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Abstract. Strongly asymmetrical spatial flows are analyzed by using as example the flows of news
between major Canadian cities. Conceptually such flows can be modelled by combining a vertical
dimension of dominance with two spatial dimensions. The conceptual model is interpreted
mathematically by appropriate use of the attraction and emissivity terms in the spatial interaction
model. A family of models is identified and calibrated using the Canadian data, allowing the
positions of cities on the dominance dimension to be identified. By inverting the model it is
possible to scale positions in the spatial dimensions to reflect interaction more correctly. The
result is a three-dimensional image which gives a ‘fuzzy’ interpretation to the conventional
topological tree model of a hierarchy. Relationships with Tobler’s ‘winds’ model are examined.

Introduction

The past ten years or so have seen an awakening of interest in what are now known
as spatial interaction models, occasioned no doubt by the theoretical work of Wilson
(1971), and by the development of improved methods and tools for calibration (see,
for example, Batty, 1976).

Relatively little effort has been expended on developing a taxonomy of the
phenomena to which such models can be applied, which range from journeys to work
and to shop, through migration, to consignments of goods, and such measures of
social interaction as telephone calls. This paper is concerned with those cases in
which the set of origins is identical to the set of destinations, yielding square data
matrices, as for example in most studies of migration flows. In such cases two flows
or interaction measures are available between each pair of places; they may be
referred to as [y and I;. The classic gravity model, which identified mass with
population, would predict a symmetrical interaction since

GP;P;
Iy = D% ey
where
P; is the population of place i,
Dy is the distance between i and j,

G, b are constants, and
I; is the flow from i to j.
Thus I = I;.

Although this may be empirically a valid prediction (within experimental error) for
certain phenomena, others exhibit varying degrees of asymmetry. If j were the more
attractive place to migrants, we might expect I > I;;, other things being equal. In fact
it is possible to visualize a spectrum of increasing asymmetry, leading in the extreme to
uni-directional flows between two places, as exemplified by diffusion phenomena.

Asymmetrical flows are usually found to be weakly transitive, that is, if Iy > I
and Iy > Iy, then Iy > 1Iy; for all i, j, k. This being so, it is possible to find a
ranking of places such that if i precedes j in the ranking, then I; > I;. In the case
of migration data the ranking would be one of attraction, as in Lycan’s (1969) work
on the interprovincial Canadian data. For other phenomena the scale can be seen as
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one of dominance, whereas in the diffusion of innovations it is a temporal ordering
of adoption.

Tobler (1976) has extended this ordinal analysis by postulating an interval-scale
“forcing function” whose value at each place determines flow asymmetry. The
forcing function may be thought of as a pressure; when the pressures at the two
ends of a link are different, a ‘wind’ results, with intensity determined by the
difference in pressure and the length of the link. Other analogies are possible;
temperature difference generates a heat flow, and voltage difference an electric
current. The wind, in turn, affects the symmetry of interaction by increasing
downwind flows and decreasing upwind flows.

Interaction can now be interpreted in terms of three dimensions. Distance in the
horizontal plane has the conventional effect of attenuating interaction, whereas
dominance or relative attraction is visualized as resulting from separation in a third,
vertical dimension, and is responsible for interaction asymmetries. Broadly, the
horizontal plane corresponds to spatial effects, and the vertical dimension to
hierarchical effects.

Although the predictions of the classic gravity model were symmetrical, this is not
in fact a'property of spatial interaction models in general. Consider the model

I; = E;A;f(Dy) 2
where
E; is origin effect or ‘emissivity’,
A is a destination effect or ‘attraction’,

f(]Di,-) is a function of distance.

In order not to lose generality, E; and A; can be assumed to include optional
summations required by constraints. When applied to square matrices, such models
presume that the properties of a place as origin (the E;) have no direct relation to
those of the same place acting as destination (the A;). Tobler’s model, on the other
hand, in effect proposes that both inflow and outflow can be related to the same

forcing function.

