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DEFINITION:  
Methods of data analysis perform logical or mathematical manipulations on data in order 
to test hypotheses, expose anomalies or patterns, or create summaries or views that 
expose particular traits. Data often refer to specific locations in some space. To qualify as 
spatial, the locations must be known and must affect the outcome of the analysis. While 
many spaces might be relevant, including the space of the human brain or the space of the 
human genome, the history of spatial data analysis is dominated by location in 
geographic space, in other words location on or near the surface of the Earth. Thus 
geographical and spatial are often essentially synonymous. More formally, spatial data 
analysis can be defined as a set of techniques devised for the manipulation of data whose 
outcomes are not invariant under relocation of the objects of interest in some space. The 
term exploratory spatial data analysis (ESDA) describes an important subset that 
emphasizes real-time interaction, the creation of multiple views of data, the search for 
patterns and anomalies, and the generation of new hypotheses as opposed to the formal 
testing of existing ideas. The term spatial data mining describes another important subset 
that emphasizes the analysis of very large volumes of spatial data. 
 
HISTORICAL BACKGROUND: 
Berry and Marble [1] made one of the earliest efforts to assemble a systematic review of 
methods of spatial data analysis, drawing on a literature that had accumulated for many 
decades. Their interest was sparked in large part by what later became known as the 
Quantitative Revolution in Geography, a paradigm shift that originated at the University 
of Washington in the late 1950s and spread rapidly as the original group of graduate 
students found faculty positions. Bunge [2] summarized the core concept: that the 
analysis of patterns of phenomena on the Earth’s surface could lead to a set of formal 
theories about the behavior of human and natural systems, and that the discovery of such 
theories would put the discipline of geography on a sound scientific footing. Substantial 
progress was made in the 1960s, particularly in the study of patterns of settlement and 
economic activity, and in the study of such physical phenomena as meandering rivers and 
stream channel networks. 
 
Beginning in the 1960s, the development of geographic information systems (GIS) 
provided a major impetus by creating a simple structure in which methods of spatial data 
analysis could be implemented. By the 1980s GIS had become a popular and rapidly 
growing software application, with a flourishing industry and tools to enable spatial data 
analysis, along with the necessary techniques for data acquisition, editing, and display. 
Today GIS is often portrayed as an engine for spatial data analysis, and many new 
techniques have been added to what are now literally thousands of methods. GIS finds 
application in virtually all disciplines that deal with the surface and near-surface of the 
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Earth, ranging from ecology and geology to sociology and political science [3]. It is 
extensively used in logistics, in planning and public decision making, in military and 
intelligence applications, and in the management of utility networks. 
 
While the use of computers to perform spatial data analysis was already well established 
in the 1960s, ESDA emerged rather later, when the graphics and interactive capabilities 
of computers had advanced sufficiently. By the early 1990s researchers were developing 
novel ways of linking multiple views using the windowing techniques that emerged at 
that time, and exploiting the high-resolution graphics that became available on standard 
personal computers. Today, interactive tools inspired by ESDA are widely available in 
GIS products, and more specialized software is also available (see, for example, GeoDa, 
http://geoda.uiuc.edu). 
 
Interest in spatial data mining has grown in the past decade, driven in part by the 
increasing availability of very large volumes of spatial data. For example, it is now 
routine to capture the location and time of use of credit and debit cards, and to apply 
sophisticated algorithms in an effort to detect fraudulent use. Heavy use of spatial data 
analysis is made by intelligence agencies, based on software that can examine telephone 
and email traffic and detect references to places. 
 
SCIENTIFIC FUNDAMENTALS: 
Several approaches have been devised for organizing the thousands of techniques that 
qualify as spatial data analysis. Perhaps the commonest, represented by several recent 
textbooks and by the organization of some GIS user interfaces, is based on a taxonomy of 
spatial data types. Very broadly, one can capture variation within a space using either 
raster or vector structures; a raster structure is created by dividing the space into discrete, 
regularly shaped elements and describing the contents of each, while vector structures 
describe each feature present in the space as either a point, line, area, or volume, with 
associated attributes.  
 
