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Modeling can be defined in the context of geographic information sys-
tems (GIS) as occurring whenever operations of the GIS attempt to emulate 
processes in the real world, at one point in time or over an extended period. 
Models are useful and used in a vast array of GIS applications, from simple 
evaluation to the prediction of future landscapes. In the past it has often been 
necessary to couple GIS with special software designed for high performance 
in dynamic modeling. But with the increasing power of GIS hardware and soft-
ware, it is now possible to reconsider this relationship. Modeling in GIS raises 
a number of important issues, including the question of validation, the roles 
of scale and accuracy, and the design of infrastructure to facilitate sharing of 
models.
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The term modeling is used in several different contexts in the world of GIS, so 
it would be wise to start with an effort to clarify its meaning, at least in the 
context of this book. There are two particularly important meanings. First, 
a data model is defined as a set of expectations about data—a template into 
which the data needed for a particular application can be fitted. For example, a 
table is a very simple example of a data model, and in the way in which tables 
are often used in GIS, the rows of the table correspond to a group or class of 
real-world features, such as counties, lakes, or trees, and the columns corre-
spond to the various characteristics of the features, in other words, the attri-
butes. This table template turns out to be very useful because it provides a 
good fit to the nature of data in many GIS applications. In essence, GIS data 
models allow the user to create a representation of how the world looks. A 
later section of the chapter provides a more extended discussion of data model-
ing in the particular context of dynamic models.

Second, a model (without the data qualification) is a representation of one or 
more processes that are believed to occur in the real world—in other words, 
of how the world works. A model is a computer program that takes a digital 
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Figure 1. The results of using the DRASTIC groundwater vulnerability model in an area of Ohio. 
The model combines GIS layers representing factors important in determining groundwater 
vulnerability and displays the results as a map of vulnerability ratings. (screen shot from http://
www.gwconsortium.org/DRASTIC.gif, needs permission)
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representation of one or more aspects of the real world and transforms them 
to create a new representation. Models can be static, if the input and the out-
put both correspond to the same point in time, or dynamic, if the output repre-
sents a later point in time than the input. The common element in all of these 
models is the operation of the GIS in multiple stages, whether they be used to 
create complex indicators from input layers or to represent time steps in the 
operation of a dynamic process.

Static models often take the form of indicators, combining various inputs to 
create a useful output. For example, the Universal Soil Loss Equation (USLE) 
combines layers of mapped information about slope, soil quality, agricul-
tural practices, and other properties to estimate the amount of soil that will be 
lost to erosion from a unit area in a unit time (Wischmeier and Smith 1978). 
The DRASTIC model (fig. 1) estimates geographic variation in the vulnerabil-
ity of groundwater to pollution, again based on a number of mapped prop-
erties (Aller et al. 1987). Dynamic models, on the other hand, represent a 
process that modifies or transforms some aspect of the Earth’s surface through 
time. Contemporary weather forecasts are based on dynamic models of the 
atmosphere; dynamic models of stream flow are used to predict flooding from 
storms; and dynamic models of human behavior are used to predict traffic con-
gestion.

This chapter provides an introductory overview of models and modeling, in the 
context of GIS. It begins with a discussion of the various types of models that 
have been implemented in GIS, then describes GIS from a modeling perspec-
tive, and finally identifies a series of major issues that confront modelers who 
use GIS. The chapter serves as an extended introduction to the book, providing 
a context for the chapters that follow.

All of the models discussed in this book are spatial, meaning that they describe 
the variation of one or more phenomena over the Earth’s surface. The inputs 
to a spatial model must depict spatial variation, which is why a GIS is a partic-
ularly good platform for modeling (this subject is covered in detail in Chapter 
2). Moreover, a spatial model’s results depend on the locations of the fea-
tures or phenomena being modeled, such that if one or more of those locations 
change, the results of the model change.

Modeling can serve a number of purposes. Static models provide indexes or 
indicators that can provide useful predictors of impacts, sensitivities, or vul-
nerabilities. The USLE, for example, is widely used to predict soil erosion and 
to guide management strategies on the part of farmers or county, state, or fed-
eral governments to minimize erosion. DRASTIC is widely used as the basis 
for policies regarding groundwater and to make decisions about the environ-
mental impacts of proposed developments. Dynamic models go further by 
attempting to quantify impacts into the future and are used to assess differ-
ent management or development scenarios—what–if scenarios. For example, 
urban-growth models can be used to predict the impact of land-use controls 
and future economic conditions on urban sprawl and to devise strategies to 
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contain sprawl. Atmospheric models are used daily to predict weather condi-
tions as much as seven days into the future.

