT IS*jHAXVCY
1580 8TQpP

1590 1 STORE LINK WITH ORIGIR

1700 ORDER{RKSTRL{KK) »=REALCH

1710 1 INCREHENT STRTIHD LENGTH FOR DESTINATIOH
1730 STRL{REACHI=STRLIREACH) 1

1730 ! CHELK STRING LENGTH

1740 IF STRLIREACH)<=NAXVLCY THEW 1780

1750 PRINT *TOO HANY HORES IN DUTFUT STRING -~ LIHIT IS®iHAXVLY
17560 5TOP

1770 I STORE LINK WITH BESTINATION

1280 ORDER{REACKHsSTRLIREACH))=KK

1790 NEXT LINK

1800 NEXT KK

1810 1| FEGIN NUTFUT OF NOLES

15820 FOR KK=1 TO N
1g3n ASSIGN REGION -~ MMHRER REGIONS FROK TOP LEFT IN ROWS
18490 REGIONSTNT(XC(KR}Z1004HNHI H1+INT(CL100=Y (KK}) £ 100FHY I ENH

1850 ! ASTTGN CANDINACY

1850 CANTIIDATE=Q

1870 IF RHD>FROF THER 1890
1880 CAHDINATER]

1870 1 ASSIGN WEIGNT
1900 VEIGHT=INT(RND¥100)
1710 PRINT #1¢KKF"r" FRCGICNF™» "JWEIGHT) *+ * FCANDIDATED "o " IX{KKI I 1 * 3 YCRK)

1920 HEXT KK

1730 CLOSE 1 54
1940 | REGIN OQUTFUT OF LINKS

1950 IFf OFTION=2 THEN 2180

1740 FOR XK=1 7O N

19720) SEY ALl FLACS TO ZERD
19680 FQR hL=1 TO N

NN RN

1?29¢ FLADIKLYBO

2600 HEXT KL

20190 FOR L=l TO STRL(K)

2020 DRIG=KEK

2030 DEST=0DRDER{KK L}

2040 I SKIP IF ALREGI'Y DUTFUT

2050 IF FLAG{DEST)e1 THEN 2130

2040 ! REMOVE DOUERLEL COUNTING

2070 IF DEST<=0RIL THEMN 2130

2080 . BIST=SOROIX(ORIG)-A(DEST) b X324 (Y (ORIG)-Y(DEST)) x%2)
2070 I RDUHD DISTAMNCE TO INTEGER

2100 DIST=INTL(DISTH0.58}

2110 FRINT #2,0RIGi"+"iDEST)*»*3DIST

2120 FLAG(DEST)=1 -
2130 HEXT L

2140 NEXY KK

2150 | FINISHED

2149 CLOSE 2

2170 STOP

2180 | COHE HERE FOR ORDERED OUTPUT
2179 FOR KK=1 TD N
2200 !t SET ALL FLAGS TD ZERD

2210 FOR ¥L=1 TD N

2220 FLAG{KL)=D

2230 HEXT KL

2240 f LDOP FOk EACH ENTRY IN STRING
2250 NEWSTRING=0

2260 FOR L=1 TD STRL(KK)

2270 DEST=0ORDER(KK,L)

2280 | SKIF IF ALREADY DUTPUT
2270 IF FLAGC(DESTI=1 THEN 2340
2300 ! COMPRESS LIST

2310 NEWSTRING=NEWSTRING#+1
2320 OKDER (KKsNEWSTRING)=DEST
2330 FLAG{UEST)=1

2340 MEXT I,

2350 § OUTPUT STRING LENGTH

2360 PRINT $2/K¥Ni®»* i NEWSTRING
2370 IF NEUWUSTRING=0 THEN 2360 -
2380 FRINT #2.0RDER(KKs1}; :
23%0 IF NEWSTEING=1 THEN 2430
2400 FOR L=2 TO NEWSTRING

2410 PRINT #23":*;0RDERC(KKeLY S
2420 NEXT L

2430 PRINT #2

2440 DIST=SAR((X(KK) -X CORDER(KKr 1)) 3XX2+ (Y (KK) -Y (ORDERCKK» 1)})X2)
2450 1 RODUND DISTANCE TO LNTEGER

24460 DIST=INT{DIST4+0.5)
2470 PRINT #2-DISTi
2480 1F HEWSTRING=1 THEX 550

2450 FOR L=2 TO NEWSTRIMG

2500 DIST=SORCIX(XKY=XCORDER(KK L) ¥) EX2+{Y (KK} -Y (ORDER{KK L)) 32X2)
251¢ ! ROUND DISTANCE TO INTEGER

25290 DIST=INT(DISTH+Q.5}

2530 PRINT #2,"+*iDISTi

2540 MEXT L

2550 PRINT #2
2550 NEXT KK
2570 | FINISHED
2580 CLOSE 2

2590 STOP
2600 END
" Tosk?

55 i

7.2 SPAT

1000 { SPA1 - SPA WITH ORMERCH LINKS IN CORE
1010 DIN COREDE(1000)¢COREDT(1000}sZ{500) RT0{200}
1020 Din ROEST(200) UCTGHT(500% CANUIDATELSDO0 » I NHODE (25)
1030 DIH IMBISF(2S) ADDRCSS(S00),LENG (5001 y ORDERC100)
1040 HAXH=500
1050 NMAXCORE=1000
1060 HKAXLIST=200
1070 KAXLEN=100
1080 HKAXVCT=25
1090 IMFUT ‘NUNBER OF MODES'iN
1100 IF HC=MAXN THEM 1130
1110 PRINT *TOD HANY HODES - LIHIT IS® FHAXN
1120 GO 7O 1096
1130 1 GET FILE OF NODES
1140 IHPUT °*MALZ DF NODES FILE®FFILE1S
1150 OPEM FILE1$ FOR INPUT AS FILE 1
1140 FOK KK=1 T0 N
1170 INPUT #1,XREADs DUMHY UEIGHT (KK fCANDIDATE (KK) » BUNHY r DUHMY
1180 If KK=KREAD THEN 1200
1190 PRINT *FILE "iFILE1$i® IS OUT OF SEGUENCE AT RECORD *5KK
1200 NEXT KK
1210 CLOSE 1
1220 | GET DISTAHCE LINIT
123¢ IHPUT *VALUE FOR ZLIMIT®$ZLINIT
1240 | GET FILE OF LINKS
1250 INFUT *NAHE OF LINKS FILE®$FILEZS
1240 OPEN FILEZ$ FOR INFUT AS FILE 2
1270 KLINKS=0
1286 1 LOOP FOR EAGH NOLE
1290 FOR KK=1 TO N
1300 INPUT #2,KREADsVALENELY

1316 IF KK=KREAD THEN 1340
1320 PRINT *FILE *3FILE2%;* IS OUT OF SEGUENCE AT RECDRD':KK
1330 | ARE NODES UITHIN VALEMCY LIKIT?

1330 IF VALENCY<SHAKVCY THEHR 1370

1350 PRINT '"VALENCY FOR RECORD®3KK}I*EXCEEDE HAXIHUH OF *:MaxVery
1360 sTOP

1376 1 IS THERE KOOM IN CORE?

1380 IF HLINKSHUALENCY<=HAXCORE THEN 1410

1390 FRINT "CORE LINIT DF*3HAXCORE;] "EXCEEDED AT NODE® ;KK
1406 sToOP

1410 HAT INPOT #2, INMODE (VALENCY)

1420 MAT INPUT #2,TNDIST(VALENCY)

143¢ 1 PUT DATA IN CORE FOR THIS NODE

1140 FOR LINK=1 TO VALENCY

1450 NLINKS=NLINKS+1

1440 COREDE (NLINKS) = INNODE (L [HK)

1470 | CHECK DOHATN ©F NODE MUHEERS

1480 IF COREDECHLINKS)>0 AHD COREDE(NLINKS)<=HAXN THEN 1510
1450 PRINT *NDDE®{COREDE (NLINKS)#*IN LINK RECORD';KK?*IS OUTSIDE DOHAIN®
1500 - sTaP

15t0 COREDI(HLINKS)=INDIST(LINK)

1520 NEXT LINK

1530 ! SET POINTERS FOR THIS NOBE'S LINKS

1540 ALDRESS (KK} =HL INKS~VALENCY

1550 LENGCKK)=YALENCY

1550 HEXT KK

1570 CLOSE 2

1580 PRINT NLINKS: 'LINKS READ®

1590 TINPUT *NANE OF DUTPUT FILE®SFILE3Z$

1600 OPEN FILE3% FOR QUTPUT AS FILE 3

1410 1 LOOP FOR ALL ORIGINS

14620 FOR KK=1 TO N

1430 | IBNBRE IF HO WEEGHT

1640 IF WEIGHT(KK)=0 THEN 2500

1650 ! ZERD ALL DISTANCES

1640 FOR KL=1 TO N

1670 ZIKL) =~1

1680 HEXT KL ‘

1690 | ORIGIN 1S REACHED

1760 Z(KK)=0

1716 REACH=KK

1726 RHUH=0

1730 | ZERD STRING LEWGTH

1740 STRL=Q

1750 | IS ORIGIN A CANDIDATET

1760 IF CANDIDATECKK)=0 THEN 1810

1770 STRU=1

1780 ORDER(1)=KK

1790 | BEGIN MAJOR LODP

1800 | COHFRESS LIST OF REACHABLE NODES

1810 IF RNUH=0 THEN 1940

1820 1 SET NEW COMFRESSED LIST LENGTH TO 2ERD
1830 RNUM1=o

1840 FOR R#=1 TO RNUM

1850 | HAS ENTRY K# IN LIST BEEN REACHED?