Tomlin [4] and others have systematized the analysis of raster data in schemata described 
as map algebras, image algebras, or cartographic modeling, and several GIS have adopted 
these schemata in their user interfaces. In one such schema the analysis of raster data is 
described as either focal, local, zonal, or global: focal operations are performed 
independently on the contents of each cell; local operations are performed on a cell and 
its immediate neighborhood; zonal operations apply to contiguous patches of cells with 
identical descriptions; and global operations apply to the entire raster. 
 
To date a similarly simple systematization of vector operations has not been achieved. 
Instead, several textbooks (e.g., [5], [6]) organize methods of vector-based analysis 
according to the types of features being analyzed, focusing in turn on points, lines, areas, 
and volumes. For example, techniques for the analysis of sets of points might determine 
the degree of dispersion of the points; search for anomalous clusters; or find a shortest 
tour through the points. Some texts also provide descriptions of methods for the analysis 
of relationships or interactions between features. For example, retailers and traffic 
engineers commonly use methods of spatial data analysis to predict the numbers of trips 
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expected between home neighborhood areas and such destination points as shopping 
centers or places of work. 
 
Longley et al. [3] use a different organizing scheme that is designed to be more strongly 
related to user motivation, and to overcome some of the ambiguities inherent in an 
emphasis on data type. Their scheme assigns techniques to six categories, ordered by 
increasing conceptual sophistication: query and reasoning, measurement, transformation, 
descriptive summary, optimization, and hypothesis testing. 
 
Query and reasoning functions rely on the presentation of alternative views to the user. 
For example, a set of data on average income by US state might be presented as a map, as 
a table, as a histogram, and as a scatterplot in which average income is graphed against 
another variable such as percent with more than high-school education. The user gains 
insight by examining the alternative views, by querying specific values, or by selecting 
data items in one window and seeing them highlighted in the other windows.  
 
Measurement functions represent one of the earliest motivations for GIS. Manual 
methods for obtaining measures of such properties as area, length, slope, or shape from 
maps are notoriously inaccurate, tedious, and time-consuming, whereas it is trivial to 
obtain them from digital representations. Nevertheless digital representations are only 
approximations or generalizations of real phenomena, and many estimates exhibit 
representation-related biases. 
 
Transformation functions obtain new objects, or new properties of those objects. They 
include many key GIS functions, including buffering (the geometric dilation of points, 
lines, areas, or volumes), overlay (the computation of intersections between objects), and 
interpolation (the use of data from sample locations to estimate values at locations where 
no samples were taken). Figure 1 shows an example of buffering, using half-mile circles 
around points representing the schools of part of Los Angeles. The example was 
motivated by proposals to ban registered sex offenders from living within a specified 
distance of a school. 
 

[Figure 1 about here] 
 
Descriptive summaries include the widest range of spatial data analysis techniques. 
Standard univariate statistics such as the mean, median, mode, standard deviation, and 
variance have equivalents in multidimensional spaces. Figure 2 shows the two-
dimensional equivalents of the mean and standard deviation applied to the black and 
white populations of Milwaukee, using data by census tract. A suite of summary statistics 
have been devised for measuring spatial dependence, a key property of many spaces 
based on the observation that measurements of many properties taken close together tend 
to be more similar than measurements taken far apart. The fields of spatial statistics and 
geostatistics are both based on this property, and provide ways of addressing it explicitly. 
Spatial heterogeneity, or the tendency for the properties of spaces to vary widely from 
one area to another, is also the subject of many forms of descriptive summary. The 
rapidly evolving field of local or place-based summaries (e.g., [7]) addresses the spatial 
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heterogeneity property directly, arguing that it is more important to determine how the 
results of spatial data analysis vary from one area to another than to attempt to extract 
single, global results. Another suite of summary statistics addresses the fragmentation of 
landscapes, with particularly strong applications in ecology. 
 