This experimental aspect of modeling is perhaps its most compelling justifica-
tion. Aircraft pilots are now routinely trained on simulators, which attempt to 
emulate the operation of an aircraft in a purely computational environment—
as a result, pilots can be brought to a high level of training without the risks 
associated with the use of real aircraft. Whereas surgeons used to be trained on 
cadavers, much surgical training now occurs in virtual environments using pre-
cise digital representations of the human body. Dynamic modeling of the Earth’s 
environment raises the possibility that we will eventually be able to evaluate the 
effects of such human activities as the burning of fossil fuels or the release of 
ozone-destroying chemicals long before such activities actually take place.

This section explores the various types of models, placing them in a unify-
ing framework. More detail on several of the contemporary modeling types, 
including cellular automata, agent-based models, and finite-element and finite-
difference models is provided in Chapter 3.

ANALOG AND DIGITAL

Although we rarely consider them in the context of GIS, analog models are 
even today perhaps the most common type. An analog model is defined as a 
scale model, a representation of a real-world system in which every part of the 
real system appears in miniature in the model. For example, architects design-
ing skyscrapers routinely create scale models in order to investigate the effects 
of high winds on proposed structures, placing the models in wind tunnels to 
observe deformations under very high stress. Analog models play a key role 
in the design of aircraft wings, dams and canals, and a host of other engineer-
ing projects. Of course the success of analog models depends on the degree 
to which the system can be scaled—whether the operation of the system in a 
scaled model is identical to the operation of the real system. A key measure 
of an analog model is its scale or representative fraction, the ratio of distance 
between two points in the model to distance between corresponding points in 
the real world. In an analog model, all aspects of the system must be scaled by 
the same ratio for the model to be valid.

Ian McHarg, a landscape architect who made many contributions to GIS, orig-
inally developed his techniques of ecological planning using an analog version 
of GIS (McHarg 1969). Each factor important to a decision was represented as 
a transparent map, with darker areas representing areas of greater impact with 
respect to that factor. Maps were made for impact on groundwater, human 
populations, and any other relevant factors. The maps were stacked over a 
light source, and the areas appearing lightest corresponded to the areas of least 
impact and were, therefore, the areas most suitable for development. Today, 
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the same basic principles are embodied in myriad site-suitability analyses con-
ducted using GIS, but with the greater power of the digital computer to vary 
the weights assigned to each layer and with the mathematical approaches used 
to combine weighted layers (see Chapter 16).

In a digital or computational model, all operations are conducted using a com-
puter. Data is assembled in a data model and coded using a variety of cod-
ing schemes that reduce relevant aspects of the real world to patterns of 0s 
and 1s. The model itself is also coded in the same limited alphabet, as a com-
puter program or software. Digital models do not have a representative frac-
tion, since there is no distance in the model to compare to distance in the real 
world (Goodchild and Proctor 1997). Instead, the level of geographic detail 
is captured in the spatial resolution, or the size of the smallest feature repre-
sented in the database. For raster data, this is the size of the individual cell or 
pixel. When a GIS data set is created by digitizing a paper map, it is helpful to 
use a simple rule of thumb that the spatial resolution of the data set is approx-
imately 0.5 mm at the scale of the map—in other words, a map at 1:24,000 
has a spatial resolution of approximately 12 m. When such information on the 
lineage of vector data is unavailable, it is difficult to assign a value to spatial 
resolution since the size of the smallest polygon may be determined by the phe-
nomenon being represented, rather than by the representation. For example, 
on a map of U.S. states, the smallest state will always be Rhode Island, how-
ever detailed the digitized state boundaries.