1640 IF Z(RTOHCRH})>=¢ THEN 1920

1870 1 IF NOT INCREMENT NEW L1ST

1800 RNUM1=RNUM141

1ego | MAKE ENTRIES IN NEW LIST

1900 RTOCRNUNL) e RTO(RHD

1710 RDIST¢(KNGN1) =ROLST (RH)

1920 NEXT RH 56
1930 | NEW LIST IS HOW LD

1940 RHUM=RNIRNL

1750 | APFENN NEN REATHARLE HODES FROM CORE

1960 NEsANNRESGCREACH!+1

1970 NI2=NY1=1+LCNREREACH)

1980

I LOGK ALL LINKS 1RCIDCHT AT SFatH

T

MMM N NN N AN R RN A A A A o s e o

17%0
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2140
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2290
2290
2300
2310
2320
2330
2340
2350
2340
2370
2380
23%0
2400
2410
2420
2430
2440
2450
2440
2470
2480
2490
2500
2510
2520
2530
2540

TaskT

FOK LINK=NL TO N2
ALREADY REACHEDY
IFf Z(CORCDE(LINKII>=0 THEN 2090
RHUM=KMUH+1
If RHUH<=HAXLIST THEN 2070
FRINT "TOO HAHY REACHABLE NDDES - LINIT IS*FHAXLIZT
STOP
NEW BESTINATION MDDE AHD TGTAL COST
RTOCRMUMY =CORENE(LINK?
RUISTCRHUM)=COREDI(LINK) +Z{REACH}
. NE¥T LINK
1 IF EHPTY THEN FINISHED
IF RHUM=0 THEN 2349
SEARCH FOR NEAREST REACHABLE NDDE
ZHIN=10E30
LOO” THROUGH EACH EHTRY JIN LIST
FOR RNH=1 TO RHUH
IF RRIST(RHI>=ZHIN THEN 2200
I NODE IS LEASTY TOTAL SO0 FAR
REACH=RTO(RH)
ZHIN=RDIST(RH)
REXT RE
IF DISTANCE > ZLIMIT THEN FINISHED
IF ZHENDZLINIT THEM 2340
STORE TOTAL DISTAMCE
Z(REACH)=ZHMIN
15 REACHED MODE A CANDIDATET
IF CARDIDATE{REACH)=0 THEN 1810
STRE=5TRL+1
IF BTRL<=HAXLEM THEM 2320
PRINT *T0O0 HMANY NODES IN OUTFUT STRING - LIHIT IS'iHAXLEN
STOP
SAVE ORDER IN STRING
ORDER{STRL)=REACH
RETURH FOR NEW CYCLE
GoTo t810
KEGIN OUTPUT OF STRING
FRINT #B:KKi'n';STRL;'a'iUEIGHT(KK)?'J'iCﬂNDIDnTEtKK)
IF STRL=0 THEN 23500
PRINT #3+0RDER{1)}
IF STRL=1 THEN 2430
FOR L=2 TO STKL
FRINT 43:"+*i0RBER(LYE
HEXT L
FRINT 43
FRINT ¥3,Z{0RDER(1))¥WEIGHT(KK)}
IF STRL=1 THEN 24%0
FOR L=2 TO SYRL
FRINT #3:"+";Z(0RDER(LIIXWNEIGHT (KK 5
NEXT L
FRINT #3
HEXT KK
1FINISHED
CLOSE 3
sTOP
EMD

7.3 SPA2

1000 | SFAZ - 5FA WITH RANDOK LINKS INM CORE
1010 DIM WEIGHT(300},CANDIDATE(S00) (0G(1500) fDE{1500) fDI{1500)
1020 DIM DRDER(200),Z(500)

1030 HMAXH=300

1040 MAXLEN=200

1050 HAXLINKS=1300

1060 INPUT *NUHMEKER OF WODES®iN

1070 IF N<=MAXN THEW 1110

1080 PRINT *YEO HANY NGDES — LIHIT IS*FHAXH
1090 GO TO 1060

1100 1 GET FILE OF NODES

1110 INPUT *NAME OF HODES FILE*FFILELS

1120 OPEN FILE1$ FOR INFUT AS FILE 1

1120 | READ RECORD FOR EACH NODE

1140 FOR KK=1 TO N
1150 INFUT ¥1 KREAL»DUNHY »WEIGHTC(RK) CAHNDIDATE (KK} » DUKHY » BUHHY
1160 | CHECK SEQUENCE OF NODES

1170 IF KK=KREAD THEN 190

1180 PRINT *FILE *iFILE1%;* IS {OUT OF SEQUEMHCE AT RECORD® KK
1190 HEXT KK

1200 CLOSE 1

%210 ! GET DISTAHNCE LIMIT

1220 INPUT “VALUE FOR ZLIHIT®FZLINIT

1230 | BET FILE OF LINKS

1240 TIHPUT *NAME OF LIKNKS FILE"iFILE2%

1250 OPEN FILE2% FOR INPUT AS FILE 2

1280 WHNLINKS=0

1270 | EHD OF FILE CHECK

1280 ©OH ERROR GO TO 2230

1290 NLIHKS=NLINKS+1

1300 ! CHECK NUHBER OF LIRKS

1310 1IF HLIHKS<=HaXLIRKS THEN 1340

i320 PRINT *T00 HMaNY LIKKS - LINIT IS®iMAXLINKS
1330 STOP

1340 IHPUT #2,06(NLINKS)»DEC(NLINKS) »RI(NLINKS)

1350 | CHECK DOHAIN OF NODIE NUMBERS

1340 1F ODG(NLINXS)>0 AMD OGINLINKS)<=MAXN THEN 1390
1370 PRINT *NODE*;OG(NLINKS)F*IN LINK RECORD®fNLINKS: IS DUTSIUVE DOWAIN
1380 STOP

1390 IF DECHNLIHKS)>0 AND DE(NLIMKSY<=HAXNH THEN 129¢
1400 PRINT "NODE"FDE(NLIMKS)F"IN LINK RECORD*FNLINKS:"1S5 QUTSIDPE DOHAIN
141¢ STOP

1420 HLINKS=HLINKS-1

1430 PRINT NLINKS#*LINKS READ®

1440 | FILE FOR DUTFIT STRIHGS

1450 INFUT °*NAHE OF DUTFUT FILE®*#FILE3%

1440 OFEN FILE3$ FOR OUTPUT AS FILE 3

1470 ! FIND BISTANCES FOR EACR ORIGIN HODE

1480 FOR KK=1 TO N

1490 ! IGWORE IF RD WEIGHT

1500 IF WEIGHT{KK)=0 THEN 2180

1510 ' ZERD DISTANCES FOR EACH DESTINATION

1520 FOR KL=1 TO N

1530 Z{KLy=—1

1540 MEXT KL

1550)} DISTANCE TO DRIGIN IS5 ZERD
1550 Z{KK)=0

1570 1 ZERD STRING LENGTH

1580 STRL.=0

iS90 1| IS5 DRIGIN A CANDIDATE?

1500 IF CANDIDATE(KK)=0 THEH 1430
1630 STRL=1

16290 ORDER(1)=KK

1430 ZHIN=1 .0E20

1640 1 LOOP THROUGH EACH LINK IN CORE

1450 FOR 1LC=1 TO NLINKS

1660 | IS URIGIN ALREABY REAGHED?

15670 IF Z{OG{LC))>»=0 THEN 17230

1630 t ES DESTINATION ALKEAIY REACHEDT

1690 IF ZCDE{LC)>}>=0 THEN 1820

1760 | BOTH ARE REACHED

1710 80 TO 1890

1720 | COME HERE IF ORIGIN IS REACHED

1730 IF Z(DECLC)3>=0 THEN 1890

1740 | CONPUTE TOTAL PISTANCE TO DESTINATION
1750 ZTOT=T{0GCLEYI+DILLE)

1760 IF ZT0T>=2HIN THEH £B90

1770 | MODE IS CLDSEST S0 FAR

1780 ZHIN=ZTOT

1750 REACH=DE(LC)

1806 80 T0 1890

1810 | COME MERE IF DESTINATION [$ REACHED
1820 IF Z(NG{LC))Y>=0 THEN 1890

18390 ! COMPUTE TOTAL DISTANCE TD URIGIN OF THIS LINK
1840 ZTOT=ZC¢DECLCY }4DT{LC)

10850 IF zTOTS=ZHIN THEN 1890

1B&0 | NOGE 1S CLOSEST SO FAR

18790 ZHIN=ITOT

1800 REACH=0B(LC}

1890 NEXT LC

1900 ! IF CLOSEST IS FUSTHER THAK ZLIMIT FENESH THIS ORIGIN
L?10 iF Iﬂ[N?ILIH!T THEN 2040

19320 Z(REACH) vZHIEN

1%30 | DUTFUT ONLY IF NOBE IR CANGIBATE 58 .
1940 IF CANDIBATE(REACH)=0 THEN 1330

150 STRL=STRL+1

1740 } CHEEK STRINDO LLRGTH

1970 If STKL<=HAXLER THUN 2010

1v80 FRINT *100 HANY HDOES TN QUTPUT ST1RING = LIHMIY 149*PHAXLEN

T

a0
0.
20!
a0
a0t
21¢
211
21
213
214
a1e

21¢

-217

218
219
220
221
222
223
224
225
226
227
228
229

Tas

1y
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2140
2170
2180
21790
2200
2210
2220
2220
2240
2250
2240
2270
2280
2270

Task?

wha
SAVE DRUEKR IN STRING
ORBER(STRL}=REACH
GO 78 14630
BEGIH QUTMUT OF SIRING
PRIHT S8 eRKEE"» "3S8TRLI "¢ "IHEIGHT{KK) F* ¢ "ICANDIDATE{KK)
TIF STRL=D THEN 2180
PRINT #3,0KEER{1)¢
IF STRL=) THEM 2110
FOR Le2 TD STRL
PRINT #3s*y*PORDER(L)}
NEXT L
FRINT #3
PRINT #3»Z(ORDER{1)}IXUEIGHT (KK}
IF STRL=1 THEMN 2170
FOR L=2 TD STRL [

