
This article was downloaded by: [University of California Santa Barbara]
On: 01 April 2012, At: 16:20
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Geographical
Information Science
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tgis20

On the prediction error variance of
three common spatial interpolation
schemes
Phaedon C. Kyriakidis a & Michael F. Goodchild a
a Department of Geography, University of California, Santa
Barbara, CA 93106, USA

Available online: 20 Feb 2007

To cite this article: Phaedon C. Kyriakidis & Michael F. Goodchild (2006): On the prediction error
variance of three common spatial interpolation schemes, International Journal of Geographical
Information Science, 20:8, 823-855

To link to this article:  http://dx.doi.org/10.1080/13658810600711279

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tgis20
http://dx.doi.org/10.1080/13658810600711279
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Research Article

On the prediction error variance of three common spatial interpolation
schemes

PHAEDON C. KYRIAKIDIS* and MICHAEL F. GOODCHILD

Department of Geography, University of California, Santa Barbara, CA 93106, USA

(Received 4 June 2005; in final form 23 February 2006 )

Three forms of linear interpolation are routinely implemented in geographical

information science, by interpolating between measurements made at the

endpoints of a line, the vertices of a triangle, and the vertices of a rectangle

(bilinear interpolation). Assuming the linear form of interpolation to be correct,

we study the propagation of error when measurement error variances and

covariances are known for the samples at the vertices of these geometric objects.

We derive prediction error variances associated with interpolated values at

generic points in the above objects, as well as expected (average) prediction error

variances over random locations in these objects. We also place all the three

variants of linear interpolation mentioned above within a geostatistical frame-

work, and illustrate that they can be seen as particular cases of Universal Kriging

(UK). We demonstrate that different definitions of measurement error in UK

lead to different UK variants that, for particular expected profiles or surfaces

(drift models), yield weights and predictions identical with the interpolation

methods considered above, but produce fundamentally different (yet equally

plausible from a pure data standpoint) prediction error variances.

Keywords: Spatial accuracy assessment; Error propagation; Linear interpolation;

Bilinear interpolation; Geostatistics; Trend surface models

1. Introduction

Spatial interpolation can be defined as the prediction of the unknown value of an

attribute at some point where no measurement is available, from known measurements

obtained at a set of sample locations. Many methods of spatial interpolation are

commonly implemented in geographical information systems (GIS), including inverse-

distance weighting, spline interpolation, and the various forms of Kriging that are

generally lumped under the heading of geostatistics; see for example Ripley (1981) or

Cressie (1993) and the references therein. Spatial interpolation occurs both explicitly,

as a procedure for estimating values at specified points, and also implicitly in the

execution of other standard operations, such as geocoding (the interpolation of street

address from known values at block endpoints), image resampling (the estimation of

values in a raster from values in another, geometrically incompatible raster), or

contouring (the interpolation of isolines among point observations).

It is common for GIS designers to implement comparatively simple and

straightforward forms of interpolation, particularly when these are needed by other

spatial analysis operations. Such interpolation methods are rapid in execution, and
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involve no explicit decisions on the part of the user. They are thus suited for embedding

in procedures such as contour interpolation or resampling, when they can be invoked

without further user intervention. In this paper, we focus on one such class of methods,

generally known as linear interpolation, and on the effects of measurement error on

predictions and associated error variances obtained by such methods.

First, linear interpolation is used in surveying to determine the locations of

boundary lines between monuments or endpoints. In such cases, it is common to have

estimates of the errors inherent in measurements at endpoints, and we examine the

propagation of such errors to intermediate points: what errors result along the

boundary line as a result of measurement errors at the endpoints? Linear interpolation

is also used in geocoding to determine the locations of specific addresses at

intermediate points along blocks, given the locations and addresses of block endpoints;

again, we provide estimates of error at specified points along the block.

Secondly, linear interpolation is used in the TIN model to predict elevation at

points within triangles, based on values at triangle vertices. We assume knowledge

of measurement errors at vertices, and study the effect of measurement error at

predictions made at points within each triangle. Finally, bilinear interpolation is

commonly used in resampling to determine the value of a variable at some point

within a rectangle from values at the rectangle’s vertices. Such methods are often

used in image processing, when a raster of radiance measurements must be adjusted

to some second, geometrically offset raster. Again, we study the propagation of

measurement errors from the vertices to points within the rectangle.

In summary, our objective is to derive results concerning the propagation of

measurement error in simple interpolation operations in GIS; this paper thus falls

within the literature of error propagation (Heuvelink 1998). Assuming that: (i)

measurement error variances and covariances are known for sample points, and (ii)

the linear form of interpolation is correct, we provide results for prediction error at

any interpolated point within line segments, triangles, and rectangles, as well as

results for average prediction error over randomly chosen points. Similar results to

those presented in this paper, but only for the special cases of exponential and

Gaussian covariance models (with or without a nugget-effect component), can be

found in papers by Kubik and Botman (1976) and Botman and Kubik (1979).

Sections 2, 3 and 5 of the paper consider the line, triangle and rectangle cases

respectively, obtaining general results and then simplifying them for the special case

of unit variances and zero covariances. As with many problems in geometric

probability (Ball and Coxeter 1960), it is possible to approach the three cases from

several distinct perspectives: in Section 4, we present an alternative formulation to

the triangle problem that yields identical results.

In Section 6, we present the geostatistical formulation of Universal Kriging (UK),

whereby spatial prediction accounts for an arbitrary parametric expected profile or

surface (drift model), and the number of available samples is generally greater than the

number of the parameters characterizing that expected surface. We also derive the

predictions and associated error variances for different variants of UK, and illustrate how

they are linked to different assumptions regarding the magnitude of measurement error.

In Section 7, we demonstrate that the three linear interpolation methods

considered in this work can be regarded as particular cases of UK under appropriate

definitions of drift models. More precisely, the weights, and consequently the

associated predictions, used in 1D linear interpolation, as well as TIN and bilinear

interpolation in 2D, are identical with those derived via the different variants of UK.

824 P. C. Kyriakidis and M. F. Goodchild
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The associated prediction error variances, however, differ fundamentally owing to the

different definition of measurement error adopted for each variant of UK. It is shown

that the prediction error variances reported in previous studies correspond to those

obtained by UK of the drift component, but other variants of UK yield equally

plausible (yet fundamentally different) error variances, too. In essence, it is

demonstrated that the terms 1D linear interpolation, TIN and bilinear interpolation

do not suffice to determine the nature of measurement error, a fact that can lead to

different, yet equally plausible from a pure data standpoint, prediction error variances.

2. Linear interpolation in 1D

Consider two locations along a 1D transect with coordinates x1 and x2, and

measured values z15z(x1) and z25z(x2), respectively, shown in figure 1.

Using (piecewise) linear interpolation, the predicted value bzz~bzz xð Þ at an arbitrary

(but fixed) location with coordinate x1(x(x2 is written as

bzz~w1z1zw2z2~
x2{x

x2{x1

� �

z1z
x{x1

x2{x1

� �

z2~wz1z 1{wð Þz2,

where w5(x22x)/(x22x1) g [0, 1] represents the weight assigned to datum z1 for

prediction at location x. In other words, the weight assigned to z1 is the proportion

of the segment length between point x2 and the prediction location x, to the total

segment length (x22x1). In this work, we do not use any index to explicate the

dependence of w on the prediction location.

When the observations z1 and z2 are treatedasoutcomes of spatially correlated random

variables (RVs) Z1 and Z2, one defines the predictor RV bZZ~bZZ xð Þ at location x as

bZZ~wZ1z 1{wð ÞZ2:

The variance of the predictor RV bZZ is then given by

Var bZZ
n o

~Var wZ1z 1{wð ÞZ2f g~w2s11z 1{wð Þ2s22z2w 1{wð Þs12, ð1Þ

where s11 is the variance of the RV Z1, s22 is the variance of the RV Z2, and s12 is

the covariance between Z1 and Z2.

Figure 1. Example of linear interpolation in 1D.

Prediction error variance for spatial interpolation 825
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Consider now the case whereby the prediction location x is randomly chosen on

the line segment between x1 and x2, i.e. x is drawn from a uniform distribution in

[x1, x2]. This also entails that the weight parameter w is an outcome (realization)

from a uniform distribution in [0, 1].

The average variance of the predictor RV bZZ over randomly chosen locations is

obtained by taking the expectation of equation (1) with respect to the (now random)

weight parameter W:

E Var bZZ
n on o

~E W 2
� �

s11zE 1{Wð Þ2
n o

s22z2E W 1{Wð Þf gs12: ð2Þ

The term E{W2} of equation (2) is expanded as

E W 2
� �

~Var Wf gz E Wf g½ �2~ 1

12
z

1

2

� �2

~
1

3
~E 1{Wð Þ2

n o

,

since the mean and variance of an RV uniformly distributed in [0, 1] are 1/2 and

1/12, respectively. In addition, both the RV W and its complement RV (12W) are

uniformly distributed in [0, 1], hence E{W2}5E{(12W)2}.

The term 2E{W(12W)} of equation (2) is expanded as

2E W 1{Wð Þf g~2E W{W 2
� �

~2 E Wf g{E W 2
� �� �

~2
1

2
{

1

3

� �

~
1

3
: ð3Þ

By accounting for the above results, equation (2) becomes

E Var bZZ
n on o

~
1

3
s11zs22zs12ð Þ: ð4Þ

Special cases of equation (4):

(i) Both RVs have unit variance: s115s2251, but arbitrary correlation r125r:

E Var bZZ
n on o

~
1

3
1z1zrð Þ~ 2zr

3
:

(ii) Both RVs have unit variance, and zero correlation r50:

E Var bZZ
n on o

~
1

3
1z1z0ð Þ~ 2

3
:

(iii) Both RVs have unit variance, and perfect positive correlation r51:

E Var bZZ
n on o

~
1

3
1z1z1ð Þ~1:

(iv) Both RVs have unit variance, and perfect negative correlation r521:

E Var bZZ
n on o

~
1

3
1z1{1ð Þ~ 1

3
:

It should be noted that cases (iii) and (iv) are pathological, in the sense that they

yield singular correlation matrices.
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3. TIN interpolation in 2D

Consider a TIN element as shown in figure 2, whose vertices have coordinate vectors

s15(x1, y1), s25(x2, y2), and s35(x3, y3). Let the attribute measurements at these

three locations be denoted as z15z(s1), z25z(s2) and z35z(s3). In addition, the area

of the TIN element is denoted as a.