Besides spatial resolution, temporal resolution is also important in dynamic 
models since it defines the length of the model’s time step. Any dynamic model 
proceeds in a discrete sequence of such steps, each representing a fixed interval 
of time, as the software attempts to predict the state of the system at the end of 
the timestep based on inputs at the beginning of the time step. Both spatial and 
temporal resolution need to be appropriate to the real nature of the process 
being modeled. For example, in modeling the atmosphere for weather forecasts, 
there would be little point in using spatial resolutions as fine as 1 m or tempo-
ral resolutions as short as 1 sec because the processes affecting the atmosphere 
respond to variations that are much coarser than these. On the other hand,  
1 m and 1 sec would be quite reasonable resolutions for a model of a small 
river or stream.

Spatial and temporal resolution determine the relationship between the real 
world and the model of the real world that is constructed in the computer. The 
two will never be identical, of course, and any digital representation will leave 
the user to some extent uncertain about the real world because of the detail 
that is present in the real world at finer resolutions than those of the model. A 
model of the atmosphere, for example, is not likely to represent the minute, 
local, and short-lived fluctuations in pressure caused by the flight of birds. It 
follows that the predictions of the model will be to some degree uncertain, in 
the sense that they leave the modeler in the dark about the precise nature of 
real-world outcomes.
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DISCRETE AND CONTINUOUS

Dynamic modelers recognize two very different styles of models. Discrete mod-
els emulate processes that operate between discrete entities, such as the forces 
that operate between celestial bodies and govern their motion, or the behaviors 
that are exhibited by humans or animals as they interact over space (Chapter 
17). Continuous models, on the other hand, are cast in terms of variables that 
are continuous functions of location, such as atmospheric pressure or temper-
ature, soil acidity or moisture content, or ground elevation. From a GIS per-
spective, these two possibilities mirror the widely accepted distinction between 
two conceptualizations of geographic space and geographic variation: the dis-
crete-object view and the continuous-field view (Worboys and Duckham 2004). 
In the former, geographic space is empty except where it is occupied by point, 
line, or area objects, which may overlap, do not necessarily exhaust the avail-
able space, and are countable. From this viewpoint, the map of U.S. states is 
a jigsaw puzzle, with 50 pieces (51 including the District of Columbia) that 
can be moved around at will. The discrete-object view tends to work best in 
describing and representing biological organisms or human-made features such 
as buildings, vehicles, or fire hydrants.

In the continuous-field view, the geographic world is described by a series 
of continuous maps, each representing the variation of a different variable 
over the Earth’s surface. There are no gaps in coverage, and there is exactly 
one value for each variable at each location. This view tends to work best in 
describing the variation of physical quantities. Models of the atmosphere are 
built using this view, though the results are often interpreted in weather fore-
casts in terms of the behaviors of discrete objects—highs, lows, and fronts. 
Continuous-field models typically express knowledge of the operation of the 
physical system in terms of partial differential equations (PDEs) which relate 
the values, rates of change through time, spatial gradients, and spatial curva-
tures of the continuously varying quantities. The Navier-Stokes equation, for 
example, describes the behavior of a viscous fluid, while the Darcy flow equa-
tion describes the flow of groundwater through a porous medium. PDEs must 
be solved through a process of numerical approximation, using either finite-
difference methods that represent continuous variation as a raster of fixed spa-
tial resolution or finite-element methods that use polynomial functions over 
irregular triangles and quadrilaterals (for a discussion of methods for con-
structing meshes for the solution of PDEs, see Carey 1995).

The so-called gravity or spatial interaction model (Fotheringham and O’Kelly 
1989) is an excellent example of a discrete model since it can be used to predict 
the amount of interaction that will occur in the form of telephone calls, daily 
journeys to work, numbers of migrants, or numbers of shopping trips between 
a discrete origin and a discrete destination, arguing by analogy to the gravi-
tational pull that exists between two celestial masses. The model is frequently 
and easily implemented in a GIS context, using vector representations of the 
origin and destination features. It is also possible to imagine hybrid models 
that combine aspects of both approaches, for instance models in which discrete 
objects representing vehicles or organisms behave in response to local values 
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of a continuous field. For example, the behavior of an individual in a crowd 
might be modeled as the response of a discrete object to a continuously varying 
field of perceived crowding, computed as some form of population density.