FRINT #3¢" " FZ(ORUER(L)ISWEIGHT(KK)
NEXT L
FRINT 83
HEXT KK
{ FINISHED
CLOSE 3
5TOF
| COME HERE ON I/D ERROR '
TF ERR<>11 GO Te 227¢

CLOSE 2

RESUHE 1420 '
! S0ME OTHER ERRDR l
PRINT *1/0 ERKOR NUMBER'FERR

3TOP 1
END

59

SPA3

7.4

1060
1010
1020
1030
1040
1050
1040
1070
icsu
1090
1100
1110
1520
1130
1140
1150
1140
1170
1180
1190
1200
1210
1220
1230
12490
1250
1280
1270
1280
1290
1300
1210
13290
1330
13490
13590
1340
1370
1380
1390
1400
1410
1420
1430
14430
1450
1440
1470
1480
1490
1500
1510
1520
1530
1540
1350
1540
157¢
1580
1590
1400
1610
14620
1430
1549
1450
1440
1570
1480
1490
1700
1710
1729
1730
1740
1750
1740
177¢
1780
1790
1980
1kic
14to
1830
ig40
1850
1840
1870
18890
1899
1700
1910
1720
1730
1740
1750
1260
1970
1200

| SPAJ - SPA UITH ORDERED LINKS ANN REGLONS
LI HEGION(S500) (POINT(L00) fCOKEDECLIOL0) fCORENT (EGOD) 4 2(500)
LIt RTAC200) »RUIST(200) rWLIGHT (500) s CARDIDATE{S00) ¢ JHUNCDE (25)
[IH THDIST(23) rADDRESS(100)LENG{100 ¢ DRDERC100)
HAXN=30¢Q
HAXCORE=1000
HAXLIST=200
HAXLEN=100
HAXUCY=25
HAXIN=100
IHPUT °"HUMHER OF HODES®FN
IF H<=MAXH THEHN 1140
PRINT *TO0 HAHY HDIES - LIMIT IS *iMAXN
60 TO 1100
INPUT *NUHBER OF REGIONS'iR
! BET FILE OF NODES
INFUT *NAHE OF NODDES FILE"{FILE1$
GFEN FILE1$ FOR INFUY AS FILE 1
FOR KK={ TO N
INFUT #1+KREADsREGIDONC(KK) s MEZGHTCKK)) CANDIDATEC(KK) » DUHHY » TUMMY
CHECK SEQUENCE OF HODES
IF KK=KREAD THEN 1230
PRINT “FILE "sFILE1%#" IS5 OUY OF SERQUENCE AT RECORD *3KK
NEXT KK
LLOSE 1
! GET DISTANCE LIMIT
INPUT *YALUE FOR ZLIHIT®"#ZLINIT
! GET FILE aF LIHKS

IHFUT "MAME OF LINKS FILE®FiFILEZs

! FILE FOR QUTFUT STRINGS
INFUT "NAHE OF OUTFUT FILE';FILE3s
OFEH FILE3I$ FDR OUTPUT AS FILE I
I LDOF FOR £ACH REGION
! ARD FIND ALL DISTANCES FROM NOFES IH THIS REGION
FOR IR=1 TO R
! ALL REGIDNS OUT OF CORE
1HCORE=0
FOR KK=1 TO ¥
! SET PDIRTERS FIR EACH NODE
POENT(KK)=Q
NEXT KK
' READ LINES FOR REGION IR
OFEN FILE2% FOR INFUT AS FILE 2
NLINKS=0
! LOOF FOR EACH NODE
FOk Kk=l TO N
IHFUT #2+KREADsVALENCY
IF KK=KREAD THEN 1500
PRTNT *FILE "FFILE2$i" IS OUT OF SEQUENCE AT RECORD "iKX
ARE NODES WITHIN VALENCY LIMIT?T
IF VALENCY<=HAXUCY THEN 1530
FRINT ®VALENCY FOR RECDRD *iKKj" EXCEEDS LIMIT OF *37MAXVCY
STOP
IS THERE ROOM IN CDRE?
IF NLINKS{VALEHCY<=NAXCORE THEN 1570
PRINT *CORE LINIT OF*3MAXCORE{"EXCEEDED AT NODE® ;KK
57GP
HAT INFUT $2, IKNDDE (VALENCY)
"HAT INPUT 42, INGIST(VALENCY)
IS THIS RESION TO GD IN CORET
IF REGIDM(KK}<>IR THEN 180¢
FUT DATA IN CORE FDR THIS NODE
FOR LINK=1 TO VALEHCY
HLINKS=NLTHKS#1
COREDE tMLINKS) =INNDDE (LINK)
! CHECK DOFKAIN OF NOLE NUHMEBERS '
LF COREDE{HNLINKS)>0 AND COREDE{NLINKS)<=MAXN THEN 15%0

FRINT "HODE®+CORELE(HLINKS};*IN LINK RECORD"KK;*IS OUTSIDE

STOP
CORERIC(HLINKS)=INDISTILINKY}
NEXT LINK
INCREHENT NUHRER IN CORE
INCORE=INCORE+1
IF INCORE<=HAXIN THEN 1770
FRINT "700 HANY HODES TH CORE - LINIT IS "SHAXIN
STOP
SET POINTERS FOR THIS NODDRE’S LINKS
POINT{KK=INCORE
ADDNRESSC(INCORE)=NLINKS-VALENCY
LENG (IHCORE) =VALENCY
NEXT KX
CLOSE 2
PRINT MLINXS?*LIKKS READ FOR REGION"FIR
LOOF FOR ALL DRIGINS IN THIS REGIUN
FOR KK=1f TO N
IGNDRE 1F NO WEIGHT
IF WCIGHT{KK}=0 THEN 3010
IF REGION(KK)I<HIR THEN 3010
ZERD ALL DISTANCES N
FOR KL=1 TO H
Z(KLye-1
HEXT KL
ORIGIN IS REATHED
Z(KKI=0 60
REACH=KX
RHNU#=O
ZERO STRKING LENGTH
Bkl =0
IS QRIGIN A CHARUIDATIT

DOHATR®

i
i

1970
2000
2010
2020
2030
2040
2050
2040
2070
2080
2090
2100
2110
2120
2130
2140
2150
2140
2170
2180
2190
2200
2210
2220
2230
2240
2250
2240
2270
2280
2290
2300
2310
2320
2330
23490
2350
2360
2370
2380
23%0
2400
2410
2420
2430
2440
2450
2440
2470
2480
24%0
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2500
25610
2420
2630
2440
2550
2460
2670
2680
2690
2700
2710
2720
2730
2740
2750
27460
2770
2780
2790
2800
2810
2820
2830
2840
2850
2840
2070
2830
2890
2900
2910
2920
2930
2940
2950
2950
2970
L2511
A
3020

1¥ CARDIDATE(KKY=0 THLU 2040
STRL=1
ORDCK (1} =KK
HESIN HAJDR LOUP
COHFRESS LISYT OF REACHALLE HDNES
IF RNDH=0 THEWN 21%0
SET HEW COMFRESSED LISY LENGTH TC ZERO
RNUH1=0
FOR RM=1 TU KHUH
HAS ERTRY KM IN LIST BEEM REACHED?
IF Z(RYOU(RH)II>=0G THEN 2150
IF NOT THCREMENT NEW LIST
RMUAL=RHNUN1+1
KAKE €HTKIES IN NEW LIST
RTO{RNUHML)=RTO{KH)
ROIST{RNUKE I=ROISTCRH)D
NEXT RH
NEW LIST IS NOW OLD
RNUH=RNUM1
AFFEND HEW KREACHABLE NDDES FROM CORE
N1=ADNRESS{POINT(REACH)}+1
R2=ADORESS(FDTHT (REACHY) #LENG (FOIHT (REACH) }
LOO0F ALL LINKS ENCIDENT AT REACH
FOR LIMK=N1 TO N2
ALREADY REACHED?
IF Z(COREDECLIHK))>=0 THEN 2320
RNUH=R3}INI$]1
IF RNUM<=MAXLIST THEN 2300
PRINT "TOO HANY REACHABLE HODES - LIMET IS *:HAXLIST
sTOP
HEW DESTINATION NODE AND TOTAL COST
RTO{RHUH}=COREDE (LINK)
ROIST{RMUK)=COREGI (L. INK}+Z(REACH)
HEXT LINK
IF EMFTY THEN FINISHED
IF RNUN=0 THEN 2870
SEARCH FOR NEAREST REACHABLE HODE
IMIN=10E30
LOOF THROUGH EACH ENTRY IN LIST
FOR R#=1 TO RNUH
IF RDISTC(RH>>=ZHIN THER 22430
] HODE IS LEAST TOTAL 50 FAR
REACH=RTOD{(R¥)
IHIN=ROIST{RM)
NEXT RHM
IF DISTANCE > ZLIMIT THEN FINISHED
IF ZMIN>ZLIMIT THEW 287Q
STDRE T@TAL DISTANCE
Z{KEACH) =ZHIH
IS REACHEIL NDRE A CAMBIDATE?
IF CANDIDATECREACH>=0 THEN 23570
STRL=STRL+1
IF STRL<=KAXLEN THEN 2550
PRINT *TOZ MANY NODES IN OUTFUT STRING - LINIT IS *iHAXLEN
sTOP
SAVE ORDER IN STRING
OROER(STRL)=REACH
IS REACHED® NORE IN CORE?
IF POINT(REACH)<>0 THEN 2030
APFEND NEW REGION
HEWREG=REGTON(REACH)
PRINT "AFFENDING REGION®;NEWREG
DFEN FILE2$ FOR INFUT AS FILE 2
FOR KL=1 TO H
INFUY 22:KREAD,VALENCY
HAT INPUT 2, {TNHODE(VALENCY)
HAT THFUT #2, INBIST(VALENCY)
IF REGION(KL)<>NEWREG THEN 2830
1S THERE ROUM?
IF NLINNSH+VALENCY<=HAXGCORE THEN 2710
FPRINY “CORE LINIT OF *iHAXCORE:* EXCEEDED AT MUDE *3KL
sToe
FOR LINK=1 TO VALENCY
NLINKS=NLINKS#1
COREDE(NLINKS)=INNODE (LINK)
COREUE(NLINKS)=FROIST(LINK)
NEXT LINK
INCORE=INCORE +1
IF INCORE<=HAXIN THEX 2800
PRINT *TOD HANY RODES IN CORE - LIMIT L& “;MAXIN
5TOP
FOINT(KL)=INCORE
ALUMRESS(INCORE) =NL INKS~VALENCY
LENG{EINCDRE)=VALENCY
NEXT KL
CLAGSE 2
GOTo 2040
KEGIN OUTFUT DF STRINO :
PEINT #3, KK#"r*#STRLF*»*iWEIGHTIKK) }* 3 * ICANDIDATELKIO)
1F STRLu=0 THEN 3010
FRINT #3+0RDER(1))
IF STRL=1 THEN 2940
FOR L=2 TO STRL
PRINT #3s"+*#DRDERCL}}
NEXT L
PRINT #3 61
PRINT &3»Z(ORDER(1))XUCIOHT (KK) |
IF STRL=? THEN 3000
FOR L=2 180 BTRL
PRINT 430"y "FZCURDER(LY IRMELGHT (RE Y3
NEXT L