Using TIN interpolation, the predicted value bzz~bzz sð Þ at an arbitrary (but fixed)

location in the TIN element with coordinate vector s5(x, y) is written as

bzz~
XX

3

i~1

wizi~
XX

3

i~1

a{i

a
zi~w1z1zw2z2zw3z3,

where wi denotes the weight assigned to datum zi for prediction at location s; again,

the dependence of wi on the prediction location is not explicated. The weight wi is

the proportion a2i/a of the area a2i of the sub-triangle formed by the two vertices

opposite si (excluding si, and thus the notation a2i) and the prediction location s, to

the total area a of the TIN element; see Section 7.1 for a proof. Note that S3
i~1wi~1,

by construction.

When the attribute measurements z1, z2 and z3 are treated as outcomes of spatially

correlated RVs Z1, Z2 and Z3, one defines the predictor RV bZZ~bZZ sð Þ at location s as

bZZ~w1Z1zw2Z2zw3Z3:

The variance of the predictor RV bZZ is given by

Var bZZ
n o

~Var w1Z1zw2Z2zw3Z3f g~
XX

3

i~1

wisiiz2
XX

i

XX

j>i

wiwjsij

~w2
1s11zw2

2s22zw2
3s33z2w1w2s12z2w1w3s13z2w2w3s23,

ð5Þ

where sii is the variance of the ith RV Zi, and sij is the covariance between RVs Zi

and Zj.

Consider now the case where the prediction location s is randomly chosen within

the TIN element, which entails that the areas a21, a22, a23 of the resulting

Figure 2. Example of linear interpolation in a TIN element.

Prediction error variance for spatial interpolation 827

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
6:

20
 0

1 
A

pr
il 

20
12

 



sub-triangles of figure 2, and hence the corresponding weights w1, w2, w3, are also

random. The area a2i of each sub-triangle is completely determined by the height of

that triangle, since its base is fixed (being the corresponding side of the TIN

element). The proportion of the randomly picked height to the total height of the
TIN element (from that same base) is a random variable with triangular distribution

Tri [0, 1] and mode at 0. This is due to the probability of drawing a small height

being larger than that of drawing a large one (large heights correspond to smaller

sub-areas of the TIN element). By the same token, the proportion of the area of the

resulting sub-triangle to the area a of the TIN element is an RV with the same

distribution, since area is proportional to height. Consequently, the weight RVs W1,

W2, W3 follow the same triangular distribution in [0, 1] with mode at 0.

Let us now determine the covariance and correlation between the weight RVs W1,

W2 and W3. The covariance of any two RVs Wi and Wj can be expressed as

Cov Wi, Wj

� �

~E WiWj

� �

{E Wif gE Wj

� �

~E WiWj

� �

{
1

9

since the mean of an RV with triangular distribution in [0, 1] with mode 0 is 1/3

(Evans et al. 2000).

The only unknown in the above equation is the term E{WiWj}, which can be

expanded for all three RVs into the following system of equations:

E W1W2f g~E W1 1{W1{W3ð Þf g~E W1f g{E W 2
1

� �

{E W1W3f g

E W1W2f g~E 1{W2{W3ð ÞW2f g~E W2f g{E W 2
2

� �

{E W2W3f g

E W1W3f g~E 1{W2{W3ð ÞW3f g~E W3f g{E W 2
3

� �

{E W2W3f g:

Since any RV Wi has a triangular distribution, it follows that

E Wif g{E W 2
i

� �

~E Wif g{Var Wif g{ E Wif g½ �2~ 1

3
{

1

18
{

1

9
~

1

6

because the variance of an RV with triangular distribution in [0, 1] with mode 0 is

1/18 (Evans et al. 2000).

The above system of equations can therefore be written as

E W1W2f gzE W1W3f g~ 1

6

E W1W2f gzE W2W3f g~ 1

6

E W1W3f gzE W2W3f g~ 1

6
:

The solution of this system of three equations in three unknowns yields

E WiWj

� �

~
1

12
, Vi=j, ð6Þ

which entails

Cov WiWj

� �

~
1

12
{

1

9
~{

1

36
and Corr WiWj

� �

~{
1

36

	

1

18
~{

1

2
: ð7Þ

828 P. C. Kyriakidis and M. F. Goodchild
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In other words, the areal proportions (to the total TIN element area) of sub-

triangles formed between the TIN element vertices and randomly located points in that

element, follow triangular distributions Tri [0, 1], with mode 0 and pairwise

correlations 20.5.

The average variance of the predictor RV bZZ over randomly chosen locations is

obtained by taking the expectation of equation (5) with respect to the (now random)

weight parameters W1, W2 and W3:

E Var bZZ
n on o

~E W 2
1

� �

s11zE W 2
2

� �

s22zE W 2
3

� �

s33

z2E W1W2f gs12z2E W1W3f gs13z2E W2W3f gs23:

ð8Þ

The terms E W 2
i

� �

of the above equation are

E W 2
i

� �

~Var Wif gz E Wif g½ �2~ 1

18
z

1

3

� �2

~
1

9

1

2
z1

� �

~
1

6
, ð9Þ

By accounting for equations (9) and (6), equation (8) becomes

E Var bZZ
n on o

~
1

6
s11zs22zs33zs12zs13zs23ð Þ: ð10Þ

Special cases of equation (10):

(i) All RVs have unit variance: sii51, ;i, and arbitrary but equal pairwise

correlations: rij5r, ;i, j:

E Var bZZ
n on o

~
1

6
3z3rð Þ~ 1zr

2
:

(ii) All RVs have unit variance, and zero pairwise correlations rij50, ;i, j:

E Var bZZ
n on o

~
1

6
3z0ð Þ~ 1

2
:

(iii) All RVs have unit variance, and perfect positive pairwise correlations rij51,

;i, j:

E Var bZZ
n on o

~
1

6
3z3ð Þ~1,

where, again, this case is pathological, in the sense that it yields a singular

correlation matrix.

It should be noted here that, in a recent paper, Zhu et al. (2005) obtained the same

result as above for the special case of zero covariances and equal variances, and

demonstrated its validity using simulation. Our derivation is both simpler and more

general (see also the following sections).

4. An alternative formulation for the error of TIN interpolation

Consider a TIN element as shown in figure 3, and a randomly drawn (but fixed) line

segment parallel to one base (here the line segment connecting s1 and s3). The left

Prediction error variance for spatial interpolation 829
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endpoint of this segment (on the side connecting s1 and s2) is denoted as sL, and the

right endpoint of this segment (on the side connecting s3 and s2) is denoted as sR.

The proportion, to the respective lengths of the two sides of the triangle, of the

distance between each endpoint and the vertices s1 and s3 is w.

Linear interpolation at these two endpoints sL and sR yields predicted values
bzzL~bzz sLð Þ and bzzR~bzz sRð Þ:

bzzL~ 1{wð Þz1zwz2 and bzzR~ 1{wð Þz3zwz2:

Consider now a randomly located (but fixed) point s5(x, y) on the line segment

connecting sL and sR, whose distance from the left endpoint sL is a proportion y of

the length of that line. Linear interpolation between sL and sR yields the predicted

value bzz~bzz sð Þ at s:

bzz~ 1{yð ÞbzzLzybzzR

~ 1{wð Þ 1{yð Þz1zw 1{yð Þz2z 1{wð Þyz3zwyz2

~ 1{wð Þ 1{yð Þz1zwz2z 1{wð Þyz3:

When the attribute measurements z1, z2 and z3 are treated as outcomes of spatially

correlated RVs Z1, Z2 and Z3, one defines the predictor RV bZZ~bZZ sð Þ at location s as

bZZ~ 1{wð Þ 1{yð ÞZ1zwZ2z 1{wð ÞyZ3:

The variance of the predictor RV bZZ is given by

Var bZZ
n o

~ 1{wð Þ2 1{yð Þ2s11zw2s22z 1{wð Þ2y2s33

z2 1{wð Þ 1{yð Þws12z2 1{wð Þ2 1{yð Þys13z2w 1{wð Þys23:

ð11Þ

Consider now the case where the prediction location s is randomly chosen within

the TIN triangle, which entails that the parameters w and y are themselves randomly

generated from a triangular and a uniform distribution, respectively.

Figure 3. Alternative example of linear interpolation in a TIN element.

830 P. C. Kyriakidis and M. F. Goodchild
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More precisely, W,Tri [0, 1], with mode 0, and Y,Unif [0, 1]; in addition, the two

RVs W and Y are uncorrelated, i.e. Cov{W, Y}50. The mean of the trian-

gular RV W is E{W}51/3, and its variance is Var{W}51/18. The expected value of W2

is

E W2
� �

~Var Wf gz E Wf g½ �2~ 1

18
z

1

9
~

1

6
:

The complement RV (12W) also has a triangular distribution in [0, 1], with mode

1; its mean is E{(12W)}52/3, and its variance is Var{(12W)}51/18 (Evans et al.

2000). The expected value of (12W)2 is

E 1{Wð Þ2
n o

~Var 1{Wð Þf gz E 1{Wð Þf g½ �2~ 1

18
z

4

9
~

1

2
:

The mean and variance of the uniform RVs Y and (12Y) are E{Y}5

1/25E{(12Y)} and Var{Y}51/125Var{(12Y)}. The expected value of Y2 and

(12Y)2 is

E Y2
� �

~Var Yf gz E Yf g½ �2~ 1

12
z

1

4
~

4

12
~

1

3
~E 1{Yð Þ2

n o

:

The average variance of the predictor RV bZZ over randomly chosen locations is

obtained by taking the expectation of equation (11) with respect to the (now

random) parameters W and Y:

E Var bZZ
n on o

~E 1{Wð Þ2 1{Yð Þ2
n o

s11zE W2
� �

s22

zE 1{Wð Þ2Y2
n o

s33z2E 1{Wð Þ 1{Yð ÞWf gs12

z2E 1{Wð Þ2 1{Yð ÞY
n o

s13z2E W 1{Wð ÞYf gs23:

ð12Þ

Let us now focus on the individual terms of equation (12). In the equations that

follow, we will use the fact that for two independent RVs X and Y, and for two

arbitrary functions f(X) and g(Y): E{f(X)g(Y)}5E{f(X)}E{g(Y)}. In other words,

the expected value of the product of two RVs that are defined as functions of

other independent RVs can be factored into the product of the individual

expectations:

E 1{Wð Þ2 1{Yð Þ2
n o

~E 1{Wð Þ2
n o

E 1{Yð Þ2
n o

~
1

2

1

3
~

1

6

E 1{Wð Þ2Y2
n o

~E 1{Wð Þ2
n o

E Y2
� �

~
1

2

1

3
~

1

6

2E 1{Wð Þ 1{Yð ÞWf g~2E 1{Wð ÞWf gE 1{Yð Þf g

~2 E Wf g{E W2
� �� �

E 1{Yð Þf g~2
1

3
{

1

6

� �

1

2
~

1

6
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2E 1{Wð Þ2 1{Yð ÞY
n o

~2E 1{Wð Þ2
n o

E 1{Yð ÞYf g

~2E 1{Wð Þ2
n o

E Yf g{E Y2
� �� �

~2
1

2

1

2
{

1

3

� �

~
1

6

2E W 1{Wð ÞYf g~2E W 1{Wð Þf gE Yf g

~2 E Wf g{E W2
� �� �

E Yf g~2
1

3
{

1

6

� �

1

2
~

1

6
:

Based on the above results, equation (12) becomes

E Var bZZ
n on o

~
1

6
s11zs22zs33zs12zs13zs23ð Þ, ð13Þ

which is identical with equation (10) of Section 3.