INDIVIDUAL AND AGGREGATE

In principle, it is possible to model any system using a set of rules about the 
mechanical behavior of the system’s basic objects. The behavior of a crowd, 
for example, can be modeled through a series of rules about each individual’s 
behavior, and the development of land-use patterns over an area can be mod-
eled through a series of rules that describe the behavior of each decision maker. 
But for many systems, the number of basic objects is far too large for this 
approach to be practical. No coastal geomorphologist would think of model-
ing the behavior of beaches using rules about the behavior of each individual 
grain of sand because there would be far too many discrete objects to han-
dle, and it would be far too costly to define the system at time zero—the posi-
tion and movement of every sand grain at the outset of the simulation, or what 
are often termed the initial conditions. Similarly, no hydrologist would attempt 
to model a watershed with rules about the behavior of each molecule of water 
(Chapter 14).

Continuous-field models address this problem by replacing individual objects 
with continuously varying estimates of such abstracted properties as density—
the density of people in a crowd or the mean velocity and acceleration of water 
molecules considered as a continuous fluid. Another approach is to aggre-
gate individual objects into larger wholes and to model the system through the 
behavior of these aggregates. Thus, much modeling of human systems occurs 
at the aggregate level of census blocks or tracts, and much modeling of hydro-
logic systems occurs with lumped systems that aggregate areas into entire 
watersheds or stream reaches. Lumped systems ignore within-lump variation 
as well as behaviors that modify the variation within lumps, in effect ignoring 
variation and processes that fall below the implied spatial resolution of the  
representation.

Over time, the increasing power and storage capacity of computers has made 
individual-level modeling more practical, and today it is possible to build mod-
els involving millions and even billions of objects. The problem of determining 
initial conditions remains, however, since it is often the result of real con-
straints on data gathering, which often requires the use of expensive human 
resources. Technologies such as remote sensing provide a partial solution, 
allowing the initial conditions over large areas to be characterized at fine spa-
tial resolution, but optical remote sensing is limited in its ability to see through 
clouds and to differentiate areas based on properties relevant to an investiga-
tor’s model.
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CELLULAR AUTOMATA

In a cellular automaton, spatial variation is represented as a raster of fixed res-
olution, with each cell being assigned to one of a number of defined states. 
Such models have been used widely to study processes of urban growth 
(Chapter 8), in which case the possible states will likely be limited to two: 
undeveloped and developed. At each time step, the next state of each cell is 
determined by a number of rules based on the properties of the cell and its 
neighbors and on the states of the cell and its neighbors. For example, the rules 
for a simple urban growth model might be as follows:
 • If the cell is currently undeveloped, convert to developed with a probability 

that depends on the slope of the cell, its proximity to a major transporta-
tion link (Chapter 10), the zoning of the cell, and the number of its neigh-
bors that are already developed.

 • If the cell is currently developed, make no change.

Clarke and his co-workers (e.g., Clarke and Gaydos 1998) have applied mod-
els of this type to a number of urban areas in the United States, typically using 
30 m spatial resolution and 1 year temporal resolution and forecasting growth 
for up to 50 years.

The concepts of cellular automata were first explored by John Conway over 
artificial spaces that were typically uniform and undifferentiated. His interest 
lay in the sometimes stable properties that emerged after large numbers of time 
steps, based on particular sets of initial conditions. His Game of Life (Gardner 
1970) generates some surprising and intriguing patterns (fig. 2) and was one 
of the key developments that led to today’s strong interest in complex systems 
and the simple properties that sometimes emerge in such systems, largely inde-
pendent of initial conditions. Many geographers and others have speculated 
that similarly surprising patterns might emerge on the Earth’s surface through 
the operation of complex, dynamic processes.

AGENT-BASED MODELS

In an agent-based model, a system’s dynamic behavior is represented through 
rules governing the actions of a number of autonomous agents. Such mod-
els can be regarded as generalizations of cellular automata in which agents are 
able to move around in space, rather than being confined to the cells of a ras-
ter—but in other cases the locations of the agents may be irrelevant to the 
model. Dibble (Dibble and Feldman 2004) has explored the operations of eco-
nomic agents in simple nonraster worlds similar to the ‘small-worlds’  popu-
larized by Watts and Strogatz (1998), in which agents occupy locations and 
can interact both with their spatial neighbors and with certain distant and ran-
domly identified neighbors.
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Agent-based modeling has found many interesting applications to geographic 
phenomena. Benenson (2004) has explored the use of such models to repre-
sent the behavior of households in cities and the process by which segrega-
tion emerges through housing choices. Several efforts have been made to apply 
agent-based modeling to the emergence of land-use and land-cover patterns 
(Chapters 6, 18, and 19), with particular emphasis on the processes that lead to 
greater fragmentation of land cover as a result of development and thus to prob-
lems for species that require specialized natural habitat (see, e.g., www.csiss.org/
resources/maslucc).