Newspaper datelines

Kariel and Welling (1977) have described and analyzed a matrix showing the flows of
news between seventeen major Canadian cities. Each entry I; is a count of the
number of news stories originating in city i and carried by the sampled newspaper in
city j during the sample period. The reader is referred to their paper for the details
of data collection. Only 21 of the 680 triads i{jk in the matrix are intransitive against
the weak criterion, and all of these can be ascribed to sampling error (Kwan, 1977),
indicating a very strong pattern of dominance.

The data are clearly well-suited to analysis using asymmetric models in general, and
the three-dimensional model in particular. However, for reasons which will be
detailed below, Tobler’s approach to calibration and interpretation is not suitable for
this data set. The purposes of this paper are to develop more appropriate versions of
the same general class of model, to explore methods of calibration and to make a
direct empirical test.

Models
Let there be a forcing function, more simply referred to as a height, at each place,

denoted by H;. The models investigated are of the general form
Iy = Pif(Dy)g(H;, ;) 3)

The functions f and g are measures of horizontal and vertical separation respectively.
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Two forms for g are investigated in the following section: first a difference,

g(H;, H;) = [1+4(H;— H})], and then a ratio, g(H;, H;) = H;/H;. Their validity can be

tested without prior assumptions about the nature of f by the following transformations.
For the difference model let

I; = aP,[1+ (H;— H;)1f(D;)

and let
I I\ [(I; I
e (55) (B8
i i i i
Then
Xy = H;—H;

given that f(D;) = f(Dy;). It is therefore hypothesized that a vector of constants H
can be found such that each observed value xj is equal to the difference between the
appropriate pair of constants.

For the ratio model write

{iL'

xij:]j~ )

which leads to the hypothesis

_ PH?

Such hypotheses are not of course limited to this particular context. Equation (2), the
more general model, when transformed using x; = I/Ij;, also leads to the hypothesis
x; = C;/C;, where C is a vector of constants, but without, of course, the direct
interpretation in terms of height.

A test of these hypotheses requires some assumption about the sampling distribution
of Iy. Most authors have taken the multinomial distribution, but this seems
inappropriate in this case in view of the absence of constraints, particularly on Z Z[,-,-.

tj

Rather, each observation I is regarded ds a sample count of random, independent
events, leading to the assumption of a Poisson sampling distribution, in accordance
for example with Bexelius et al (1969) and Kirby (1974). Each I was taken as a
Poisson mean, and the sampling distribution of x; simulated by 50 independent
generations of Poisson deviates.

Both models can now be calibrated and tested by means of weighted least squares.
Consider the difference model first, and let x;} represent the observed transformed
value, and x; = H;—H;. The simulated sampling distribution of x; is approximately
normal, with standard deviation o;. Then the logarithm of the likelihood of a matrix
X is given by

logL = . Ylog(2m)*exp(—4z}),

tj

where

Thus the maximization of logL is equivalent to the minimization of X %(x;—x;)*/0?,
ij

which is a weighted least-squares criterion. This can be achieved by linear regression
if xj/0; is regressed against a series of dummy variates 8 /05, and 85 is given the
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value 1 if k=i, —1 if k£ =j and O otherwise, with the diagonal elements i = j
treated as missing. The regression coefficients are the required values of H, and the
residual sum of squares is directly related to the likelihood function.

A similar approach can be taken for the ratio model. Here x; has an approximately
log-normal distribution, and likelihood can be maximized using the weighted least-
squares criterion ¥ X(logx; —logx;)?/sk, where x; = P;H?/P;H? and s; is the

ij

simulated-sample standard deviation of logx;. Ordinary least squares (OLS) is applied
with (logx;)/s; as the dependent and §,/s; as the independent variables. The
resulting regression coefficients are values of logP; H?, and again the residual sum of
squares is related to likelihood.

Table 1 shows the results for both models It is clear that the ratio model yields
a much better fit. With the exception of eight anomalous interactions, the values of
z; are within experimental error. The standard errors shown in table 2 were
computed by repeated recalibration of the model with values of J; distorted by
Poisson simulation. The values of logP;H? are shown normalized to an arithmetic
mean of zero, and the H; to a geometric mean of 1. Values of H are also shown in
figure 1.