5. Bilinear interpolation in a rectangle

Consider the rectangle of figure 4 with vertices s15(x1, y1), s25(x1, y2), s35(x2, y2)

and s45(x2, y1), as well as a randomly chosen (but fixed) location in that rectangle

with coordinate vector s5(x, y). The sample measurements at the four vertices are

denoted as z15z(s1), z25z(s2), z35z(s3) and z45z(s4). Let sT5(x, y2) and sB5(x, y1)

denote the coordinates of the top and bottom endpoints of a line segment drawn

from s parallel to the rectangle side s1, s2. Let w denote the proportion of distance

between sB and s4 to the total distance of side s1, s4, and let y denote the proportion

of distance between s and sT to the total distance of side s1, s2.

Bilinear interpolation at location s proceeds by first performing linear

interpolation at points sT and sB from the measurement pairs z2, z3 and z1, z4,

respectively, to obtain predicted values bzzB~bzz sBð Þ and bzzT~bzz sTð Þ as

bzzB~wz1z 1{wð Þz4 and bzzT~wz2z 1{wð Þz3:

Figure 4. Example of bilinear interpolation in a rectangle.
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The final prediction bzz~bzz sð Þ at location s is obtained via linear interpolation

between sT and sB using the previously derived predictions bzzT and bzzB:

bzz~ybzzBz 1{yð ÞbzzT~y wz1z 1{wð Þz4½ �z 1{yð Þ wz2z 1{wð Þz3½ �

~wyz1zw 1{yð Þz2z 1{wð Þ 1{yð Þz3z 1{wð Þyz4

~w1z1zw2z2zw3z3zw4z4,

where w15wy, w25w(12y), w35(12w)(12y) and w45(12w)y.

It is also evident that the weights are proportional to the areas of the sub-

rectangles formed by the prediction location s, the endpoints sT, sB, sL, sR of the line

segments in the rectangle of figure 4, and the rectangle vertices. For example,

w1~wy~
sR{sk k
s4{s1k k

sT{sk k
s2{s1k k~

a{1

a
,

where :k k denotes a vector norm and a21 denotes the area of the sub-rectangle

formed by vertex s3 (opposite to s1, hence the notation a21), points sR, sT and the

prediction location s. Note also that S4
i~1wi~1, by construction.

When the attribute measurements z1, z2, z3 and z4 are treated as outcomes of spatially

correlated RVs Z1, Z2, Z3 and Z4, one defines the predictor RV bZZ~bZZ sð Þ at location s as

bZZ~w1Z1zw2Z2zw3Z3zw4Z4:

The variance of the predictor RV bZZ is expressed as

Var bZZ
n o

~Var w1Z1zw2Z2zw3Z3zw4Z4f g~
XX

4

i~1

wisiiz2
XX

i

XX

j>i

wiwjsij

~w2y2s11zw2 1{yð Þ2s22z 1{wð Þ2 1{yð Þ2s33z 1{wð Þ2y2s44

z2w2y 1{yð Þs12z2w 1{wð Þy 1{yð Þs13z2w 1{wð Þy2s14

z2w 1{wð Þ 1{yð Þ2s23z2w 1{wð Þy 1{yð Þs24z2 1{wð Þ2y 1{yð Þs34:

ð14Þ

Consider now the case where the prediction location s is randomly chosen within

the rectangle. This entails that the parameters w and y are realizations of

uncorrelated RVs W and Y that follow a uniform distribution in [0, 1]. In addition,

the weights wi are also random, since they are functions of w and y.

The average variance of the predictor RV bZZ over randomly chosen locations is

obtained by taking the expectation of equation (14) with respect to the (now

random) weights:

E Var bZZ
n on o

~E
XX

4

i~1

Wisiiz2
XX

i

XX

j>i

Wiwjsij

( )

~
XX

4

i~1

E Wif gsiiz2
XX

i

XX

j>i

E WiWj

� �

sij

~E W2Y2
� �

s11zE W2 1{Yð Þ2
n o

s22zE 1{Wð Þ2 1{Yð Þ2
n o

s33

zE 1{Wð Þ2Y2
n o

s44z2E W2Y 1{Yð Þ
� �

s12z2E W 1{Wð ÞY 1{Yð Þf gs13

z2E W 1{Wð ÞY2
� �

s14z2E W 1{Wð Þ 1{Yð Þ2
n o

s23

z2E W 1{Wð ÞY 1{Yð Þf gs24z2E 1{Wð Þ2Y 1{Yð Þ
n o

s34:

ð15Þ
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For an RV with uniform distribution in [0, 1],

E W2
� �

~Var Wf gz E Wf g½ �2~ 1

12
z

1

4
~

1

3
~E 1{Wð Þ2

n o

~E 1{Yð Þ2
n o

~E Y2
� �

,

since the mean and variance of W are 1/2 and 1/12, respectively.

Similarly, for an RV with uniform distribution in [0, 1]:

E W 1{Wð Þf g~E Wf g{E W2
� �

~
1

2
{

1

3
~

1

6
~E Y 1{Yð Þf g:

For two independent RVs W and Y, each uniformly distributed in [0, 1]:

E W2Y2
� �

~E W2
� �

E Y2
� �

~
1

3

1

3
~

1

9

~E 1{Wð Þ2Y2
n o

~E W2 1{Yð Þ2
n o

~E 1{Wð Þ2 1{Yð Þ2
n o

:

By accounting for the above results, equation (15) becomes

E Var bZZ
n on o

~
1

9
s11zs22zs33zs44½ �

z2
1

3

1

6
s12z2

1

6

1

6
s13z2

1

6

1

3
s14z2

1

6

1

3
s23z2

1

6

1

6
s24z2

1

3

1

6
s34

~
1

9
s11zs22zs33zs44zs12zs14zs23zs34z

1

2
s13zs24ð Þ

� �

:

ð16Þ

For the special case of unit variances sii51, ;i and zero covariances sij50, ;i, j,

equation (16) simplifies to

E Var bZZ
n on o

~
4

9
:

6. General geostatistical formulation

In this section, we place spatial interpolation within a general geostatistical

framework; the results given hereafter are then simplified in Section 7 to yield the

three interpolation methods considered in this work as particular cases. It is

demonstrated that different assumptions regarding the origin of measurement error

lead to different prediction objectives and associated predicted values and error

variances. Note that, in what follows, we loosely use the term surface to refer to a
profile in 1D or an actual surface in 2D.

Consider the following linear regression model:

z~mzr~Fbz qzeð Þ~pze, ð17Þ

where z5[z(si), i51, …, n]9 denotes an (n61) vector of measurements (sample data),

m5[m(si), i51, …, n]9 denotes an (n61) vector of mean values with m5Fb,
where F5[fk(si), i51, …, n, k51, …, K] is an (n6K) design matrix with fk(si)

being the value of the kth predictor variable at the ith sample location si (by
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convention, f1(si)51, ;i), and b5[bk, k51, …, K]9 is a (K61) vector of regression

coefficients; r5[r(si), i51, …, n]9 denotes an (n61) vector of regression residuals,

which is composed of an (n61) vector e5[e(si), i51, …, n]9 associated with

measurement error and an (n61) vector q5[q(si), i51, …, n]9 not associated

with such error; p5m + q5z2e denotes the (n61) vector of ‘signal’ values, i.e. p is

the composite of all components of z-variability not associated with measurement

error.

In this section we consider: (i) an arbitrary design matrix F, the only requirement

being that it be of full rank, and (ii) the general over-determined case, whereby the

number of observations is larger than the number of parameters involved in the

regression model of equation (17), i.e. n.K. In Section 7, we consider: (i) particular

design matrices populated with the coordinate values of the sample locations, and

(ii) the completely determined case of n5K; the latter items (i) and (ii) jointly

comprise the setting of the three spatial interpolation methods considered in this

work.

The linear model of equation (17) decomposes the spatial variability of the

data vector z into a deterministic mean component (drift) m5E{z|F}5Fb, and a

stochastic residual component r; such a decomposition is unavoidably subjective,

since no data exist on either m or r (Ripley 1981, Cressie 1993, Chilès and Delfiner

1999). The mean component m accounts for spatial variability due to the predictor

data stored in vector F (first-order effects), thus modelling the expected (average)

surface, say a line in 1D. It is assumed here that the drift component Fb is correctly

specified in terms of its order (the number K of predictors dictating the number of

columns in F) and its quality (the particular predictors considered to populate F).

The stochastic component r accounts for spatial variability stemming from the

residuals (second-order effects), thus modelling stochastic deviations from the

expected surface. That residual component r is assumed to be composed of two sub-

components q and e. In other words, deviations of the observations z from the

expected surface m arise owing to: (i) the inadequacy of that expected surface to

capture the true surface, and (ii) measurement error. Sub-component q thus models

spatial variability in r due to stochastic deviations from m not attributed to

measurement error, whereas sub-component e models spatial variability in r due

precisely to measurement error.

Typical assumptions of the model of equation (17) include (Ripley 1981, Cressie

1993, Chilès and Delfiner 1999): (i) Cov{r, F}50 – that is, residuals are uncorrelated

with the predictor variables; (ii) r,N(0, SR) – that is, residuals follow a multivariate

Gaussian distribution with zero mean, 0 being an (n61) vector of zeros, and an

(n6n) covariance matrix SR~ sR
ij ~sR si, sj


 �

, i~1, . . . , n, j~1, . . . , n
h i

, where

sR(si, sj) is the residual covariance between sample locations si and sj; (iii) q,N(0,

SQ) and e,N(0, SE) – that is, both sub-components q and e follow a multivariate

Gaussian distribution with zero mean and (n6n) covariance matrices SQ and SE,

respectively; and (iv) Cov{e, q}5Cov{q, F}5Cov{e, F}50 – that is, both sub-

components are uncorrelated with each other, and also uncorrelated with the

predictor variables; since Cov{e, q}50, the residual covariance matrix SR can be

decomposed as: SR5SQ + SE.