One of the factors that has led to the recent explosion of interest in agent-
based models is the emergence of the object-oriented paradigm in software 
development. Batty (1997) has described the concept of modeling the actions 
of individuals in a complex geographic landscape through the construction of 
a set of parallel, independent software modules, each representing the actions 
and decisions of one actor in the system. Object-oriented languages have made 
it much easier to conceptualize and build such simulation systems, which are 
very different in software architecture from the traditional serial approach to 
computing.

Figure 2. Three stages in an execution of the 
Game of Life: (A) the starting configuration, 
(B) the pattern after one time-step, and (C) 
the pattern after 20 time steps.
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The traditions of GIS are firmly rooted in the map, and even today it is com-
mon for GIS to be introduced through the idea of representing the contents of 
maps in computers. Map-related ideas, such as layers, projections, generaliza-
tion, and symbolization are still prevalent in GIS and account for a large pro-
portion of the capabilities of a contemporary GIS. So it is by no means clear 
how a technology built essentially for handling maps can be adapted to the 
needs of dynamic simulation modeling, and indeed few would think of GIS in 
that light or suggest that GIS is in any sense the optimum platform for mod-
eling. GIS has never handled time particularly well (Langran 1993, Peuquet 
2002), and its representations of continuous variation do not include the irreg-
ular meshes of triangles and quadrilaterals that form the basic meshes of finite-
element modeling.

On the other hand, there are many good reasons for urging that GIS evolve 
into an effective platform for spatial modeling, and the technical aspects of 
doing so are discussed further in Chapter 2. First, GIS is an excellent environ-
ment for representing spatial variation, in the initial and boundary conditions 
of models and in their outputs. GIS also includes numerous tools for acquir-
ing, pre-processing, and transforming data for use in modeling, including data 
management, format conversion, projection change, resampling, raster–vector 
conversion, etc.—in fact, all of the tools that would be needed to assemble the 
data for dynamic simulation. It also includes excellent tools for displaying, ren-
dering, querying, and analyzing model results and for assessing the accuracies 
and uncertainties associated with inputs and outputs.

Second, much progress has been made recently in the handling of time in GIS. 
Object-oriented data models have moved the emphasis away from the repre-
sentation of the contents of maps to a much more general and powerful mod-
eling environment (Zeiler 1999), in which it is possible to represent events, 
transactions, flows, and other classes of information that would be difficult or 
impossible to render cartographically.

Third, and perhaps most important, many of the techniques used in GIS anal-
ysis would be much more powerful if they could be coupled with an exten-
sive toolkit of methods of simulation. For example, it is widely accepted that 
the results of GIS analysis are often distorted or biased by the choice of spatial 
units used in its support. In a classic case study, Openshaw and Taylor (1979) 
showed that a strong and positive relationship existed between the percentage 
of people over 65 and the percentage registered as Republicans in each of the 
99 counties of Iowa. But by reaggregating the data to units other than coun-
ties, in other words by changing the support, they were able to produce corre-
lations ranging from almost perfectly negative (the greater the percentage over 
65, the fewer registered Republicans) to almost perfectly positive (the greater 
the percentage over 65, the more registered Republicans). They coined the 
term Modifiable Areal Unit Problem (MAUP) for this dependence of analytic 
results on support and urged that researchers experiment with a range of zon-
ing schemes to determine the specific sensitivity in any actual analysis.

MODELING AND GIS
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More generally, many of the techniques commonly used for analyzing pat-
terns of points, lines, or areas using GIS (Bailey and Gatrell 1995, Haining 
2003, O’Sullivan and Unwin 2003) produce results that are similarly difficult 
to interpret. An extensive library of simulation methods would allow analysts 
to compare actual patterns with those expected under a wide range of suitable 
and interesting conditions. For example, instead of testing whether a map of 
incidence of cancer displayed a general tendency for clustering, one might test 
a specific hypothesis relating cancer incidence to data on some known cancer-
causing atmospheric or groundwater pollutant.