FRINT 47

3010
3020
3039
3040
3050
3040
3070

Task?

HEXT KK
| FINISHED THIS REGION
NEXT IR
| FIRISHED
CLOSE 3
sSTOF
END

62

7.5 SPA4

1000
1010
1020
10190
1040
10%0
10&0
1070
iogo
1¢%0
1100
1110
1120
1130
1140
1150
114G
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1270
1340
1310
1320
1330
1340
1350
1360
1370
1380
1390
14490
1410
1420
1430
1440
1450
1440
1470
1480
1490
1500
1510
1520
1530
15406
1550
1560
1570
1580
15390
5600
1410
15620
L5830
16490
1450
146460
1670
is80
1690
1700
1710
1730
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1370
16880
18%0
1700
1210
1920
1230
1940
1950
1740
1970
1790

! SFA4 - SI'A WITH RAHDOK LTHKS APD REGIOHS
DIH KEGIDK(SQO) INREG(25) ,0G(1000) (0CL1000)+D1¢1000)
DIH ORDCRCZ00)sZ¢S500)sWEIGHT{S00} ¢ CANDIDATE(S00)
HAXN=500
HANREDG=25
HAXLINKS=1000
HAXLEN=200
INFUT *HURBER OF HOGES*IH
IF M<=HAXH THEHN 1110
FRINT "TOO MANY NODES - LIHIT IS*FHAXN
G0 TOD 1070
INFUT *NUHEEK OF KREGIONS'IR
IF RE=HAXREG THEN 1140
FRINT *TOO MAMNY REGIONS = LIHIT IS*;HAXREG
STUP
! GET FILE OF HODES
INPUT *NAHE OF MODES FILE*FFILELS
OPEN FILE1$ FOR IHFUT AS FILE 1
! READ RECORD FNR EACH HODE
FOK KK=1 TD N

INFUT #1+KREAD,REGIDN(KY) tMEIGHTLKK) o CANDINATE (KK} s LUMHY s DUHHY

1 CHECX SEQUENCE DF MODES
IF KK=KREAD THEM 1240
PRINT *FILE "FFILE1%i* IS QUT OF SEQUENCE AT RECDRD®;KK
NEXT KK
CLOSE 1
! GEY DISTANCE LIHIT
IHPUT *“VALUE FOR ZLIHIT®*3ZLINIT
! GET FILE OF LINKS
INPUT °"HAME OF LINKS FILE*;FILE2$
! FILE FOR NUTPUT STRINGS
INPUT *NAME OF DUTPUT FILE*FFILE3S
OFEX FILE3% FOR OUTPUT AS FILE 3
I LODF FOR EACH REGIDN
! AND FIND ALL DISTANCES FROH NODES IN THIS REGION
FOR IR=1 TO R
ALL REGIONS DUT OF CORE
FOR JR=1 TO R
IRREG(JR) =0
HEXT JR
READ LINKS FOR REGION IR
OFPEM FILE2% FOR INPUT AS FILE 2
HLINKS=0
REGIDN IR IN CORE
INREG(IR) =1
END OF FILE CHECK
ON ERKOR GOTO 2730
INPUT #2s ORIGsDESTsDIST
‘CHECK DOWHAIN OF NODE MUMBERS
IF ORIGXQ AND ORIG<=HAXN THEN 1520
PRINT *HODE*FDRIG/ "IN LINK RECORL'}NLINKSi*IS OUTSIDE BDMAIN®
STOF '
IF DEST>0 AND DEST<=HAXN THEN 1540

FRINT “HOGE®FDEST#*IN LINK RECOKD® JNLINKS:*IS5 DUTSIDVE DOMALM®
STOP

t IF ORIGIN REGION IS IN CORE THEN LOAD LINK
IF REGION(ORIG)=IR THEN 1590 ,

! IF ORIGIN AND NESTINATION REGIDNS ARE NOT IN CORE BYPASS
IF REGION(DESTI<>IR THEN 1470
NLINKS=NLINKS+1

1 EHECK NUMBER OF LINKXS
IF NLiNKS<SHAXLINKS THEN 1440
PRINT "TOO MANY LINKS IN CORE - LIMIT IS®jMAXLINKS
SroP
OG{HLINKS}=0RIG
DEANLINKS)=BEST
DI{NLINKS}=DIST
GDTO 5440
PRINT NLINKSF'LINKS READ FOR REGION'{IR

! LODP FOR ALL DRIGINS In TH1S REGIDN

FOR KK=1 TD N

IGRORE IF NO MEIGHT

IF WEIGHT(KK)=0 THEN 2640

1F REGIONC(KKIX>IR THEN 2460

ZERD ALL DISTANCES
FOR ¥L=1 TO N
Z{KL}=~1
HEXT KL

ORIGIN IS REACHED'

ZAKK =0

REACH=KK

2ER0 STRING LENGTH

STRL=0

1S DRIGIN A CANDIDATET

IF CANDIRATEC(KK)=0 THEN 1870

STRL=1

ORDER(1 }=KK

ZHIN=1,0£30

LCDF YHROUGH EACH LINK IN CORE

FOR LC=1 TO HLINKS

1S ORIGIN ALREADY REACHED?T

IF 2(06(LE))>=0 TUEN 1970

IS DESTINATION ALREADY REAGHFUT 63

IF ZCNECLEI1>=0 THEN 2040

BDTH ARE REACHED

GO TO 2130

COME HERE IF ARIGIN IS REACHED

I TENEILEI}>=0 THEN T130

CUMFUTT TOTAL DNSIANCT TN PLGTIRATEGR

1990
2000
2010
2020
2030
2040
2050
2040
2070
2080
2090
2100
2110
2120
2130
2140
2150
2140
2170
2180
2190
2200
2210
2220
2230
2240
2250
2240
2270
2280
2290
2300

2310
2320
2330
2340
2350
2340
2370
2380
2390
2400
2410
2420
2430
2440
2450
2440
2470
2480
2450
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600

2410
2620
2430
2640
2650
2660
2670
2480
2490
2700
2710
2720
2730
2740
arso
2750
2770
2780
2790
2800
2810
20820
2830
2840
2850
2840

Task?

TTOTZ(DGILEI) IDICLE)
IF ZTOT>=ZHIN THLH 2130
HODE IS CLOSEST SU FAR
IHIN=ZTOT
REACHSDE(LC)
GO TO 2130
COME HERE TF DESTINATION IS REACHED
IF ZL{DGILE)1»=0 THEHR 2130
COHPUTE TOTAL DISTANCE TO DRIGIN OF THIS LINK
ZTOT=Z(DE(LLI Y DICEE)
1IF ZTODV>=ZHIN THEHN 2130
NODE IS CLOSEST S0 FAR
ZHIN=ZTOT
REACH=0G{LEC?
NEXT LC
' IF CLOSEST IS FURTHER THAN ZLIMIT FINISH THIS ORIGIN
IF ZHIN>ZLINIT THEW 252¢
Z(REACH)=ZHIN
1 OQUTPUT ONLY IF NODE IS A CANDIDATE
IF CANDIDATE(REACH)=0D TMEHN 2270
STRL=STRL+1
1 CHECK SYKING LENGTH
IF STRL<=MAXLEN THEMN 2240
FRINT *TOO HaNY HODES IN DUTPUT STRING — LIHMIT IS"iMAXLEN
STOP
SAVE ORDER IN STRING
DRHER{STRL)=REACH
1S5 REACHED NODE IN CORE?
IF IHREG(REGION{REACH?}=1 THEH 1870
APFEND AHDTHER REGION
HEWREG=REGION{REACH)
PRINT "AFFENDING REGIODN®iNEWREG
OFEM FILEZ$% FOR INFUT AS FILE 2
ON ERROR GO 70 2800
INFUT $24 ORIGsLEST»BIST
IF REGION(ORIG)CONEUREG THEN 2430
1 15 LINK ALREADY IN CORE?
iF INREG(REGIDM(LEST}>=1 THEN 2330
MLINKS=HLINKS+H1
IF HLINKS>MAXLINKS THEN 2450
JG(HLINKSI=0RIG
DE(NLINKSI=REST
DICHL INKS)=DIST
GD TO 2330
1IF REGIDN(DEST)}{>NEWREG THEN 2330
IF THREG(REGION(ORIG)I=1 THEH 2330
G0 TO 2370
REGION IS HOW 1N CORE
INREG (HEMREG) =1
60 Y0 1R7¢Q
PRINT *"TOD MANY LINKS IN CORE - LINMIT IS®iHAXLINKS
STOP
BEGIN OUTFUT OF STRING
PRINT $3sKK3"»"iSTRL:*y"3WEIGHT(KK) G *s *i CANDIDATE{KK)
IF STRL=0 THEN 2440
PRINT #3» ORDER(1)F
IF STRL=1 THEN 2590
FOR L=2 TQ STRL
FRINT #3+"+*;0RDERC(L)I
. HEXT L
PRINT #3
PRINT #3» Z{ORDER{1))XWEIGHT(KK};
IF BSTRL=1 THEN 2650
FOR L=2 70 STRL
PRINT #3¢*,*iZ(ORDER(L)IZWEIGHT(KK)?
NEXT L
PRINT #3
HEXT KK
| FINISHED THIS REGION
NEXT IR
1 FINISHED
CLOSE 3
sTOP
! COME HERE ON ERROR
If ERR<>11 GO TO 277¢
CLOSE 2
RESUHE 1400
| SOHE DTHER ERROR
FPRINT *I/0 ERROR HUMBER*ERR
sTOP
1 COME HERE ON ERROR
IF ERR<>11 GUTO 2540
CLOSE 2
RESUHE 2470
1 SOME DTHER ERROR
PRINT *1/0 ERROR KUHMER'$ERR
sSTOP :
END