Under the general decomposition of equation (17), the objective is to predict the

noise-free component p(s0) of the unavailable measurement z(s0) at location s0. This

general prediction objective falls in the realm of Factorial Universal Kriging (Chilès

and Delfiner 1999), abbreviated here as UKF. The signal component p in

Prediction error variance for spatial interpolation 835
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equation (17), however, can attain two other limit values (which in turn affects the

definition of the sought-after signal), depending on the relative magnitude of the two

residual sub-components q and e (Ripley 1981, Cressie 1993, Chilès and Delfiner

1999).

On one hand, the residual component r could be entirely attributed to measure-

ment error. In this case, q50, and consequently r5e and SR5SE. Equation (17) thus

becomes

z~mzr~Fbze ð18Þ

and the objective here is to obtain bmm s0ð Þ, i.e. a prediction of the unknown mean

component m(s0) at location s0. This prediction objective falls in the realm of

Universal Kriging of the drift (mean) component (Chilès and Delfiner 1999),

abbreviated here as UKM, which coincides with Generalized Least Squares (GLS)

prediction – the letter ‘M’ in the term ‘UKM’ explicates that the prediction objective

pertains to the mean component of the z-attribute.

On the other hand, the contribution of measurement error on the residual

component r could be assumed to be null. In this case e50, and consequently r5q

and SR5SQ. Equation (17) thus becomes

z~mzr~Fbzq ð19Þ

and the objective is to obtain bzz s0ð Þ, i.e. a prediction of the unknown attribute value

z(s0) at location s0, since there is no measurement error. This prediction objective

falls in the realm of Universal Kriging of the attribute itself (Chilès and Delfiner

1999), abbreviated here as UKZ – the letter ‘Z’ in term ‘UKZ’ explicates that the

prediction objective pertains to the z-attribute itself.

In what follows, we label as Model I the case of equation (18) corresponding to

complete domination of measurement error, as Model II the case of equation (19)

corresponding to complete absence of measurement error, and as Model III the

general case of equation (17). We derive the predictions and associated prediction

error variances for these three models for the over-determined case (n.K) and for

arbitrary sampling configurations. The completely determined case (n5K) for the

particular sampling configurations considered in 1D linear interpolation, TIN and

bilinear interpolation is treated in Section 7.

6.1 Spatial prediction under Model I

The UKM prediction bmm s0ð Þ of the unknown mean component m(s0) at location s0

is written as a weighted linear combination of the entries of the measurement

vector z:

bmm s0ð Þ~ wM
0


 �’
z, ð20Þ

where wM
0 ~ wM

i s0ð Þ, i~1, . . . , n
� �’

denotes an (n61) vector of UKM weights.

Unbiasedness of prediction, i.e. E bMM s0ð Þ
n o

~E M s0ð Þf g~m s0ð Þ, is ensured by

imposing the constraints F0wM
0 ~f0 on the UKM weights for every prediction

location s0 (Chilès and Delfiner 1999), where f05[fk(s0), k51, …, K]9 denotes the

(K61) vector of predictor variables at location s0, with fk(s0) being the value of the

kth variable at that location; by convention, f1(s0)51.
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The UKM weights vector wM
0 is obtained by solving the following system of

equations (Chilès and Delfiner 1999):

SR F

F0 O

� �

wM
0

{tM
0

" #

~
0

f0

� �

,

where O denotes a (K6K) matrix of zeros, and tM
0 ~ tM

k s0ð Þ, k~1, . . . , K
� �’

denotes

a (K61) vector of Lagrange multipliers (due to the constraints on the weights). Note

again that, under Model I, the residual covariance is identified with the covariance

of the measurement error component, i.e. SR5SE.

The solution to the above system of equations can be analytically derived using

the inverse of a partitioned matrix as (Searle 1982):

wM
0

{tM
0

" #

~
S{1

R {S{1
R FAF0S{1

R S{1
R FA

AF0S{1
R {A

" #

0

f0

� �

, ð21Þ

where A~ F0S{1
R F


 �{1
is a (K6K) symmetric matrix.

From equation (21), the UKM weights vector wM
0 can be expressed as

wM
0 ~S{1

R FAf0~S{1
R F F0S{1

R F

 �{1

f0, ð22Þ

and consequently the UKM prediction bmm s0ð Þ of equation (20) becomes

bmm s0ð Þ~ wM
0


 �’
z~ f 00AF0S{1

R

� �

z~ f 00 F0S{1
R F


 �{1
F0S{1

R

h i

z~f 00
bbb, ð23Þ

where A95A and S{1
R


 �’
~S{1

R , because both A and S{1
R are symmetric matrices; bbb

is the (K61) vector of GLS regression coefficients:

bbb~AF
0
S{1

R z~ F0S{1
R F


 �{1
F0S{1

R z, ð24Þ

and it is a function of the covariance SR of the measurement error component

adopted in Model I.

Note that, in the over-determined case (n.K), the UKM predictions derived from

equation (23) do not reproduce the data values at their locations; in other words, UKM

is generally a smoother, not an interpolator, no matter what the covariance matrix SR is.

From equation (21), the vector tM
0 of UKM Lagrange multipliers can be written as

tM
0 ~Af0, leading to the following expression for the UKM prediction error variance
bssM s0ð Þ for the unknown local mean component m(s0) (Chilès and Delfiner 1999):

bssM s0ð Þ~ tM
0


 �’
f0~f 00Af0~ f 00 F0S{1

R F

 �{1

h i

f0, ð25Þ

where A can be seen as the (K6K) covariance matrix of the estimated regression

coefficients in vector bbb.

For a given sample configuration and a given residual covariogram model, i.e. for

a given residual covariance matrix SR, the spatial pattern of the UKM error

variance bssM s0ð Þ is dictated by the relative magnitude of f0 with respect to the

columns of the design matrix F appearing in A. It is well known from classical

regression theory (Searle 1971), that (when residual variances are equal) the

prediction variance for the mean component bssM s0ð Þ attains its minimum for that f0

vector whose entries are the mean values of each predictor variable. In our case,
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whereby the predictor variables are (functions of) location coordinates, the UKM

prediction error variance bssM s0ð Þ attains larger values at the sample locations, since

at those locations the corresponding coordinates differ more from their mean.

When an arbitrary (yet positive-definite) residual covariance matrix SR5SE is

used for the measurement errors in the above equations, the UKM prediction of the

mean component bmm s0ð Þ and the associated error variance bssM s0ð Þ coincide with those

obtained via GLS. When that covariance matrix SR is diagonal, with the entries

along its main diagonal taken from vector [sR(si), i51, …, n]9, where sR(si) denotes

the measurement error variance at location si, then the UKM prediction and

associated error variance coincide with those obtained via Weighted Least Squares

(WLS). Lastly, when SR is still diagonal, but with constant entries along its main

diagonal, i.e. SR5sRI, where sR denotes the overall variance of the measurement

errors and I denotes the (n6n) identity matrix, the UKM prediction and associated

error variance coincide with Ordinary Least Squares (OLS). When the elements of vector

f0 and matrix F are functions of coordinates, this latter OLS case corresponds to classical

trend surface analysis. It should be noted again that, in the over-determined case (n.K),

trend surface fitting does not reproduce the data values at their sample locations; in

other words, trend surface models are generally smoothers, not interpolators.

6.2 Spatial prediction under Model II

The UKZ prediction bzz s0ð Þ of the unknown, noise-free, attribute value z(s0) at location

s0 is again written as a weighted linear combination of the entries of the data vector z:

bzz s0ð Þ~ wZ
0


 �’
z, ð26Þ

where wZ
0 ~ wZ

i s0ð Þ, i~1, . . . , n
� �’

denotes the (n61) vector of UKZ weights for

prediction at s0.

Unbiasedness of prediction, i.e. E bZZ s0ð Þ
n o

~E Z s0ð Þf g~m s0ð Þ, is ensured by

imposing the constraints F0wZ
0 ~f0 on the UKZ weights for every prediction location

s0 (Chilès and Delfiner 1999).

The UKZ weights vector wZ
0 is obtained by solving the following system of

equations (Chilès and Delfiner 1999):

SR F

F0 O

� �

wZ
0

{tZ
0

" #

~
sR

0

f0

� �

,

where tZ
0 ~ tZ

k s0ð Þ, k~1, . . . , K
� �’

denotes a (K61) vector of Lagrange multipliers,

and sR
0 ~ sR s0, sið Þ, i~1, . . . , n½ �’ denotes an (n61) vector of residual covariance

values between the prediction location s0 and all n data locations.

The solution to the above system of equations can again be derived analytically

using the inverse of a partitioned matrix:

wZ
0

{tZ
0

" #

~
S{1

R {S{1
R FAF0S{1

R S{1
R FA

AF0S{1
R {A

" #

sR
0

f0

� �

: ð27Þ

From equation (27), the resulting UKZ weights vector wZ
0 can be written as

wZ
0 ~S{1

R FAf0z I{S{1
R FAF0


 �

S{1
R sR

0 , ð28Þ
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and consequently the UKZ attribute prediction bzz s0ð Þ of equation (26) becomes

bzz s0ð Þ~ wZ
0


 �’
z~f 00AF0S{1

R zz sR
0


 �’
S{1

R I{FAF0S{1
R


 �

z

~f 00
bbbz lR

0


 �’
z{Fbbb
� 

~bmm s0ð Þzbrr s0ð Þ,
ð29Þ

where lR
0 ~S{1

R sR
0 is the (n61) vector of Simple Kriging (SK) weights for predicting

the unknown residual r(s0) at location s0 from vector brr~z{Fbbb containing ‘data’

residuals at the n sample locations.

Equation (29) entails that the UKZ attribute prediction bzz s0ð Þ at location s0 is

composed of two distinct contributions: (i) a contribution bmm s0ð Þ~f 00
bbb linked to the

predictor variables, and thus incorporating first-order effects in the form of an

expected surface – see equation (23); and (ii) a contribution brr s0ð Þ linked to the the

covariogram model used to populate matrix SR and vector sR
0 . When no drift is

considered (or, better stated, when the the mean component m is assumed constant),

the smoothness of the predicted UKZ attribute surface is dictated only by the

covariogram model of the residual component r. In the over-determined case (n.K),

the UKZ predictions derived from equation (29) reproduce the data values at their

locations; in other words, UKZ is an interpolator not a smoother, no matter what the

residual covariance matrix SR is.

From equation (27), the vector of UKZ Lagrange multipliers can be written as

tZ
0 ~Af0{AF0lR

0 ~A f0{F0lR
0


 �

, and consequently the UKZ prediction error

variance bssZ s0ð Þ at location s0 becomes

bssZ s0ð Þ~sR s0ð Þ{ wZ
0


 �’
sR

0 z tZ
0


 �’
f0

~ sR s0ð Þ{ lR
0


 �’
sR

0

h i

z f0{F0lR
0

� �’
A f0{F0lR

0

� �

,
ð30Þ

where sR s0ð Þ{ lR
0


 �’
sR

0 is the SK error variance for predicting the unknown residual

r(s0), and sR(s0) is the variance of that residual at s0 prior to accounting for nearby

data.