GIS AND TIME

Over the years, researchers have devised a limited number of ways of handling 
time within the structures provided by a technology that, as noted earlier, has 
its roots in the representation of the essentially static contents of maps. The 
earliest GIS data models were topological, meaning that they included infor-
mation on such topological properties as adjacency and connectivity. The cov-
erage model—originally developed for the Canada Geographic Information 
System in the mid-1960s, then for the U.S. Bureau of the Census DIME project 
for the 1970 census, later for the ODYSSEY project of the Harvard Laboratory 
for Computer Graphics and Spatial Analysis in the late 1970s, and later still 
the basis for the original release of ArcInfo in the early 1980s—was designed 
to represent a partitioning of two-dimensional space into nonoverlapping and 
space-exhausting polygons. Cartographers know this as the choropleth map, 
but it also provides an effective representation of any classification of soils, 
land cover, land use, or surficial geology and also of cadastral maps of land 
ownership. Many examples of such maps change through time—for example, 
the map of U.S. county boundaries has changed frequently since Independence 
as new areas were divided into counties, as county boundaries moved, and as 
counties were split or merged. 

One approach to handling such change is through the concept of a region as 
an aggregation of smaller areas. All of the county boundaries that ever existed 
are first mapped, creating a very large number of small basic units. In the cov-
erage model, these are represented as a collection of arcs, each arc defining 
the boundary between two adjacent units. The counties at any point in time 
can then be re-created by selecting those arcs that separated counties at that 
time and assembling them into areas to form that time’s regions (Maguire et 
al. 1992). The same concept of basic units has frequently surfaced in discus-
sions of multiple land classifications, where an integrated terrain unit (ITU) is 
defined as an area of land that is homogeneous and contiguous with respect to 
all of the classifications -- all of the original maps can be recreated from a map 
of ITUs by dissolving appropriate arcs. Regions are also useful for representing 
events through time that may overlap and do not exhaust space, such as forest 
fire footprints or land easements.
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Another approach consists of tracking the locations of independently moving 
objects. For example, a collection of individuals might be tracked using GPS, 
their locations being recorded at every predetermined interval of time. Similar 
techniques are frequently used to track animals (Chapter 17). In effect, this 
type of data yields a series of lines in a three-dimensional space formed by the 
two spatial dimensions (horizontally) and time (vertically), with the restric-
tions that each line intersects exactly once with any horizontal slice (fixed time) 
of the model. ESRI Tracking Analyst software has been developed to support 
simple forms of analysis, summary, and visualization of this type of space–time 
data. Although it is limited to point-like objects, Agouris and Stefanidis (2003) 
have developed a version that can be used to represent area objects whose ori-
entation and shape change through time. 

A third approach represents each time period as a simple snapshot, typically 
in raster, and change through time as an ordered sequence of such snapshots. 
This is the approach inherent in remote sensing. Moving objects are not part of 
the representation, though they might be detected by some form of image pro-
cessing and represented using the tracking approach. The approach is used in 
many raster-based simulation packages, including the GIS PCRaster (Chapter 
15; pcraster.geog.uu.nl).

MODELING SOFTWARE

As noted earlier, traditional GIS was designed to support the representation 
and analysis of maps. Static modeling and the calculation of indicators are 
classic GIS applications and are well suited to this traditional architecture. 
Recently, the power of GIS for static modeling has been greatly enhanced by 
the availability of graphic interfaces that allow the user to interact with the 
various stages of the modeling process through a simple point-and-click envi-
ronment. The first of these was perhaps the Imagine software of ERDAS; more 
recently, ESRI ModelBuilder software is a powerful addition to the spatial ana-
lytic capabilities of ArcGIS. These technologies address a fundamental problem 
of GIS: the vast number of possible transformations and operations that can be 
performed on geographic data and the complexity in practice of many analysis 
sequences.