64

420
430
440
450
440
470
480
490
500
310
520
330
540
550
260
570
380
5%0
400
610
520
£30
&40
630
640
670
480
&70
700
710
720
730
740
750
740
770
780
790
00
210
826
830
840
850
850
a70
880
890
¢00
710

7.6 SPAS

100 | SPAS - STRAIGHT LINE DISTANCES FROH COORDINATES
110 DIN REG00) s YLSQ0) yUEIGHT (S00) »CANDNITDATECS00) y2(S00)
120 DIH ORDER(200)sFLAGIS0O)

130 MAXH=100

140 HKAXLEMN=200

130 THPUT *HUMBER OF NODES* M

140 HAXLLCN=200

170 IF H<=HAXH THEN 210

180 PRINT *TOD HANY HODES - LEIMIT IS";MAXN

10 GO0 TD 150 .

200 | GET FILE OF NODDES

210 INPUT ‘HAHE OF MNOLES FILE*}FILELS

220 OPEN FILELS FOR INFUT AS FILE 1

230 | READ RECORE FOR EACH HODE

240 FOR KK=1 TO N

250 INPUT %1vKREﬁﬂyDUHHY-HE!BHT(KK)rEAHDIDRTE(KK)lX(KK):Y(KNl
240 | CHECK SEQUENCE OF HORES

270 IF KK=KREAD THEN 290

280 FRINT *FILE ";FILEL1$;* IS DUT OF SEQUENCE AT RECORD" i KK
290 HEXT KK

200 CLOSE 1

310 1 GET DISTANCE LIHIT

320 INFUT ‘VALUE OF ZUIMIT*§ZLIMIT

330 ! FILE FOR OUTPUT STRINGS

340 INPUT *MAHE OF QUTPUT FILE";FILESS

350 OPEN FILE3$ FOR OUTPUT AS FILE 3

360 ! FIND UISTANCES FOR EACH ORIGIN HODE

370 FOR KK=1 TO N

380 | IGNORE IF NO WEIGHT

370 IF WEIGHT(KK?=0 THEN BB0

400 ! LODF FOR EACH DESTINATION

410 FOR KL=1 YO N

420 ZORLY=SORCEXCKK) =X (KU bRk2H (Y CKK) -Y (KL)) %42)
430 I ROURD DISTANCE TO INTERER

440 ZLRLI=THTIZ(KLY$0.5) - i
4350 ! BET HODE UNREACHED

440 FLAG(KLY=0

470 NEXT KL

480 ! ZERQ STRING LENGTH

470 STRL=¢

500 | FIND ITH CLOSEST CANDIDATE HODE

510 FOR I=1 TO R

Sd0 IHIN=1,0E20

530 ! LODP THROUGH EACH DESTIMATION

540 FOR KL=t TO R

50 1 IS NORE ALREADY REACHED?

3560 IF FLABCKLY=1 THEH &40

S70 1 IS NODE A CANRIDAYE?

S80 IF. CARDIDATEL(KL)=0 THEN 640

570 ! IS NODE CLGSER THAN CURRENT CLDSESTT
&00 IF ZOKLI>=ZHIN THEN 440

610 | NODE IS CLOSEST

&20 IHIN=Z{KL)

&30 REACH=KL

&40 HEXT KL

&£50 ! IF CLOSEST IS FURTHER THAN ZLIMIT FINISH THIS DRIGIN
5560 IF ZHIN>ZLIMIT THEN 730

&70 ! FLAG NORE AS REACHED

&80 FLAG{REACH)=1

&90 ! INCREMENT STRING LENGTH

700 STRL=STRL+1

710 ORDER (STRL»=REACH

720 NEXT I

73¢ ' BEGIN OUTPUT DF STRING

740 PRINT EI RKE® P FSTRLI ™y "$WEIGHTCKKY i "+ * § CANDIDATE (KK)
730 IF STRL=0 THEN 8B¢Q

74890 PRIRT $3+0RDER{(1)%

770 IF STRL=1 THER B10

780 FOR L=2 TD STRL

790 TFRIRT &3 " 3URDERCLYG

890 NEXT L

810 PRINT 23

820 PRINT #3+Z(ORDER{1))IUEIBHTIKK)}

830 IF BTRL=1 THEN 87¢

840 FOR L=2 TO STRL

850 FRINY #3+*»*# Z(ORDER(L) AWEIBHT{KX) $
B40 HEXT L

87¢ PRINT #3

(13-4 HEXT KK

899 | FINISHED

P00 CLOSE 3

710 END

65

7.7

HILLS

1000
1¢10
1020
1030
1040
1050
10460
1070
1080
1070
1100
1110
1120
1130
1140
1150
1140
1170
1180
119C
1200
1210
1220
1230
1240
1250
1260
1270
1280
12%¢
1300
1319
13z0
1330
1340
1350
1340
1370
1380
1390
1400
1410
1420
1430
1449
1450
1450
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1400
1510
1520
1630
14640
1450
1560
1470
1480
1490
1700
1710
1720
1730
1740
1750
1740
1770
1780
1790
1900
1810
1820
1830
18490
1850
18460
1870
1880
1890
1700
1910
1920
1930
19490
i¢sie
174D
ivre
ivao

1 HILLS - HILLSHAH WEIGHTED DISTANCE EDITING RDUTINE
DIH TONODE{200) UTDIST{(200)
HAXLEN=20Q0

FEHALTY=1.0E20

! OET THPUT FIlLE

INPUT *HAHE OF INFUT FILE"3FILE1lS
OFEN FILEis FOR IMPUY AS FILE 1
INFUT "HAME OF DUTFUT FILE®IFILEIS
OPEN FILE3® FOR DUTFUT AS FILE 3