[Figure 2 about here] 
 
Methods of optimization focus on the design of spatial pattern rather than on its analysis. 
They include methods for optimum location of points (e.g., retail stores, schools), lines 
(e.g. roads, pipelines), and areas (e.g., political voting districts), as well as on the design 
of optimum routes (e.g., for delivery vehicles or school buses). 
 
Finally, methods of hypothesis testing address the process of inference, by which analysts 
reason from the analysis of a sample to conclusions about the larger world represented by 
the sample. Such methods are well known in statistical analysis, encompassing many 
well-known statistical tests, significance levels, and the formulation of null hypotheses. 
Unfortunately the application of such methods to spatial data is confounded by two major 
issues. First, it is rare for a sample of objects to be representative of any larger and well-
defined set; instead, spatial data analysis is commonly applied to all of the objects that 
exist in a given study area. Second, it is also rare for objects distributed in space to be 
selected independently from any larger set; instead, the property of spatial dependence 
virtually ensures that nearby objects will have some degree of similarity. 
 
KEY APPLICATIONS 
As noted earlier, techniques of spatial data analysis can be applied to virtually all spaces, 
and all phenomena distributed within such spaces. Nevertheless, the vast majority of 
applications are found in geographic space, that is, the space defined by the surface and 
near-surface of the Earth, at spatial resolutions ranging from sub-meter to global. 
 
Many important applications have derived from the need to understand the mechanisms 
of disease, and particularly its transmission within human populations. The work of Dr. 
John Snow on cholera [8] is often cited as the seminal example, but today methods of 
spatial data analysis are routinely used to scan data on such diseases as cancer, searching 
for anomalous clusters and thus for potential causal mechanisms. Spatial data analysis 
has been central to the study of outbreaks of new diseases such as West Nile virus and 
SARS. 
 
Spatial data analysis has also been central to the study of landscape change, and related 
phenomena of urban sprawl, deforestation, desertification, and habitat destruction. Such 
analyses are often based on snapshots of landscape obtained from Earth-orbiting 
satellites, and can form the basis for sophisticated models of landscape change that can be 
used to investigate the future effects of management alternatives. 
 
Transportation applications are also particularly rich. Methods of spatial data analysis are 
routinely used to model traffic patterns, and to evaluate planning options, including new 
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roads, mass transit, and congestion pricing. The possibility of real-time tracking of 
vehicles using GPS has recently given this field new impetus. 
 
FUTURE DIRECTIONS 
The insights that can be obtained from spatial data analysis are limited by its essentially 
cross-sectional nature – the need to draw inferences from snapshots obtained at one point 
in time. It is difficult, for example, to ascribe cause when no information is available 
about change through time. Thus there is great interest in the development of an 
improved suite of methods for spatiotemporal data analysis. In the past the lack of 
suitable data has been a major impediment, but today vast new sources are becoming 
available as the result of developments in satellite remote sensing, GPS tracking, and 
Internet-based data sharing. 
 
GIS owes much of its original stimulus to the paper map, which is of necessity flat. At 
global scales, analysis based on flattened or projected views of the Earth’s surface can be 
misleading, and there is therefore strong interest in developing methods of spatial data 
analysis for the Earth’s curved surface. This interest has been stimulated in part by the 
recent emergence of virtual globes, including Google Earth. 
 
CROSS REFERENCES: Geographic Information System, Spatial Data Types, Spatial 
Operations and Map Operations 
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FIGURE CAPTIONS 
1. The buffer operation. Half-mile buffers have been drawn around points representing 
the locations of schools in an area of central Los Angeles. Such buffers are often required 
by legislation; this example was motivated by a proposal to ban registered sex offenders 
from living within a prescribed distance of schools. 
2. Two-dimensional equivalents of the mean and standard deviation. The larger ellipse 
shows the dispersion of the white population of Milwaukee around its centroid; the 
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smaller ellipse shows the greater concentration of the city’s black population. The map 
shows percent black, using 1990 data by census tract. 