In principle, such software can be used for dynamic modeling through a pro-
cess of iteration, in which standard GIS functions are used to transform the 
system at each timestep, and the output of one time step becomes the input for 
the next. But two problems stand in the way of this. First, the command lan-
guage of the GIS will not have been designed for iteration, requiring the user 
to reenter the transformation operations at each step, and second, the poor 
performance of the system is likely to be frustrating to the user. Scripting lan-
guages provide some help in the first regard by supporting the storage and execu-
tion of sequences of instructions and by allowing repeated execution of sequences 
(looping), and today’s version of ArcGIS allows scripts to be written in standard 
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languages such as Microsoft Corporation’s Visual Basic for Applications (VBA), 
Python, and PERL.

PCRaster was perhaps the first GIS designed specifically for simulation, using 
the ordered-snapshot approach described above. As the name suggests, it is 
designed to operate on rasters and to implement a range of operations that 
includes the functions required by a cellular automaton approach to model-
ing. Tomlin (1990) was the first to systematize the functions that could be per-
formed on raster representations, and his approach has been implemented in 
numerous raster GIS. Van Deursen (1995) developed the language used by 
PCRaster to operationalize simple raster functions, through commands that 
allow entire rasters to be addressed at once—for example, the instruction B = 
A*2 will take the values in all of the cells of A and double them to create a new 
raster B. PCRaster includes functions for visualizing its outputs as a movie and 
has been applied very successfully to the simulation of a range of environmental 
and social processes (see the examples in Chapter 15 and at pcraster.geog.uu.nl).

Nevertheless, the one-size-fits-all approach that is inherent in GIS and in sys-
tems such as PCRaster is unlikely ever to address all possible needs, and 
instead much attention has been devoted to coupling GIS with packages that 
are more directly attuned to the needs of modeling (Chapter 6).  Matlab is a 
commonly used toolbox in this context because of its powerful mathemati-
cal routines. A prototype linkage between GoldSim and ArcGIS is discussed 
in Chapter 6.  STELLA (www.iseesystems.com) was developed to support 
dynamic modeling and has the advantage of having a sophisticated visual 
interface that allows the researcher to express ideas about processes and cau-
sality through simple diagrams; STELLA has also been coupled with GIS 
(Chapter 7). Coupling is also widely used to link standalone models to GIS 
(Goodchild, Parks, and Steyaert 1993), including models developed to simulate 
particular environmental processes in areas such as hydrology (Chapter 14).

It is common to distinguish three types of coupling. First, a standalone package 
might be coupled with GIS by exchanging files—the GIS might be used to pre-
pare the inputs, which are then passed to the modeling package, and after exe-
cution, the results of modeling would be returned to the GIS for display and 
analysis. This approach requires the existence of a format that is understood 
by both the GIS and the modeling packages or if no such format exists, of an 
additional piece of software designed to convert formats in both directions. 
Second, coupling may take the form of integrating the GIS with the modeling 
packages using standards such as Microsoft’s COM and .Net that allow a sin-
gle script to invoke commands from both packages. This type of integration 
is now common, based on the compliance to these standards of GIS programs 
such as ArcGIS and Idrisi, and similar compliance by packages such as Excel 
and Matlab that have powerful capabilities needed by modelers. The integra-
tion occurs through a single script, written in a standard scripting language 
(Ungerer and Goodchild 2002). Finally, the entire model may be executed by 
calling functions of the GIS, using a single script (in this option the model is 
said to be embedded in the GIS). Coupling GIS and modeling systems is  
discussed at length in Chapter 2.
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CALIBRATION AND VERIFICATION

Any attempt to predict the future or to provide indicators of future impact is 
necessarily problematic, and various techniques are available to assess a mod-
el’s validity and to build confidence in its results. In general, it seems better to 
regard a model as a basis for reducing uncertainty about the future from some 
prior state of complete ignorance to one of more limited uncertainty, rather 
than to think of a model as failing if its predictions are not perfectly accurate. 
In other words, and in the language of regression modeling, it would be better 
to think of a model as improving on R2=0 than on failing to achieve R2=1.