! GET OPTION

PRINT ‘EDITING OPTICHSS

PRINT 1 P~HEDTAM HITH HAX DISTANCE CONSTRAINT®

PRINT * 2 HIN CENTRES UITH HAX DISTANCE CONSTRAINT®
PRINT * 3 HAXIHAL COVERING PROBLEH*

PRINT * 4 HAXIHaAL COVERIMNG WITH HAX DISTAHCE CONSTRAINT®
PRINT * T ATTENDANCE HAXIMIZIHNG {(LINEAR DECAY)®

PRINT * ‘6 HINIKIZE TOTAL PDOWERED D1STANCE®

INFUT "OPTICH*;0PTION

| CHECK DOMAIN DF OPTION

IF OPTIDN>0 AHD OPTION<? THEN 1220
PRINT *RANGE OF ODPTI10NS 15 1 TO &*
G0 TO 1100

! GET SUPFLEHENTARY CONSTANTS

IF DPTIONKS THEN INPUT "VALUE OF DISTANCE CONSTRAINT §'i8
IF OPTION=4 THEN INPUT *VALUE OF DISTANCE COHSTRAINT T 3V

! CHECK DOMAIN OF T
IF OPTION<>A OR T>=5 THEN 1290
PRINT *7 HUST BE GREATER THAM OR EQUAL TO S*
GO TO 1240
IF OFTION=3 THEN IHFUT *VALUE OF DECAY CBHSTANT®iR
IF OPTION=& THEM IRPUT "VALUE OF DISTAHCE POUER'FE
! BEGIN READIHG INPUT FILE
1 END OF FILE CHECK
O ERROR GO TD 2039
INPUT #1rKKrSTRL)WEIGHT »CANDIDATE
| CHECK STRING 1. ENGTH
IF STRL<=MAXLEN THEH 1390
PRINT *T00 HANY HODES IM STRING - LIHIT IS"iHAXLEN
STOP
IF STRL=0 THEN 1830
HAT INFUT 31-TOHOLECSTRL)
HAT ITNPUT #1-WTDIST(STRL)
1 QFFSET FOR OPTION S
A=0.0
! LDOP FOR EACH ENTRY TH STRING
FOR L=1 7O STRL
COUPUTE BISTANCE
DIST=WTDIST(L)/WEIGHT
ON OFTION GO TD 1500r 1530 X380, 1620, 18670s 1740
COME HERE FOR OFTIGHN 1
IF DEIST>S THEN WTDIST{L)=PERALTY
60 TO 1750
COHME HERE FOR OPTION 2
IF TONRODE(L)=KK THEN WTDIST{(L)=1
IF TOXCDECEI<SKK AND DIST<=8 THEH WTDIST(L)=@
IF TONDDE(L)<>KK AND DIST>S THEN UTDISTIL)Y=PENALTY
GO TO 1750
COHME HERE FOR OPTION
IF DIST<=8 THEN UTD[ST(L)=O
IF DIST>S THEN WTRISTI(L)=WEIGHT
G0 TO 1730
COHE HERE FOR OPTEION 4
IF BIST<=S THEN UTDIST(L)=0
IF DIST>S AND NISTS=T THEN WTDISTL{LY=WUEIGHT
IF DIST>T THEN WTDISTIL}=PENALTY
GO TD 1750
COME HERE FOR OFPTION 5
WTDIST{L)=UEIGHT*(1.0-BXDIST?
RESEY HEGATIVE DEHAND TO ZERO
IF WTRISTI(L)<O THEN WTDIST(L)=0
FIND LARGEST VALUE IH ¥HIS ROUW
IF WTDIST(L)>A THEN A=WTDISTL(L?
60 TO 1750
COHE HERE FOR OFTION &
WTDIST(L)eWEIGHTXDISTXER
HEXT L
! DFFSET FGR OFTION 35
IF OFTION<>J THEN 1830
FOR L=1 TO STRL
WIRISTIL) =n~UTDISTIL)
NEXT L
t BEGIN QUTPUT
! BEGIN OUTFUT
PRINT ¥3+KKF'>"5STRLF"s* FUEIGHT? *»*ICANDIDATE
IF STRL=0 THEN 1340
FRINT #3.TOMORE(1YS
IF STRL=1 THEN 19090
FOR L=2 TCO STRL
FPRINT &3¢ ¢"ETONODE(L}]S
NEXT L
FRINT 23
FPRINT #3,WTDIST{(1}]
IF STRL=] THEN 1960 66
FOR L+2 10 STRL
FRIRT 43¢, *iUWTDISTILY)
NEXT L
FRINY 43
1 FINISIHET THIS HOUE
GU [1340

199
200
201
202
203
204
203
204
207
o8

Tas

19%0
2000
20146
2020
2030
2040
2050
2040
2070
2080

Task?

| FINISHED

CLOSE 3

STGP

| CUME HERE DN ERKDR

IF ERRC>11 THEN 2060

RESUHME 2000

| SCHE OTHER ERROR

PRINT *1/0 ERROR HUHIER*FERR
sT0P

END

67

7.8

ACLOT

1000
1010
1020
1030
1049
1050
1050
1070
1080
1090
t100
1110
1120
1130
1140
1150
1140
1170
1180
1150
1200
1210
1270
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
14560
1470
1480
1490
1500
1510
1520
1530
1540
1550
1540
15790
1580
1590
1400
1610
1620
1630
1540
1650
1660
1470
1480
1490
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
18060
1810
1820
1830
1840
1850
1850
1870
1880
1870
1900
1910
1720
1730
1940
1950
1940
1970
1980
1990

F ALLOC - VERTEX SURSTITUTION ALGGRITHE
LI IM{S00) s GUHCLO00) «CIDIG0Y THUEX(S00)
DY TOHOBE (D00 UTDISTLSO0)
HAXN=2300
HAX#=350
HAXLEN=500
MAXS1Z7=31008
PENALTY=1,0E25
iHFUT *HUHKER DF WONES®#N
IF H<=MAXH THEN 1120
PRIRT °TOD MAHY HNODDES - LIHIT IS*iHAXM
GD TO 1080
IKPUY “HUMBER OF SITES TO DE LOCATED*iP
IF P<{=HAXP THEN 1140
PRINT *TO00 HANY SITES - LIMIT IS*ilAaXP
GO TO 1t20
' GET INITIAL SOLUTION
FOR J=1 TO P
INCID)=0 IF OUT»1 IF i AND MOBILE, 2 IF FIXED -
FRINT "SOLUTIOH MODE*;F Jj
INFUT ID
INPUT *ENTER i~ IF MDRILE, *2¢ IF FIXER"§ IHCID)
CIDG)=ID
MHEXT J
1 GET INPUT FILE
THFUT *HAME OF INFUT FILE"#FILELS$
OFEN FILE1ls FOR IHFUT AS FILE 2
1 ZERO QBJECTIVE FURCTION
0l.D0kJS=D
1 ZERD CANDIDATE COUNTER
H=0
! END OF FILE CHECK
OH ERROR 0 TO 2930
TINFUT #1+KKeSTRL,WEIGHT s CANDIRATE
IF STRL=0 THEN 1330
! CHECK STRING LENGTH
IF STRL<=HAXLEN THEN 13%0
PRINT *TDD MANY NODES IN STREMG - LIMIT IS'3iMAXLEN
STOF
HAT IMPUT #1, TOHNBDE(STRL)
HAT IHPUT #1. WTDIST(STRL)
! CHECK CAHDIDACY OF IHITIAL SOLUTIDN
IF INCKK)=0 OR CANDIDATE=1 THEN 1440
PRINT *HODE*} KKi *IS HNOT A CANDIDATE®
s5TapP
! COUNT CANIIDATE NODES AND BUILD Al INDEX
IF CANDIDATE=Q THEH 1500
H=H+1
INDEX(KK) =¥
! LOOP TO EVALUATE OBJECTIVE FUNCTION
FOR L=1 TO STRL
IF IN(TONDDE(L))>=0 THEN 1540
CLDOEJ=0LDOBJ+UTISTIL)
GO TO 1330
NEXT L
OLDOBJ=DLDOBJ4TENALTY
GO To 13390
PRIHNT Hi"CANDIDATES FOURD*®
FREINT °*QBJECTIVE FUHCTION IS";OLDOBJ
! IN FIRST PASS NO ELEHENTS DF SUN HAVE BEEN FROCESSED
LAST=0
BREST=1.0E30
I IN THIS FASS NEXT *NUMBER’ DF ELEKENTS OF SUH PROCESSED
! BEGINNING AT LAST4H1
NUMBER=PXN-LAST
IF HUMBER>HMAXSIZ THEN NUMBER=HAXSIZ
Y INITIALIZE ELEMENTS OF SUd
FDR K=1 TOQ NUHBER
SUH(K Y=l
NEXT K
! BEGIN READING DATA .
OFEN FILEL$ FOR INFUT AS FILE 1
! END OF FILE CHECK
DN ERROR GOTO 3000
! LOOP FOR EACH DEMAND NOBE
! SEY CENTRES COUNTER TO ZEROD
CENTERS=0
FOR X=1 TO NUMBER
ERROR CTONDITION: SHIULDs RE NO NEGATIVES AT START OF LOOP
IF SUHIK)I<O THEN 2500
HAKE ALL SUN NEGATIVE AT START OF LODP
SUH(R)=~SUH(K)
HEXT K
1 READ A STRING RECORD
INFUT #ir KK+STRLeWEIGHT» CANDBIBATE
IF STRL=0 THEN 1840
MAT INPUT #1s TONORE{STRL}
HAT INPUT 21,WTDIST(STRL)
LOOF FOR ALL CANDIDATE NOPES IN ASCENDING DRDER OF DISTANCE
FOR L=1 TO STRL
CORPUTE INCREMENT TD ORJECTIVE FUNCTION
ADD=WTHISTIL)Y
IF IR{TONODE(L)Y=0 THEN 232
COUNT SOLUTION NORLS FOUND 68
CENTERG=CENTERS+1
IF CENTERS=2 THEN 2170
COKE HLRE IF FIRYT SOLUTION NDDE FOUND
FILL IN ALL EUT ONE CUOLUBH OF SUN
FOR J=1 7O I
PF CInC. D -»TONADI €1 Y THEN 2030

SS—

23

24
24
24
24

25

2000
2010
2020
2030
2040
2050
2040
2070
2080
2090
2100
2110
2120
2130
2140
2130
2160
2170
2180
2190
2200
2210
2220
22310
2240
2250
2240
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2440
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2590
2590
2400
2410
2620
2630
24640
2450
2660
24670
2480
2590
2700
2710
2720
2730
2730
2750
27460
2770
2780
2790

2000’

81¢
2820
2930
2840
850
28460
=870
2880
870
2%00
2910
720
2930
940
2950
2760
2970
2700
19590
3000
010