Note that, in the last term of equation (30), one needs to subtract the product F0lR
0

from vector f0. If this adjustment was (incorrectly) not performed, then the second

term would identify the UKM prediction error variance bssM s0ð Þ~f 00Af0 of the mean

component m(s0), and the corresponding UKZ variance bssZ s0ð Þ would (incorrectly)

be different from zero at the sample locations. Instead, the adjustment term F0lR
0

reduces the contribution of f0 in the term f0{F0lR
0

� �’
A f0{F0lR

0

� �

as a function of

the distance of the prediction location s0 from the sample locations; that distance

influence is embedded in the SK weights vector lR
0 . In general, when the prediction

location s0 is close to sample locations, the entries of lR
0 tend to be larger than when

s0 is far away from sample locations. Consequently, F0lR
0 tends to increase in the

former case, which entails that f0{F0lR
0

� �

decreases, thus lowering the contribution

of term f0{F0lR
0

� �’
A f0{F0lR

0

� �

in the final value of bssZ s0ð Þ. If the prediction

location s0 coincides with a sample location si, then vector lR
0 becomes lR

i with

entries lR
i sið Þ~1, and lR

j sið Þ~0, Vj=i, in which case F0lR
i ~f i. Since the SK

variance is always zero at the sample locations, because lR
i


 �’
sR

i ~sR sið Þ, the

composite UKZ variance bssZ sið Þ also becomes zero. As opposed to the UKM

prediction error variance bssM s0ð Þ for the mean component, the UKZ prediction error

variance bssZ s0ð Þ for the attribute itself attains its maximum away from sample

locations, and decreases as the prediction location s0 lies closer to sample locations.

Prediction error variance for spatial interpolation 839
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6.3 Spatial prediction under Model III

Lastly, the UKF signal prediction bpp s0ð Þ at location s0 is again expressed as a

weighted linear combination of the entries of the data vector z:

bpp s0ð Þ~ wP
0


 �’
z, ð31Þ

where wP
0 ~ wP

i s0ð Þ, i~1, . . . , n
� �’

denotes the (n61) vector of UKF weights.

Unbiasedness of prediction, i.e. E bPP s0ð Þ
n o

~E P s0ð Þf g~m s0ð Þ, is ensured by

imposing the constraints F0wP
0 ~f0 on the UKF weights for every prediction location

s0 (Chilès and Delfiner 1999).

The UKF weights vector wP
0 is obtained by solving the following system of

equations (Chilès and Delfiner 1999):

SR F

F0 O

� �

wP
0

{tP
0

" #

~
sQ

0

f0

" #

,

where tP
0 ~ tP

k s0ð Þ, k~1, . . . , K
� �’

denotes a (K61) vector of UKF Lagrange

multipliers, and sQ
0 ~ sQ s0, sið Þ, i~1, . . . , n

� �’
is an (n61) vector containing q-

residual covariance values between s0 and all n sample locations. Note that

sQ
0 ~sR

0 {sE
0 , with sE

0 ~ sE s0, sið Þ, i~1, . . . , n½ �’ being an (n61) vector of e-residual

covariance values between s0 and all sample locations. This relationship holds

because the two residual components q and e are assumed uncorrelated (Chilès and

Delfiner 1999).

The solution to the above system of equations can again be derived analytically

using the inverse of a partitioned matrix:

wP
0

{tP
0

" #

~
S{1

R {S{1
R FAF0S{1

R S{1
R FA

AF0S{1
R {A

" #

sQ
0

f0

" #

: ð32Þ

From equation (32), the resulting UKF weights vector wP
0 can be written as

wP
0 ~S{1

R FAf0z I{S{1
R FAF0


 �

S{1
R s

Q
0 , ð33Þ

entailing that the UKF prediction bpp s0ð Þ of equation (31) becomes

bpp s0ð Þ~ wP
0


 �’
z~f 00AF0S{1

R zz sQ
0

� ’
S{1

R I{FAF0S{1
R


 �

z

~f 00bbbz l
Q
0

� ’
z{Fbbb
� 

~bmm s0ð Þzbqq s0ð Þ

~f 00bbbz lR
0 {lE

0


 �’
z{Fbbb
� 

~f 00bbbz lR
0


 �’
z{Fbbb
� 

{ lE
0


 �’
z{Fbbb
� 

~bmm s0ð Þzbzz s0ð Þ{bee s0ð Þ,

ð34Þ

where l
Q
0 ~S{1

R sQ
0 and lE

0 ~S{1
R sE

0 denote (n61) vectors of Simple coKriging

(SCK) weights for predicting the unknown q-residual q(s0) and measurement error

e(s0), respectively, at location s0 from vector brr~z{Fbbb containing r-residuals at the n

sample locations. Relationship l
Q
0 ~lR

0 {lE
0 is obtained from sQ

0 ~sR
0 {sE

0 .
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Equation (34) entails that the UKF prediction can be seen as a UKZ prediction

bmm s0ð Þzbrr s0ð Þ minus a prediction bee s0ð Þ of the measurement error. In other words, one

performs UKZ as if the objective were to predict the noisy attribute value z(s0), and

then subtracts from that prediction bzz s0ð Þ a prediction of the measurement error at

the same location. This latter prediction bee s0ð Þ is again derived from the residual

vector r5z2Fb, since the only data available are the measurements in vector z. As

opposed to the UKZ prediction bzz s0ð Þ, the UKF prediction bpp bfs0ð Þ does not

reproduce the measurements at their sampling locations. More precisely, when the

prediction location s0 coincides with a sample location si, then bzz sið Þ~z sið Þ but

bpp sið Þ~z sið Þ{bee sið Þ. This smoothing (not interpolating) property of UKF at the

sample locations is precisely a consequence of filtering out the measurement

error from the corresponding UKZ prediction. In the over-determined case

(n.K), the UKF predictions derived from equation (34) do not reproduce the data

values at their locations; in other words, UKF is generally a smoother, not an

interpolator.

From equation (32), the vector of UKF Lagrange multipliers can be written as

tP
0 ~Af0{AF0lQ

0 ~A f0{F0lQ
0

h i

, and consequently the UKF prediction error

variance bssP s0ð Þ at location s0 becomes

bssP s0ð Þ~sQ s0ð Þ{ wP
0


 �’
sQ

0 z tP
0


 �’
f0

~ sQ s0ð Þ{ l
Q
0

� ’
sQ

0

� �

z f0{F0lQ
0

h i’
A f0{F0lQ

0

h i

,
ð35Þ

where sQ(s0) is the variance of the residual q-component at location s0 prior to

accounting for nearby data.

As opposed to the UKM prediction error variance bssM s0ð Þ given in equation (25),

which increases towards the sample locations, the UKF variance bssP s0ð Þ decreases as

the prediction location s0 approaches the sample locations; this is in agreement with

the general spatial pattern of the UKZ prediction error variance bssZ s0ð Þ given in

equation (30). The UKF variance, however, is generally smaller than the UKZ

variance, i.e. bssP s0ð ÞvbssZ s0ð Þ, because the signal is less variable than the attribute

(since the latter has the added variability of measurement error). This is not true

at the sample locations, where UKF variance bssP s0ð Þ does not become zero, precisely

owing to the variance of the measurement error. In other words, since the

data are corrupted by measurement error, the prediction error variance at

sample locations is greater than zero, indicating a lack of confidence in the

measurements.

7. Particular cases of the geostatistical formulation

In the completely determined case, i.e. when the number of parameters equals the

number of observations (K5n), all equations given in the previous section attain

simplified versions. With these simplifications, and under appropriate definitions of

matrix F and vector f0 (i.e. using appropriate predictors), 1D linear interpolation,

TIN and bilinear interpolation, can be regarded as particular cases of the general

geostatistical framework.

Prediction error variance for spatial interpolation 841
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More precisely, in the case of 1D piecewise linear interpolation (see figure 1), n52,

K52, and equation (17) becomes

z1

z2

� �

~
1 x1

1 x2

� �

b1

b2

� �

z
r1

r2

� �

:

Similarly, in the case of linear interpolation based on three TIN vertices (see

figure 2), n53, K53, and equation (17) becomes

z1

z2

z3

2

6

4

3

7

5~

1 x1 y1

1 x2 y2

1 x3 y3

2

6

4

3

7

5

b1

b2

b3

2

6

4

3

7

5z

r1

r2

r3

2

6

4

3

7

5:

Lastly, in the case of bilinear interpolation in a rectangle (see figure 4), n54, K54,

and equation (17) becomes

z1

z2

z3

z4

2

6

6

6

4

3

7

7

7

5

~

1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y2 x2y2

1 x2 y1 x2y1

2

6

6

6

4

3

7

7

7

5

b1

b2

b3

b4

2

6

6

6

4

3

7

7

7

5

z

r1

r2

r3

r4

2

6

6

6

4

3

7

7

7

5

:

In what follows, we prove that in the completely determined case and when the

predictors are the particular functions of coordinates given above: (i) the weights

derived via UKM, UKZ, and UKF, are all identical; and (ii) these geostatistically

derived weights coincide with the weights traditionally used for 1D linear

interpolation, TIN and bilinear interpolation. Naturally, if different predictors

were adopted, the above statement would not hold, because the definition of the

expected surface would be different. It is beyond the scope of this paper to derive

prediction error variances for such cases.

7.1 Kriging weights

Consider the UKM weights vector wM
0 given explicitly in equation (22). In the

completely determined case (n5K), matrix F is not any more of size (n6K) but of

size (K6K), and thus can be inverted directly since it is square (provided it is of full

rank). Consequently, equation (22) can be simplified to

wM
0 ~S{1

R FF{1SR F0ð Þ{1
f0~ F0ð Þ{1

f0,

which entails that the UKM weights do not depend on the measurement error (or

residual) covariance matrix SR5SE.

Similarly, equation (28) giving the UKZ weights vector wZ
0 simplifies to

wZ
0 ~wM

0 z I{S{1
R FF{1SR F0ð Þ{1

F0
h i

lR
0 ~wM

0 z I{I½ �lR
0 ~wM

0 ,

which entails that the UKZ weights also do not depend on the residual covariance

matrix SR, and are equal to the UKM weights.

Lastly, equation (33) giving the UKF weights vector wP
0 simplifies to

wP
0 ~wM

0 z I{S{1
R FF{1SR F0ð Þ{1

F0
h i

l
Q
0 ~ I{I½ �lQ

0 ~wM
0 ,
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which entails that the UKF weights also do not depend on the residual covariance

matrix SR, and are equal to the UKM and UKZ weights.