The eight anomalous interactions, defined as |z;| > 3, occur in the following
ways: Victoria dominates Vancouver to a greater degree than expected given their
interactions with the other cities; Ottawa dominates Toronto to a smaller degree
than expected; and Montreal dominates both Toronto and Quebec to a greater
degree than expected.

Table 1. Results of calibration for the difference and ratio models after transformation.

|z Difference model Ratio model
observed expected observed expected
0-1 100 180 148 177
1-2 81 71 77 70
2-3 41 11 26 11
>3 41 1 8 1

Table 2. Calibrated values of logP;H? for the ratio model.

Place { logP; H} Standard error H; H; [model (6)]
Victoria 0-802 0-061 1-89 1-64
Vancouver 0-664 0-029 0-75 0-68

Calgary —-0-221 0-057 0-79 0-76
Edmonton 0-083 0-029 0-83 0-84

Regina -0-947 0-050 0-93 0-85
Winnipeg 0-334 0-051 0-91 0-83
Windsor -~1-374 0-107 0-56 0-46

London ~1-419 0-077 0-52 0-54
Hamilton -1-224 0-052 0-43 0-43

Toronto 1-899 0-021 0-90 0-87

Ottawa 2-471 0-051 2-49  3-51
Montreal 2-146 0-051 1-:00 0-93

Quebec 0-737 0-031 1-17  1-08
Fredericton -1-082 0-106 2-14  2-55

Halifax —-0-104 0-053 1-13 1-22
Charlottetown —1-324 0-131 216 2-04 .
St. John’s -1-444 0-051 0-75 0-99
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Although the ratio model fits the data remarkably well, the identification of the
results in terms of heights or forcing functions is of course only one possible
interpretation, since any model of the form given in equation (2) yields the same
hypothesis and the same results. Modelling of the x; has merely indicated that the
ratio model is much more acceptable than the difference model. The next section

is concerned with the modelling of /;;, and the form of the function f.
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Figure 1. Solution space, transformed ratio model.

The impedance function
Adopting the ratio model, we have
I H;

fDy) = j{j[f ,
where [; is the predicted value of interaction. The impedance f(Dy) can be estimated
by taking the observed flow together with the constants determined in the previous
section. Assume that f is a monotonically decreasing function. Then it is possible
to ask whether a set of locations exists such that the distances between them,
measured according to some metric, are in the appropriate rank order given the
estimates of impedance. Figure 2 shows the best solution for the locations, using
the straight-line Pythagorean metric, and the nonmetric multidimensional scaling
routine TORSCA-9 (Young and Torgerson, 1968). The stress statistic, which in this
case measures the degree to which the distances between locations violate the
observed rank order of impedances, is 0-220, compared to an optimum of 0-0. It
represents the combination of sampling errors in the determination of impedance,
and structural error in the specification of the metric and the model.

The locations in figure 2 show several systematic distortions when compared with
figure 1. The nationally dominant cities, Ottawa and Toronto, occupy the centre
of the configuration, as they do in reality. Large, regionally dominant centres, the
second rank in the national hierarchy, are drawn in towards the centre from their
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true positions. Thus Vancouver and Calgary, which interact far more with the central
cities than their distances from them would indicate, appear near the centre. Other
Western and Atlantic cities show the same influence to a lesser degree. The lowest
centres, the consistent news sinks rather than news sources, are pushed out to the
periphery. London, Hamilton, and Windsor interact with each other much less than
their mutual proximity would suggest and, although they receive from the centre,
they contribute very little to it. St. John’s and Halifax show similar effects. Finally,
Montreal and Quebec City are forced to the perimeter because of their linguistic
isolation from the rest of the system, which here is equated with effective distance.

« Montreal
o Quebec
Charlottetown
Fredericton ® o Hamilton
* Ottawa
o St. John’s * Halifax o » Toronto
* Winnipeg » Calgary
Vancouver ®
e Regina
« Edmonton

o Windsor
*Victoria

s London

Figure 2. Solution found by scaling the impedance function of the ratio model.

Models based on true location

The general class of models introduced in equation (3) describes interactions between
places located in a three-dimensional space. The vertical, or A dimension, describes
the position of a place in the national hierarchy, and its propensity either to generate
or to accept interaction. The two horizontal dimensions, x and y, describe spatial
relationships and the effects of distance in attenuating interaction.