) KOMENBER §IRST CLHTXE FOUND
FIRS =S
GO0 TO 2150
K=JeH
15 K<=LAST THEN 2150
| COMPUTE UFFSET
Kek-H~LAST
| LOUP THROUGH ALL ELEHENTS I COLUKN
FOR I=1 TO H
KaK+1l
1F K>NUHEER THEW 21350
IF K<1 THEN 2140
INCREHENT SUH
1F SUH(K)<O THER SUNCK) =AES (SUN{KY) +ADD
NEXT 1
NEXT J
SOTO 2420
CONE HERE IF SECOND SOLUTION HOUE FOUND
FILL IN REBALNING COLUMH OF SUH
KLOW=(F1RST-1)¥Nht1-LAST
KHIGH=F IRST¥H-LAST
IF KLOWCI THEN XLOU=1
IF KRIGH>HUHBER ‘THEN KHIGH=HURBER
WO ENTRIES In THIS SET
IF KLOW>KHIGH THEH 1780
LooP THRDUGH ELEHEWTS IN COLURN
FOR K=KLOU TO KHIGH
1 INCREHENT SUH
If SUH(K}><0 THEH SUH(K)=ABS(SUN(K)) +AND
HEXT K
NEXT DEHAND NODE
BOTO 1760
COHE HERE IF HODE IS NOT IR SOLUT1OM
FILL IN OHE ROU OF SUH
FOR J=1 TO F
K=(J4-1YSHFINDEX(TOHODE(L DD
1f K<sLAST THEN 2410
Ke=K-LAST
IF KO>NUHBER THER 2420
INCREMENT SUH
IF SUH(K)I<O THEN SUHIK)=ABS (SUBLKY Y HADD
MEXT J
NEXT L
NGWE HERE 1F END DF DaTA WITHOUT FINDING 2 SDLN NODES
AGD PENALTY TO ANY REMAINING HEGATIVE ELEHENTS
FOR K=1 TO RUKBER
I¥ SUH(K)<O THERN SUH(K?=ABS{SUH{KY) HPERALTY
REXT K
\ NEXT LEMAND NODE
5OTO 1740
FRINT "ERRGR CONDITI1ON®
PRINT 'LAST ='iLASTi® K ='iKi’ LAST HODE READFKK
sTOP
| COME HERE AT EMWD OF DATA
 LopP TO FInD BEST SWaAP
FOR K=1 TO NUMBER
REMDVE INITIAL VALUE FROM SUR
SUR(K)=ABS(SUMRIK)) -1
J=INT{CKILAST=13/H) 1
} 1GWORE IF FIXED
IF IM(CID{J})1=2 THEH 2650
IF SUM(K)>=REST THER 2850
NEW BEST SWAP
BEST=SUH(K)
KEAVE=K+LAST
REXT K
LAST=LASTHNUHEER
! RETURN FOR NEW FASS
IF LAST<PXM THEN 1440
1 MAJOR LOOF FINISHED
IF BEST>=0LDOBJ THEN 2830
J=INT((KSAVE-11/K11
T=KSAVE-(J-1}%N
FRINT *BEST SWAF ISTFL3®TH CAKDIDATE FOR®*iCIDCJD
FOR KK=1 TO X
IF IRDEX(KK)=1 THER 2770
NEXT KK
pRINT I§%TH CANDIDATE IS NOUE'IKX
| HAKE SWAF,
INCKK) =1
INCCIDCD =0
CID(SI=KK
SLRORJIRBEST
Y RETURN TO REPEAT HAJOR LOOP
GOTO 1580
TRINT HO BETTER SOLUTEDN EXISTS®
PRINT *SOLUTION I81%3
FOR Je1 1O F
FRINT CIDCIYS
NEXT
FRINT
sT0P
1 COME MERE CN ERRDR
1F CRR(P1E THER 29707
CLOSE 1
RESUNE 1570 69
| SOME DTHER T/0 ERRIR
FRINT '140 LRKUR HUMKTR®FERR
sTOP
+ COME MERE O CREOR
IF ERS<r31 1HLH 3040
cLOsE 4

3

3020
3030
3040
3050
3040

Tash?

REGUXE 2239

I SOHE OTHE® CRROR

FRINT *1/0 EXROR NUHBER®IERR
STOP

END

RUN HESEQ

MAHE OF INPUT FILET EVAL
LODP IHODEMTATIONT 2
COMHENT INDENTATIOH? -2

Task? TY EVAL.RSQ

70

7.9 EVAL

1000 ! EVAL - FVALUATION OF SOLUTIONS

1010 DIH IN(S00) »TONODE{S003 s UTHIST{S00) rTOTEEHCS0) s TUTDIST(S0)
1020 DIM HAXDISTU(S0)FARISO) TOTDISTR(S0) HAXDIST2{50) FARZ (500 +CI1D(50)
1030 HAXP=S0 '

1040 HAXMN=S50D

1050 HAXLEN=500 '
1060 LEGEHWDI(1)=*YES®

1070 LEGEND$(O}="*HG *

1080 ! GET THPUT FILE

1090 INFUT “HAME OF INFUT FILE®IFILELS

1100 | ZERO SOLUTION

1110 FOR KK=1 7O M

1120 INCKK)=0

1130 HEXT KK

1140 INPUT *NUMBER OF SITES, OR 0 TD EXIT*IP
1§50 IF P=0 THEN STOP

1140 IF P<=HMAXP THEN 1200

1170 FPRINT *F00 HAMY SITES - LIHIT I5'iHAXP
1180 GO TO 1140

1190 | GEYT SOLUTION

1200 FBR J4=1 10 P

1210 PRINT "SOLUTION HODE*3J;

1220 INPUT I

1230 IF ID<eMAXMN THEN 1240

1240 PRINT *TOD HANY NODES - LIMIT IS®iHAXN
1250 60 TD 1210

1260 INCIDY =g

1270 CID{J)=ID

1280 NEXT J

1290 1| ZERO SUNS

1300 ¢ WEIGHT NOT SERVED

1310 NOSERVE=(Q

1320 ! HO SECUND CENTKRE

1330 HNOSERVEZ=0

1340 FOR =i TO P

1350 | TOTAL DEMAND BY SITE

1340 TOTDEM(JI=D

1370 .1 TOTAL DISTANCE BY SITE

1380 TOTRIST(J)=0

1390 1 MAXIHUM DISTANCE &Y SITE

1400 HAXDIST{JY=0

1410 ! FURTHEST MNODE

1420 FARLII=0

L1430 1 TOTAL TO SECOMD NEAREST

1440 TOTOIST2(¢J)=0 -
1450 | HAXIHUM TD SECOND HEAREST

1450 HAXDIST2{J)=0

1470 | FURTHEST SECOND CENTRE

1480 FARZ2LJ)=0

1490 HEXT J

IS00 ! OUTPUT ALLOCATIONT

1510 PRINT *OUTPUT OPTIDNG:®

1520 PRINT * 1 SUMBMARY OHLY"®

1530 PRINT * 2 ALLODCATION AND SUHHARY®
1540 IRFUT *OPTION®;DPTION

1550 1IF OPTION=t THEN 1410

1560 FRINT

1570 PRINT "NOIE WEIGHT CANDIDATE®$
1589 PRINT * NEAREST DISTANCE®S

1590 PRINT * SECOND DISTANGE®

1600 1 GET INFUT FILE

15810 OFEM FILEL$ FOR INPHT AS FILE 1

1620 ' END OF FILE CHECK

1630 DN ERROR GO TO 2840

1540 IHPUT 1 +KKsSTRL:UEIGHT »CANDIDATE

1450 IF STRL=0 THEN 1440

1660) CHECK STRING LENGTH

1570 IF SYRL<=NAXLEN THEN 1700

1480 PRINT *TOG HARY MODES IN STRING - LIHIT IS*FMAXLER
1490 STOP :
1700 HMAT INPUT %1, TONDDE{STRL)

1713 MAT INPUT #1.WYDISTISTRL)

1720 | CHECK CANRIDACY OF SOLUTION

i730 IF IN(KK)=0 DR CANDIDATE=1 THEN 1770
1740 PRINT *NODE"IKK;*IS NOT A CANDIDATE®
1750 STOP

1760 1 SKIP IF NO WEIGHT

1770 IF WEIGHT>O0 THEN 1810

1780 FPRINT KK:*NO WEIGHT®

1790 G§O TO 1440

1800 | SCAN STRING FOR FIRST AND SECOND CENTRES
1B10 CENTERS=0

1820 FOR L=1 To STRL

1830 IF IH{TONGDE(L) 30 THZN 2090

1840 CENTERS=CENTERS+1

1830 IF CENTERS=2 THEN 2000

1840)} COHE HERE FOR FIRST CEWTRE

1870 FIRST=TONDDE (L)

1880 J=IH(FIRSTH

1890 | TOTAL KLHARD

1900 TOTDEM{) =TOTOENCS) FWEIGHT

1710 | TOTAL UISTANCE

1920 TOTISTL D =TOTDISTL D FUTNIST{LY

1930 | HAXIMUM DISTANCE 71
1940 DISTLI=WTRIST(LY/UETIGHT

1950 IF DISTICAHAXMIST(J) TIEN 2090

1560, HAXRIST(J)=DIGT]

1970 FAR{JISKE

1740 GO TO 2090

i9¥0 L COPL NIRE FOR SECAND NTARTST CREEIRC

2000
2010
20290
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
21440
2150
2160

2170 .

2180
2190
2200
2210
2220
2230
2240
2250
2240
2270
2280
2290
2300
2310
2320
2330
2340
2350
2340
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2320
2530
2540
2550
2560
2570
2580
2590
2400
2610
2620
25830
2640
28650
24650
2670
24680
2590
2700
2710
2220
2730
2740
2750
2780
2770
2780
2790
2800
2610
2820
2810
2840
2850
2840
2870
2080
2690
2700
2710
2920

Task?