We hereafter demonstrate that, in the completely determined case and for the

particular predictors used above, the Universal Kriging weights coincide with the

weights used in classical 1D linear interpolation, TIN interpolation and bilinear

interpolation. In what follows, we denote as w5[wi, i51, …, n]9 the generic weights

vector obtained by UKM, UKZ or UKF. For notational simplicity, we denote the

prediction location as s, and we do not explicate the dependence of vectors w and f

on s. Our demonstration is based on Cramer’s rule, which entails that w can be

generally computed as

w1

..

.

wi

..

.

wn

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

~

F0{1j j
F0j j

..

.

F0{ij j
F0j j

..

.

F0{nj j
F0j j

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

, ð36Þ

where |?| denotes a matrix determinant, and F92i denotes a matrix formed by

replacing the ith column of F9 by vector f.

For 1D linear interpolation, the vector w of UK weights is computed from

equation (36) as

w1

w2

� �

~
1

F0j j
F0{1

�

�

�

�

F0{2

�

�

�

�

" #

~
1

1 1

x1 x2

�

�

�

�

�

�

�

�

1 1

x x2

�

�

�

�

�

�

�

�

1 1

x1 x

�

�

�

�

�

�

�

�

2

6

6

6

4

3

7

7

7

5

~
1

x2{x1ð Þ
x2{x

x{x1

� �

,

which is precisely the vector of weights used for 1D linear interpolation. Note that,

in this case, the determinant |F9| is equal to the length of segment s1, s2. Similarly,

|F921| is the length of segment s2, s, and |F922| is the length of segment s, s1.

For TIN interpolation, the vector w of UK weights is computed from

equation (36) as

w1

w2

w3

2

6

4

3

7

5~
1

F0j j

F0{1

�

�

�

�

F0{2

�

�

�

�

F0{3

�

�

�

�

2

6

4

3

7

5~
1

1 1 1

x1 x2 x3

y1 y2 y3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1

x x2 x3

y y2 y3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1

x1 x x3

y1 y y3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1

x1 x2 x

y1 y2 y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

~
1

a

a{1

a{2

a{3

2

6

4

3

7

5,

where a5|F9|/2 denotes the area of the TIN element, and a2i5|F92i|/2 denotes the

area of the sub-triangle formed by the prediction location s and the two TIN vertices

excluding si; these are precisely the weights used for TIN interpolation.
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For bilinear interpolation, the vector w of UK weights is computed from

equation (36):

w1

w2

w3

w4

2

6

6

6

4

3

7

7

7

5

~
1

F0j j

F0{1

�

�

�

�

F0{2

�

�

�

�

F0{3

�

�

�

�

F0{4

�

�

�

�

2

6

6

6

6

4

3

7

7

7

7

5

~
1

1 1 1 1

x1 x1 x2 x2

y1 y2 y2 y1

x1y1 x1y2 x2y2 x2y1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1

x x1 x2 x2

y y2 y2 y1

xy x1y2 x2y2 x2y1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1

x1 x x2 x2

y1 y y2 y1

x1y1 xy x2y2 x2y1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1

x1 x1 x x2

y1 y2 y y1

x1y1 x1y2 xy x2y1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 1

x1 x1 x2 x

y1 y2 y2 y

x1y1 x1y2 x2y2 xy

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Let us focus, without loss of generality, on the first element w1 of the solution

weights vector. After calculating the determinants |F9| and |F921|, and simplifying the

resulting expressions, one obtains

w1~
x2y2{x2y{xy2zxy

x1y1zx2y2{x1y2{x2y1
~

a{1

a
: ð37Þ

Indeed, the numerator of equation (37) is the area a21 of the sub-rectangle formed

by the prediction location s5(x, y), the two points sT5(x, y2), sR5(x2, y), and vertex

s35(x2, y2) opposite to s1 (see figure 4):

a{1~ sR{sk k sT{sk k~ x2{xð Þ y2{yð Þ~x2y2{x2y{xy2zxy:

Similarly, the denominator of equation (37) is the total area a of the rectangle

element (see figure 4):

a~ s4{s1k k s2{s1k k~ x2{x1ð Þ y2{y1ð Þ~x2y2{x2y1{x1y2zx1y1:

In other words, for bilinear interpolation, the UK weight w1 assigned to the

measurement z1 at the rectangle vertex s1 is proportional to the area a21 of the sub-

rectangle formed by the prediction location s, points sT, sR and the vertex s3 opposite

to s1. The proportionality constant is the total rectangle area a. Analogous results

can be obtained for the other weights w2, w3 and w4.

It is also straightforward to corroborate that the weights used for 1D linear

interpolation, TIN interpolation and bilinear interpolation satisfy the UK

844 P. C. Kyriakidis and M. F. Goodchild
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constraints F9w5f, using the appropriate definitions of F, w and f. Indeed, for 1D

linear interpolation

F0w~
1 1

x1 x2

� � x2{x
x2{x1

x{x1

x2{x1

" #

~

x2{xzx{x1

x2{x1

x1x2{xx1zxx2{x1x2

x2{x1

" #

~
1

x

� �

~f,

and similar results can be obtained for the weights used for TIN and bilinear

interpolation in 2D. This feature should be expected, since the weights vector w

derived by UKM, UKZ or UKF satisfies the constraint F9w5f by construction.

In summary, we have demonstrated in this section that: in the completely

determined case and for the particular predictors adopted, the weights obtained via

different variants of Universal Kriging coincide with the weights used in 1D linear

interpolation, TIN interpolation and bilinear interpolation.

7.2 Kriging predictions

It is trivial to deduce that, since all UK variants considered in this work yield

identical weights in the completely determined case, the corresponding predictions

given in equations (20), (26) and (31) will also be identical with each other. In what

follows, we provide more insight into this equivalence of predictions based on their

exact decompositions given in equations (23), (29) and (34).

Consider the vector bbb of UKM (or GLS) regression coefficients given in

equation (24). In the completely determined case, that equation simplifies to

bbb~F{1SR F0ð Þ{1
F0S{1

R z~F{1z,

entailing that the estimated vector of regression coefficients bbb does not depend on

the covariance SR5SE of the measurement error (or residual) component.

Consequently, the UKM predicted mean component bmm at the n sample locations

(polygon vertices) can be written as

bmm~Fbbb~FF{1z~z,

entailing that the UKM-derived mean component reproduces (interpolates) the

measurements z at their sampling locations, no matter what the covariance of the

measurement error (or residual) component is. This is a natural consequence of the

completely determined case: in 1D, for example, a line will always pass through two

points, and hence interpolate the corresponding measurements at the endpoints of a line

segment.

As stated in Section 6.1, all three forms of interpolation considered in this work

can be viewed as variants of classical trend surface analysis. The sole difference is

that classical trend surface fitting constitutes a global regression model with (n.K),

and as such does not reproduce the data values at their sample locations. In other

words, trend surface models are smoothers, not interpolators. On the contrary, the

three forms of linear interpolation considered in this work constitute local regression

models whose parameters are specific to a particular polygon. Because precisely the

number of parameters (regression coefficients) of such local regression models are

always equal to the number of data considered (measurements available at the

vertices of each polygon), the resulting trend surfaces always identify (reproduce)

the sample data at the polygon vertices. This feature has led to the (incorrect in our

Prediction error variance for spatial interpolation 845

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
6:

20
 0

1 
A

pr
il 

20
12

 



opinion) classification of these three methods as interpolation methods, rather than

regression methods. Perhaps a more appropriate term would be local, interpolating,

trend surface models.

Consider now the UKZ and UKF predictions bzz s0ð Þ and bpp s0ð Þ, given in

equations (29) and (34). These expressions contain a common term bmm s0ð Þ, and an

extra term that is a function of the residual vector z{Fbbb. Since bmm~Fbbb~z, that

residual vector becomes zero, i.e. z{Fbbb~0, entailing

bmm~bzz~bpp~z,

i.e. in the completely determined case, the predictions at sample locations (polygon

vertices) obtained by any Universal Kriging variant reproduce the available

measurements.

Along the same lines, the UKZ and UKF predictions bzz s0ð Þ and bpp s0ð Þ at any

arbitrary location s0 are equal to the UKM prediction bmm s0ð Þ, since their respective

SK and SCK contributions, the second terms of equations (29) and (34), are null. In

other words, in the completely determined case and for the particular predictors

adopted, if one were to perform linear interpolation along a line segment, TIN

interpolation or bilinear interpolation, one would obtain the same interpolation results

as Universal Kriging (UKM, UKZ or UKF) irrespective of the covariances assumed

for the residual and/or measurement error components.

7.3 Kriging prediction error variances

As opposed to the predictions given by the different UK variants considered in this

work, the associated prediction error variances differ from each other, simply

because the prediction objectives in Models I, II and III are different owing to the

different definitions of measurement error. In what follows, we explicitly derive

these different prediction error variances for the completely determined case (n5K)

and for the particular predictors adopted above.

More precisely, the UKM prediction error variance bssM s0ð Þ for the unknown

mean component m(s0) at location s0, given in equation (25), simplifies to

bssM s0ð Þ~f 00Af0~f 00F{1SR F0ð Þ{1
f0~w00SRw0 ð38Þ

with the latter equation being a quadratic in the weights w0, or in the coordinates f0

of the prediction location s0.

Equation (38) provides the basis for interpreting confidence intervals derived for

points along a line segment, in a TIN element, or in a rectangle. As stated in

Section 6.1, the prediction error variance for the mean component bssM s0ð Þ attains its

minimum for that f0 vector whose entries are the mean values of each predictor

variable. In 1D, for example, that variance is minimum for f05[1 x̄]9, where

x̄5(x22x1)/2 is the mean of the coordinates x1 and x2 of the two endpoints of a line

segment. Conversely, the maximum error variance for the mean component

is attained at the segment endpoints, since at those locations f05[1 x1]9 and f05[1

x2]9, hence the corresponding x-coordinates x1 and x2 are maximally different from

x̄.