Many models require some form of calibration, a process of determining 
appropriate values for one or more parameters that are not specified by theory 
or past practice. Models are often calibrated and verified using past history, on 
the grounds that the future will repeat the past. For example, a model of urban 
growth might be calibrated and verified on the past decades of growth patterns 
before being applied to forecasting future decades. A common approach is to 
partition the data into a calibration set and a verification set, using the former 
to determine the best values of any unknown parameters (by adjusting them to 
give the best possible fit between the model and the data) and using the latter 
to verify the model’s predictions. Of course, any process of calibration based 
on past history will only be as valid as its basic assumption that historic trends 
will continue into the future, at least over the period of the model’s forecast.

Alternatively, a model’s validity might be assessed based on the validity of each 
of its component parts. For example, a model that includes rules might be 
tested by comparing its rules to data on real behavior, rather than by compar-
ing the results of the model as a whole to real data. In practice, this is often the 
primary basis of assessment, though it is dependent on the assumption that all 
relevant processes are incorporated in the model.  

Sensitivity analysis is also commonly used to assess models. In this approach, 
the various parameters and inputs are systematically varied to observe their 
impacts on the model’s results. The model might be rerun with the value of a 
given parameter increased by 10% and then reduced by 10% from its original 
value. If the impact on the results is substantially less than 10%, the modeler 
knows that the parameter is not of critical importance and its accuracy is not a 
major concern. On the other hand, the results may be extraordinarily sensitive 
to some parameters, and the modeler should therefore invest additional time in 
ensuring that their values are appropriate.

All geographic data leave their users, to some extent, uncertain about the 
nature of the real world: because of measurement error, or because detail has 
been omitted, or because definitions of terms are not rigorous, or because error 
has crept into the compilation of the data in some way (Zhang and Goodchild 
2002). Uncertainty propagation attempts to determine the effects on the results 
of modeling of known uncertainties in the input data (Chapter 4; Heuvelink 
1998). In principle, every prediction of any model should be accompanied by 
some form of confidence limits, expressing the researcher’s uncertainty about 
the validity of the results.
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THE VALUE OF MODELING

At this point, it makes sense to reexamine a question discussed earlier in the 
introduction to this chapter: why model? From a practical perspective, the 
answer is surely to reduce uncertainty about the future. But modeling is also 
conducted for several other reasons. Models may be simply formal representa-
tions of belief about process or of how various aspects of the real world work, 
rather than tools for prediction and forecasting. But formalization has value—
in allowing people to communicate in terms that are mutually understood and 
in allowing knowledge to be expressed in the demanding environment of a dig-
ital computer. In court, a model may have great power as an expression of the 
modeler’s willingness to think and operate clearly, to incorporate ideas explic-
itly, and to address known uncertainties.

Models may also be repositories, structures in which investigators can store 
knowledge in ways that can be readily executed in what-if scenarios. In this 
sense, models are not tools for discovering knowledge, but places where dis-
covered knowledge can be brought to bear on real policy questions—models 
are formal representations of what is known about a system.

But models also contribute to the creation of knowledge, as in the case of the 
emergent properties discussed in connection with the Game of Life, when the 
execution of a model reveals something about the real world that was not 
already known. Batty and Longley (1994) argue that their fractal model of cit-
ies led them to a clearer understanding of the processes by which cities develop, 
and similar arguments are often made about models in other contexts.

MODEL SHARING

Tested, operational models are among the most valuable forms of digital infor-
mation since they encapsulate a wealth of practical and theoretical scientific 
knowledge in an easy-to-use form. Thus it is surprising that so much effort 
has gone into the creation of data repositories, digital libraries, data ware-
houses, and other sophisticated mechanisms for sharing digital data and so lit-
tle into the equivalent infrastructure for sharing methods and models. There 
are no widely accepted methods for describing models in formal, structured 
terms equivalent to the metadata standards for data sets, and while some col-
lections exist, there is no central clearinghouse for models. Crosier et al. (2003) 
have proposed such a standard and demonstrated its use in documenting sev-
eral models. Model and method sharing, or more generally the sharing of pro-
cess objects, is a core concept of the emerging Grid, the high-performance 
worldwide network of research computers, and of discussions over cyberinfra-
structure, a general name for the use of information technology in the service 
of collaborative research. There is also increasing interest in providing basic 
GIS services, such as geocoding, as remotely invokable methods implemented 
on the Web. In the next few years, dramatic improvements are expected in the 
availability of techniques for sharing methods and models.
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