SECUND=TOHUDE (L)

JeTtal DISTANCLE
TOTDISTZ()T OTRIET2(I4UTDEST(L
HAXINUH DISTANCE
DIST2=UTBISTLL)/UEIGHT

IF DIST2<{=HAXMIST2(J) THEN Z270
HKAXDISTZ(L)=DIRTZ

FARZ{I)I=KK

&0 TO 2270

HEXT L

{ CENTRES .NOT FOUND

IF CENTERS=1 THEH 2200

i N0 HEAREST CEHNTRE
NOSERVE=NDSERVE+WEIGHT

IF DPTION=1 THEN 1440

FORM¥="¥3¢ TEEEEE A A%

PRINT USING FORH$ KK:WEIGHT »LEGENDS (CARDIDAYE) S
PRINT * NGT SERVED®

GO TO 1440

| HE SECOND CEMTRE
NOSERVEZ=NOSERVE2+WEIGHT
IF OPTION=1 THEN t&40
FORHS="%%% $33444 A AN 4 $3E¥34"
FRINT USING FORHS rKKeUEIGHT+LEGENNS (CANDIDATE) s FIRST,DISTL 3
PRIHNT = NG SECDMD CEMTRE*
GO TO 1440
| COHE HERE AFTER SECOND CENTRE
IF OPTION=i THEH 1440
FORNS="¥¢§ LSS hY A ¥ 14433 1% (53221 &

PRINT USING FORH$»KKsUEIGHTs LEGEND$(CANDIDATE) »FIRSTDIST1,SECONDIDISTZ
GO TO 1440

1 QUYPUT SUHRHARY
PRINT

PRINT *UNSERVED DEHAND? # #DSERVE
FRINT *FEMAND WITH NO ALTERNATE SITE®;NOSERVEZ
QUTPUT BY SITE
FOR J=1 TQ f
PRINT
PRINT *SITE®iJi*IS AT NODE'FCIDCJ?
PRINT “BEMAND ALLDCATED® } TOTDEH(J}
PRINT *BISTANCE TRAVELLED®;TOTDIST(J)
FRINT *HEAM DISTANCE'3TOTRISTC(J}/TOTDENLJ)
FRINT "HAXIBUM DISTANCE®;HAXDIST(J)
FRINT *FURTHEST HODE ALLOCATED®§FARCJ}
PRINT *DISTANCE TRAVELLED TO HEAREST ALTERNATE®3TOTDIST2(J)
PRINT "HEAN DISTANCE TO NEAREST ALTERMATE'FTOTRIST2(J}/TOTDEH(J)
PRINT “HAXIMUK DISTAMCE TO NEAREST ALTERNATE®3MAXDISTZ(J)
FRINT *FURTHEST MODE FROM AN ALTERMATE® iFAR2(J)
NEXT J
FRINT
ZERD GENERAL SUHS
STOYDEM=Q
STOTRIST=0
SHAXDIST=0
SFAR=0
DISPTOT=1.0E20
DISFHAX=1,0E20
FOR J=1 TO P
STOTDEH=STOTDEH+TOTDEH{J?
STOTDIST=STOTDIST4TOTSISTC(J)
IF HAXDIST(J)<=SHAXDIST THEN 2440
SHAXBIST=HAXDISY(J)
SFAR=FAR(J)
! FIND MOST MISPDSABLE CENTRES
IF TOTHIST24J>~TOTDISTCJI>=DISPTOT THEN 2470
DISPTOT=TOTDISTZ({I)-TOTHIST(J?
HOST1xJ
HEXT J
FOR J=t TO P
IF HAXDIST2(J)<=SHAXDIST THEN 2730
IF MAXDIST2(J}-SHAXDIST>=DISPHAX THEN 2710
UISFHAX=MAXDISTZ(J)-SHAXDIST
HOST2=J
HEXT 4
PRINT *TOTAL DEMAND SERVED®;STOTDEH
PRINT "TOTAL DISTANCE TRAVELLED®:STOTDIST
FRIRT "MEAK DISTAHCE TRAVELLED®;STOTDIST/STOTDEH
FRINT “MAXIKUM DISTANCE TRAVELLED®;SHAXNIST
FRINT *FURTHEST NCDE FROH ALLDCATED CENTRE®:SFAR
PRINT
PRINT *MOST DISPOSAKLE CENTRES®
PRINT * TOTAL [ISTAMCE CRITERION - CENTRE®FHOST1:'AT NODE®fCIDCHOSTY)
FRINT * HAXINUH RISTANCE - CERTRE*§HOST2{*AT NODE®:CIDC(HOST2}
FRINT
GOTD 1110
! COME HERE ON ERROR
IF ERR<M11 THEN 2900
CLUSE 1
RESUHE 2310
| SOME OTHER L/0 ERROR
PRINT *1/D ERRDR NUKBER®'JERR
STOP
END

RUN NESEQ

RAKE DF INPUT FILCT HILLS
LODP INDENTATIOQN? 2 72
CIFMHENT INDENTATIONT -2

ON=BNTD STATEHMENT FOUND ... (NO FRODLEM1T}

Tash? Ty HILLS.RSQ

e

21

29

il
2
2
2
24

> NAMARNKYRNN
MY R AN SLBIRIAIAL A MM MO M MMM MM BMEO O NLMOMBHNRNNMRODNLDONMNRBNBNHNNNNNNNNRDNRONRBRNENRNNRBNNNUOUNRDRONNNNR N

2000 SECOMD=VOHNBLE (L)

2010 1 TB1AL DIIIS(AHCE

2020 TOTDISTRL=TOTOILI2CII4UWTOIET(L)
2030 1 HAXIHWH DISTANCE

2040 DISTI=UTDISTI(L)/WEIGHT

2050 IF DIST2<=wHAXDIST20J)Y THEN 2270
2040 HAXDIST2(J)=DIGT2

2079 FARZ(1) =KK

2080 8a 19 2279

2090 HEXT L

2100 | CENTREES HN{T FOUNWD
21310 IF CEHTERS=1 THEN 2200
2120 1 M} HEAREST CEHTRE
2130 HNOSERVESHBSERVE+UWEIGHT
2140 IF OFTIOM=1 THEN 144G

2150 FORHS="+%3$ FEETTH A A%
2140 PRINT USIHG FORNSeN1+WEIGHT»LEGENDS (CANDIDATE) ¢
2170 PRINT * HOT SERVED"

2180 G0 TO 1440

2190 | ND SECONR CENTRE
2200 NOSERVE2=NDSERVE24UEIGHT
2210 IF OFTION=1 THEM 1540
2220 FORNS="#43 . 113384 NN te sreagr
2230 PRINT USING FDRH3,KKsUEIGHT LEGENDS(CANDIDATE} sFIRSTDISTLF
2240 PRINT * 1" SECOND CERTRE®
2250 G0 TO 1640
2240 ! COME HERE AFTER SECOND CENTRE
2270 IF OPTIOH=: THEN 1440
2230 FORNS=" k44 e N ses tEEEE4 14 Hirese
2290 FRINT USING FOKHSsKKsWEIGHT+LEGENDS (CANDIDATE) s FIRSTsBIST1/SECONDDIST2
2300 GO TO 1440
2310 1 OUTPUT SUHHARY
2320 PRINT
2330 FRINT *UNSERVED DEHMAND®FNOSERVE
2340 PRINT "DEHANU YUITH HG ALTERNATE SITE®SNGSERVEZ
2350 1 DUTPUT BY SITE
2360 FOR J=1 TO P
2370 PRINT
2380 PRINT *SITE*3Ji"1S AT HODE';CID(J)
2370 PRINT *DESNARD ALLOCATED®;TGTDEH(.)
2400 PRINT *DISTAHCE TRAVELLED®$TOTODISTCJ)Y
24190 PRINT *HEAN BISTANCE';TOTDIST(JI/TOTOEM(J)
2420 FRINT 'HAXINUN DISTANCE' $HAXDIST(J)
2430 FRINT *FURTHEST NGDE ALLDCATED'jFARCJ)
2440 FRINT *DISTANCE TRAVELLED T HEAREST ALTERNATE'iTOTDIST2(J)
2450 FRINT "HEAN LISTANCE TO NEAREST ALTERRATE'iTOTOIST2(J)/TOTDEM(J?
2440 PRINT "MAXTHUN DISTANCE TO NEAREST ALTERNATE'iHAXDIST2(J)
2470 FRINT "FURTHEST NODE FROH AN ALTERNATE'$;FAR2(J)
2480 HEXT J
2470 PRINT
2500 | ZERD GENERAL SUHS
2510 STOTIEN=0Q
2520 STOTHIST=0
2530 SHAXDIST=0
2540 SFAR=0
2550 PISPTET=1.0E20
2540 DISEHAX=1,0E2D
2570 FOR J=1 7D ¥
2580 STOTDEH=STOTDEH4TOTBENC.)
2590 STOTDIST=STOTUISTHIDTDISTLD
2800 . IF HAXDIST(JI<=SMAXDIST THEN 2640
2610 SHAXDIST=HAXDIST(J)
2520 SFAR=FAR{J)
2630 ! FIND HDST DISPOSABLE CENTRES
2440 ‘ IF TOTDIST2{JY~TOTDIST(.N>=DISPTOT THER 2670
. 2450 DISPTOT=TOTDIST2(1}-TOTBIST ()
: 2450 HOST1=J
: 24670 NEXT J
! 2680 FOR J=1 TO P
2490 IF HAXDIST2(J3<=SMAXDIST THEN 2730
: 2700 IF HAXDIST2{J}-SHAXDIST>=DISFHAX THEN 2730
i 2710 DISFHAX=HAXDISTZ(J)-SHAXDIST
: 2720 HpsT2=J
: 2730 NEXT J
i 2740 - PRINT *TOTAL DEMAND SERVED®;STOTDEN
: 2750 FRINT *TOTAL DISTANCE TRAVELLED®§STOTDIST
: 2760 FRINT *HEAN DISTANCE TRAVELLED':STOTDIST/STOTOEM
: 2770 FRINT *MAXINUH DISTANCE TRAVELLED® ;SHAXDBIST
! 2780 FRINT *FURTHEST NODE FRUM ALLDCATEDL CEMTRE®$iSFAR
! 2790 FRINT
2800 FRINT "HOST DISPOSABLE CENTRES®
j 2810 PRINT * TOTAL OISTANCE CRITERION ~ CENTRE'#MOST1j*AT NODE*iCID(MOST1}
: 2820 FRINT * HAXIHUX DISTANCE ~ CEHTRE‘#HO3T23 *AT HOBE®ICIN(HAST)
! 2830 FRINT
] 2840 GOTY 1110
! 2830 1 COME HERE ON ERROR
! 2860 IF ERR<>11 THEN 2900
! za7¢ CLOSE 1
! 2880 RCSUHE 2316
2090 ! SOKE OTHER 1/0 ERROR
2900 FRINT *I/0 ERROR NUHRER'JERR
' 2910 sTOP
: 2920 END