Similarly, in the completely determined case, the UKZ prediction error

variance bssZ s0ð Þ for the unknown attribute z(s0) at location s0, given in equation (30),
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becomes

bssZ s0ð Þ~ sR s0ð Þ{ lR
0


 �’
sR

0

h i

z f0{F0lR
0

� �’
F{1SR F0ð Þ{1

f0{F0lR
0

� �

~ sR s0ð Þ{ lR
0


 �’
sR

0

h i

z f 00F{1{ lR
0


 �’
FF{1

h i

SR F0ð Þ{1
f0{ F0ð Þ{1

F0lR
0

h i

~ sR s0ð Þ{ lR
0


 �’
sR

0

h i

z w0{lR
0

� �’
SR w0{lR

0

� �

:

ð39Þ

As with equation (30), the simplified version of UKZ variance for the completely

determined case is the sum of the SK variance sR s0ð Þ{ lR
0


 �’
sR

0

h i

, plus a modified

version w0{lR
0

� �’
SR w{lR

0

� �

of the UKM variance bssM s0ð Þ for the mean component

given in equation (38). That modification is again a function of distance between the

prediction location s0 and the sample locations (again, that distance is embedded in the

SK weights vector lR
0 ). For example, when the prediction location s0 coincides with a

polygon vertex si where a measurement is available, vector lR
0 becomes lR

i with entries

lR
i sið Þ~1, and lR

j sið Þ~0, Vj=i. The corresponding weights vector w0 also becomes wi

with entries wi(si)51, and wj(si)50, ;j?i, since the mean component is also

interpolating the data. Consequently, wi{lR
i

� �

~0, thus cancelling the contribution

of term wi{lR
i

� �’
SR wi{lR

i

� �

to the UKZ variance of equation (39). Since the SK

variance term sR sið Þ{ lR
i


 �’
sR

i

h i

is also zero at a sample location si, the final value for

the UKZ variance bssZ sið Þ is zero, too. Contrary to the UKM prediction error variance
bssM s0ð Þ given in equation (38), which decreases away from the polygon vertices, the

UKZ prediction error variance bssZ s0ð Þ attains its maximum away from those vertices,

simply because the prediction objective in the latter case is that of the unknown

attribute value z(s0), not of the unknown mean component m(s0).

Lastly, in the completely determined case, the UKF prediction error variance
bssP s0ð Þ for the unknown signal p(s0)5m(s0) + q(s0) at location s0, given in

equation (35), becomes

bssP s0ð Þ~ sQ s0ð Þ{ l
Q
0

� ’
sQ

0

� �

z w0{l
Q
0

h i’
SR w0{l

Q
0

h i

, ð40Þ

which is derived in a similar manner as equation (39).

The comments made for the UKZ prediction error variance bssZ s0ð Þ of

equation (39) apply here too. The only difference is that the UKF variance bssP s0ð Þ
does not attain a zero value at the polygon vertices owing to measurement error, and

is lower than the UKZ variance bssZ s0ð Þ apart from the polygon vertices.

Figure 5 gives examples of prediction error variance profiles obtained via: (i)

UKM, (ii) UKZ where the measurement error component is zero (UKZ I), (iii)

UKZ where the measurement error component is present (UKZ II), and (iv) UKF.

In all cases, prediction is performed at points along a line segment with endpoints at

x151 and x2511. The residual covariogram model adopted for cases (i) and (ii) is a

stationary exponential model sR(h)5sR exp (23h/a), with sill (variance of residuals)

sR510 and effective range a510; here h denotes the distance between any two

locations along this line segment; note that for case (i), sR(h)5sE(h). For cases (iii)

and (iv), it is assumed that the covariogram model of the q-component is

sQ(h)55 exp (23h/10), and the error e-component is purely random (i.e. having a

pure nugget effect as its variogram model) with stationary variance sE55. Note that

the total variance (sill) of the residual r-component is still sR5sQ +sE510. The

difference between cases (iii) and (iv) lies in the interpretation of the nugget effect: in
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the latter case, that nugget effect is assumed to pertain to the error e-component of

equation (17), whereas in the former it is assumed to pertain to the q-component of
that equation. As stated in the previous sections, all four cases yield the same

prediction profiles (not shown), no matter what the covariances or the actual

measurements involved are.

From figure 5, one can easily appreciate the differences between the prediction

error variances computed via UKM, UKZ and UKF. The UKZ and UKF variances

of figures 5(B)–5(D) increase away from the sample locations (endpoints of the

segment) and attain their maximum at the segment’s midpoint. This behaviour is

fundamentally different from that exhibited by the UKM variance profile of

figure 5(A). As stated above, this is a consequence of the different prediction
objectives for UKM: mean component m(s0), UKZ: attribute z(s0), and UKF: attribute

minus measurement error p(s0). Note that the difference between the two UKZ variance

profiles shown in figures 5(B) (UKZ I) and 5(C) (UKZ II) is that the latter contains a

nugget effect component, whereas the former does not. The UKZ II variance profile of

figure 5(C) is discontinuous: it has zero values at the segment’s endpoints, and

immediately attains larger positive values (>10) at any interior point.

When compared to the UKZ variance profiles of figures 5(B)–5(C), the UKF

variance profile of figure 5(D) does not reach a zero minimum at the segment’s
endpoints owing precisely to the explicit account of measurement error. In addition,

the UKF variance profile does not reach the same maximum because the prediction

Figure 5. Examples of prediction error variance profiles along a line segment obtained
using: (A) UKM; (B) UKZ (I); (C) UKZ (II); and (D) UKF. See text for details.
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objectives are different in the two cases. In the case of UKF, the prediction objective

is bpp s0ð Þ~bzz s0ð Þ{bee s0ð Þ, as opposed to its ‘noisy’ version bzz s0ð Þ predicted in UKZ. That

signal component p(s0) has less variance than its noisy version z(s0), owing to the

removal (filtering) of the measurement error. The difference between the UKZ and

UKF variance profiles of figures 5(C) and 5(D), at locations other than the

segment’s endpoints, is precisely the variance of the measurement error sE55.

7.4 Average prediction error variance for Model I

We now need to correct the notation used in Sections 2 through 5 in order to explicate

the prediction objective of Model I. More precisely, the predictor RV bZZ~bZZ sð Þ used in

these sections should be denoted as bMM~ bMM sð Þ, since the prediction objective under

Model I is the mean component m5m(s) at any location s, not the attribute z(s) itself.

Consequently, the predictor error variance bssM sð Þ at location s is expanded as

bssM sð Þ~Var bMM{m
n o

~Var bMM
n o

zVar mf g{2 Cov bMM, m
n o

~Var bMM
n o

since the true mean component m(s) is assumed deterministic, hence it has zero variance

and is uncorrelated with any stochastic quantities such as bMM~SiwiZi. This entails that

all the predictor variances given in Sections 2 through 5 are actually prediction error

variances, and hence coincide with the UKM error variance bssM sð Þ given in

equation (38).

In what follows, we derive the average prediction error variance for the mean

component m(s) over an ensemble of random prediction locations. This is

accomplished by taking the expected value of the UKM prediction error variance
bssM sð Þ of equation (38) with respect to the weights vector over that ensemble of

prediction locations. Note that we hereafter drop the superscript ‘M’ and the

subscript ‘0’ from vector wM
0 for notational simplicity.

More precisely, the expected value (average) of the quadratic expression in

equation (38) can be computed as (Johnson and Wichern 2002)

Es bssM sð Þf g~E w0SRwf g~tr SRVWð Þzm0WSRmW, ð41Þ

where tr (?) is the trace of a matrix, VW is the (K6K) variance–covariance matrix of

the weights, and mW is the (K61) vector of expected values of the weights. Subscript

s in the expectation indicates that averaging is performed over the ensemble of

prediction locations.

In the next sections, it is also demonstrated that equation (41) includes as

particular cases equation (4) for linear interpolation along a line segment,

equation (10) for interpolation in a triangle, and equation (16) for bilinear

interpolation in a rectangle, given appropriate definitions of F and f for each case.

7.4.1 Linear interpolation in 1D. For random prediction locations on a line

segment, the resulting weights follow uniform distributions in [0, 1]. Consequently,

their mean is 1/2 and their variance is 1/12. This entails

mW~E wf g~ 1=2 1=2½ �’

and

VW~
Var W1f g Cov W1, W2f g

Cov W2, W1f g Var W2f g

� �

~
1

12
{ 1

12

{ 1
12

1
12

" #

~
1

12

1 {1

{1 1

� �

,
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since Cov{W, (12W)} can be computed as (see also equation 3)

Cov W , 1{Wð Þf g~E W 1{Wð Þf g{E Wf gE 1{Wð Þf g~ 1

6
{

1

4
~{

1

12
:

Therefore equation (41) becomes

Es bssM sð Þf g~ 1

12
tr

sE
11 sE

12

sE
21 sE

22

" #

1 {1

{1 1

" # !

z
1

4
1 1½ �

sE
11 sE

12

sE
21 sE

22

" #

1

1

" # !

~
1

12
sE

11zsE
22{2sE

12


 �

z
1

4
sE

11zsE
22z2sE

12


 �

~
1

3
sE

11zsE
22zsE

22


 �

,

which is identical with equation (4) derived in Section 2. Superscript E in sE
ij

explicates that the covariances involved are in fact those of the measurement error

component e of equation (18).

7.4.2 TIN interpolation. For random prediction locations within a TIN element,

the resulting weights follow triangular distributions in [0, 1] with modes at 0.

Consequently, their mean is 1/3, their variance is 1/18, and their pairwise covariance

is 21/36. This entails

mW~E wf g~ 1=3 1=3 1=3½ �’

and

VW~

Var W1f g Cov W1, W2f g Cov W1, W3f g
Cov W2, W1f g Var W2f g Cov W2, W3f g
Cov W3, W1f g Cov W3, W2f g Var W3f g

2

6

4

3

7

5~
1

18

1 {1=2 {1=2

{1=2 1 {1=2

{1=2 {1=2 1

2

6

4

3

7

5,

as per equation (7).

Therefore, equation (41) becomes

Es bssM sð Þf g~ 1

18
tr

sE
11 sE

12 sE
13

sE
21 sE

22 sE
23

sE
31 sE

32 sE
33

2

6

6

4

3

7

7

5

1 {1=2 {1=2

{1=2 1 {1=2

{1=2 {1=2 1

2

6

6

4

3

7

7

5

0

B

B

@

1

C

C

A

z
1

9
1 1 1½ �

sE
11 sE

12 sE
13

sE
21 sE

22 sE
23

sE
31 sE

32 sE
33

2

6

6

4

3

7

7

5

1

1

1

2

6

6

4

3

7

7

5

0

B

B

@

1

C

C

A

~
1

18
sE

11zsE
22zsE

33{sE
12{sE

13{sE
23


 �

z
1

9
sE

11zsE
22zsE

33z2sE
12z2sE

13z2sE
23


 �

~
1

6
sE

11zsE
22zsE

33zsE
12zsE

13zsE
23


 �

,

which is identical with equation (10) derived in Section 3.
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7.4.3 Bilinear interpolation in a rectangle. Going back to equation (41), the entries

of vector mW5[E{W1} E{W2} E{W3} E{W4}]9 are

E W1f g~E WYf g~E Wf gE Yf g~ 1

4

E W2f g~E W 1{Yð Þf g~E Wf gE 1{Yð Þf g~ 1

4

E W3f g~E 1{Wð Þ 1{Yð Þf g~E 1{Wð Þf gE 1{Yð Þf g~ 1

4

E W4f g~E 1{Wð ÞYf g~E 1{Wð Þf gE Yf g~ 1

4
,

since RVs W and Y (as well as their complements) are uniformly distributed in [0, 1]

and are uncorrelated.

We now derive the entries of the variance–covariance matrix VW, using the results

obtained in Section 5:

Var W1f g~E W2Y2
� �

{ E W1f g½ �2~ 1

9
{

1

16
~

7

144

Var W2f g~E W2 1{Yð Þ2
n o

{ E W2f g½ �2~ 1

9
{

1

16
~

7

144

Var W3f g~E 1{Wð Þ2 1{Yð Þ2
n o

{ E W3f g½ �2~ 1

9
{

1

16
~

7

144

Var W4f g~E 1{Wð Þ2Y2
n o

{ E W4f g½ �2~ 1

9
{

1

16
~

7

144

Cov W1, W2f g~E WYW 1{Yð Þf g{E W1f gE W2f g

~E W2
� �

E Y 1{Yð Þf g{ 1

4

1

4
~

1

3

1

6
{

1

16
~{

1

144

Cov W1, W3f g~E WY 1{Wð Þ 1{Yð Þf g{E W1f gE W3f g

~E W 1{Wð Þf gE Y 1{Yð Þf g{ 1

4

1

4
~

1

6

1

6
{

1

16
~{

5

144

Cov W1, W4f g~E WY 1{Wð ÞYf g{E W1f gE W4f g

E W 1{Wð Þf gE Y2
� �

{
1

4

1

4
~

1

6

1

3
{

1

16
~{

1

144
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Cov W2, W3f g~E W 1{Yð Þ 1{Wð Þ 1{Yð Þf g{E W2f gE W3f g

~E W 1{Wð Þf gE 1{Yð Þ2
n o

{
1

4

1

4
~

1

6

1

3
{

1

16
~{

1

144

Cov W2, W4f g~E W 1{Yð Þ 1{Wð ÞYf g{E W2f gE W4f g

~E W 1{Wð Þf gE 1{Yð ÞYf g{ 1

4

1

4
~

1

6

1

6
{

1

16
~{

5

144

Cov W3, W4f g~E 1{Wð Þ 1{Yð Þ 1{Wð ÞYf g{E W3f gE W4f g

~E 1{Wð Þ2
n o

E 1{Yð ÞYf g{ 1

4

1

4
~

1

3

1

6
{

1

16
~{

1

144
:

Therefore, equation (41) becomes

Es bssM sð Þf g~ 1

144
tr

sE
11 sE

12 sE
13 sE

14

sE
21 sE

22 sE
23 sE

24

sE
31 sE

32 sE
33 sE

34

sE
41 sE

42 sE
43 sE

44

2

6

6

6

6

6

4

3

7

7

7

7

7

5

7 {1 {5 {1

{1 7 {1 {5

{5 {1 7 {1

{1 {5 {1 7

2

6

6

6

6

6

4

3

7

7

7

7

7

5

0

B

B

B

B

B

@

1

C

C

C

C

C

A

z
1

16
1 1 1 1½ �

sE
11 sE

12 sE
13 sE

14

sE
21 sE

22 sE
23 sE

24

sE
31 sE

32 sE
33 sE

34

sE
41 sE

42 sE
43 sE

44

2

6

6

6

6

6

4

3

7

7

7

7

7

5

1

1

1

1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

0

B

B

B

B

B

@

1

C

C

C

C

C

A

~
1

144
7 sE

11zsE
22zsE

33zsE
44


 �

{2 sE
12zsE

23zsE
34


 �

{10 sE
13zsE

24


 �� �

z
1

16
sE

11zsE
22zsE

33zsE
44


 �

z2 sE
12zsE

23zsE
34


 �

z2 sE
13zsE

24


 �� �

~
1

9
sE

11zsE
22zsE

33zsE
44zsE

12zsE
23zsE

34z
1

2
sE

13zsE
24


 �

� �

,

which is identical with equation (16) derived in Section 5.

8. Discussion and conclusions

As Kubik and Botman (1976), Dutton (1992), Shi (1998) and others have pointed

out, prediction error variances associated with the interpolation procedures

considered in this paper (linear interpolation along a line segment, TIN

interpolation and bilinear interpolation in a rectangle) appear paradoxical at first

sight. In general, prediction error variance is minimized not at the vertices of a

polygon, where observations are available, but at locations within that polygon. In

the special case of equal variances, prediction error variance is minimized at the
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polygon’s centroid. In this paper we have shown that this apparent paradox is a

natural consequence of the fact that the above interpolation procedures can be

regarded as local, interpolating, trend surface models. The fact that such trend-

surface models reproduce the observations at the polygon vertices is just a

consequence of considering the same number of data as the number of parameters

characterizing the surface models (local fitting). A line, for example, will always pass

through two points used to fit it, hence piecewise linear interpolation will always

reproduce the observations at the endpoints of line segments, since one just fits a line

locally for each segment to the measurements of its two endpoints. This data

reproduction characteristic is independent of: (i) the particular predictors adopted,

as long as the number of predictor variables equals the number of data considered

for fitting, (ii) the definition of the measurement error component, and (iii) its

covariance.

In this paper, it is shown that the general geostatistical framework of Universal

Kriging (UK) underlies 1D linear interpolation, as well as TIN and bilinear

interpolation. Prediction error variances are minimal at inner points when the

prediction objective is that of the drift (mean) component, not of the attribute itself.

In UK of the mean component, such variances increase as the predictor values at a

point (in this case, the coordinates of that point) deviate from the overall mean of

each predictor variable. Since the coordinates of any polygon vertex are maximally

different from the mean of the polygon coordinates, prediction error variance is

naturally maximized at polygon vertices. The other two variants of Universal

Kriging considered in this work, namely UK of the attribute itself and factorial UK,

yield identical weights and associated predictions with 1D linear interpolation, as

well as TIN and bilinear interpolation in 2D. The corresponding prediction error

variances, however, are fundamentally different, owing to the different definitions of

measurement error (and consequently different prediction objectives) adopted in

these latter UK variants. From a pure data standpoint, these alternative definitions

of measurement error cannot be distinguished one from another, and one needs

additional prior information to identify the relative importance of measurement

error versus stochastic deviations from an expected surface not associated with such

error.

From a modelling standpoint, however, we believe that UKM should be used

with caution if at all in real world applications. More precisely, in UKM one places

extreme confidence in a linear expected attribute surface, and assumes that any

other attribute variability stems from measurement error. In many practical cases,

however, the main source of interpolation error might be precisely the assumption of

a linear surface to begin with: real world attributes need not vary linearly between

the endpoints of a line or between the vertices of a triangle or a rectangle.

Consequently, it is expected that interpolation errors would generally be smaller

rather than larger as one gets closer to measurement locations (polygon vertices).

This entails that UKM does not yield a realistic assessment of interpolation error,

and should only be used in those cases where the analyst is extremely confident that

the attribute does indeed vary linearly in space. On the other hand, the alternative

formulations of UKZ and UKF are more flexible, since they allow for deviations

from a dogmatic linear surface. Of course other forms of expected surfaces (e.g.

polynomial) could be adopted, and such surfaces are indeed commonly used with

imposed constraints of continuity in finite element modelling (Carey 1995), and as a

replacement for linear interpolation in some applications of TIN (Akima 1978). Our
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results could be extended to polynomial interpolation over triangles and

quadrilaterals, but such an extension is beyond the scope of this work.

The results given in this paper offer rigorous ways of quantifying the prediction

error variance associated with an interpolated value in the case of linear

interpolation on lines and within triangles, and bilinear interpolation within

rectangles. In practice, it is quite common for users to have some basis for

estimating measurement error variances, typically from known characteristics of

measuring devices, such as GPS receivers, thermometers or soil sampling

instruments. Root-mean-square errors, for example, are commonly provided for
digital elevation models (Hunter and Goodchild 1995). Alternatively, the user might

be able to estimate spatially varying measurement error variances based on a

theoretical or empirical relationship between the observations and some characteristic,

say, gradient, of the underlying signal. Knowledge of covariances is less common, and

we suspect that our results will most often be implemented in cases where covariances

are assumed to be zero, either because observations are believed to be statistically

independent, or because no information on covariances is available. Our results are

sufficiently simple to be readily implementable in GIS, and we believe that GIS
designers should use them to provide prediction error estimates routinely for

interpolated values in such functions as TIN interpolation and raster resampling.

In addition to deriving propagated measurement error variances for individual

points, we have provided estimates of average prediction error variance over a set

(ensemble) of randomly chosen points for the particular case of Universal Kriging of

the mean component. We are struck by the simplicity of many of the results: the
progression in the case of unit variances and zero covariances from 2/3 for the line,

to 1/2 for the triangle, to 4/9 for the rectangle; and the equivalence between

interpolation weights and areas in the polygons shown in figures 2 and 4. These

estimates could also be evaluated routinely in GIS, and in cases where measurement

error is constant for all observations in a data set, the results could be added to the

data set’s metadata description. When measurement errors vary, estimates of

average prediction error variance might be pre-computed and stored with line

segments, triangles or rectangles.

Acknowledgements

We are grateful to the following researchers for stimulating our interest in this
problem: C. Q. Zhu and G. X. Wang of the Zhengzhou Institute of Surveying and

Mapping and the Chinese Academy of Sciences; W. Z. Shi and Tracy C. K. Cheung

of the Hong Kong Polytechnic University; Q. Q. Li of Wuhan University; and Erfu

Dai of the Chinese Academy of Sciences. We would like to thank Klaus Tempfli of

the International Institute for Geo-Information Science and Earth Observation

(ITC) in the Netherlands for providing us with some early references on this

problem. We extend our appreciation to three anonymous reviewers, whose

constructive comments led to significant improvements in the original manuscript.
We also gratefully acknowledge the funding that was provided by the National

Geospatial-Intelligence Agency (NGA) for the project Strategic Enhancement of

NGA’s Geographic Information Science Infrastructure.

References
AKIMA, H., 1978, A method of bivariate interpolation and smooth surface fitting for

irregularly distributed data. ACSM Transactions on Mathematical Software, 4, pp.

148–159.

854 P. C. Kyriakidis and M. F. Goodchild

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
6:

20
 0

1 
A

pr
il 

20
12

 



BALL, W.R. and COXETER, H.M., 1960, Mathematical Recreations and Essays (New York:

Macmillan).

BOTMAN, A.G. and KUBIK, K., 1979, On the theoretical accuracy of the moving average

method for surface estimation. The ITC Journal, 1979-1, pp. 68–84.

Carey G.F. (Ed.) 1995, Finite Element Modeling of Environmental Problems: Surface and

Subsurface Flow and Transport (New York: Wiley).
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