Table 3. Calibration statistics: true location models.

Model (4) Model (5) Model (6)

Constants 19 20 53
Criterion value 5659 4639 2121
Mean absolute percentage error 60-1 53-5 43-7
Root mean-square error 50-3 46-7 275
R? 0-674 0-720 0-903
Residuals

>3 standard errors 134 102 63

<3 standard errors 138 170 209
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In the vertical dimension there are no exogenously determined locations, and so it
is possible to choose a scale of H such that the function g takes a simple form. But
in the horizontal, two approaches are possible. Cities can be located in their
exogenous, real-world locations, and the function f defined to give the best possible
predictions. On the other hand, f can be defined in some a priori manner, and
locations selected to give the best possible predictions. The alternatives may be
mathematically equivalent, but are conceptually different. The former of the two
approaches is adopted in the following section.

Two models are investigated below. The first is a simple gravity-type model with
negative exponential impedance function

Iy = aPi%exp(—boD,-j) . “4)
The second model reflects the distortion noted in figure 1. Cities at the upper levels
of the hierarchy appear to interact more, given the distances between them, and
cities at the lower levels less. The constant b, in equation (4) should therefore be
combined with a function of height, as it is in the second model:

Hi 1 1
Iy = aP,-j—LI;exp [=boexp(=b, H*H)D;] . 5)

The additional term increases the effect of distance when both H; and H,; are small,
and decreases it when they are large.

To calibrate models (4) and (5), the sampling distribution of ; was again taken as
Poisson. Maximum likelihood estimation would be inappropriate in view of the
probability of model specification errors, so both models were calibrated using a
weighted least-squares criterion. Each observation was weighted by the inverse of
the standard error of the Poisson distribution, which led to the following criterion:
minimize ZZ(I,}" —Ii,-)z/l,-,-. A quasi-Newton method (Fletcher, 1972) was used for

ij

optimization and gave satisfactory results [for a comparison of various alternatives
see Batty and Mackie (1972)]. Distances were measured along shortest great circles.

Calibration statistics for both models are shown in table 3. The second is a
substantial improvement over the first, given that only one constant has been added.
Residuals have been tabulated in terms of the standard error of the Poisson sampling
distribution of each observation, so that 138 observations out of 272 can be said to
have been correctly predicted within experimental error in the case of model (4), and
170 for model (5).

We have already seen that distance affects interaction in different ways depending
on the level in the hierarchy at which interaction occurs. In addition the distance
measured along a great circle may have little relationship to impedance, which may in
fact be better explained by some sort of perceptual distance. To some degree these
problems can be overcome by a careful choice of the impedance function f. But a
dramatic improvement in the fit of the model can only be achieved by a redefinition
of the locations of the places in the system to reflect their effective, rather than true,
positions.

A model of perceptual distance

The approach adopted in this section is to define a standard impedance function, but
to allow places to find locations that best predict interactions. This can be expressed
as follows:

H;
Iy = aP g exp{=bol(x,~x)*+ (i =¥ 1%} ©
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The vectors x and y are treated as unknowns, together with the vector H and scalars
a and b,. This gives a total of 53 unknowns in the model, against 272 valid
observations. For H, scale is arbitrary, whereas for x and y both scale and origin are
arbitrary.

The model was again calibrated using the weighted least-squares criterion, a
Poisson sampling distribution, and the quasi-Newton algorithm. In this, as in previous
cases, convergence to three decimal places was achieved in less than thirty complete
iterations. To minimize the possibility of encountering local minima, the initial
estimates of H were taken from the OLS estimates of the transformed calibration, and x
and y from the TORSCA solution configuration referred to earlier. The value of a was
taken from model (4). Calibration statistics are given in table 3 for comparison, and
figure 3 shows the three-dimensional configuration given by x, y, and H.

Several points can be made about these results. First, the improvement in fit of
model (6) is substantial, but not surprising in view of the considerable increase in the
number of calibrated constants. Only 63 out of 272 observations remain unexplained
to within sampling error, which compares very favourably with the goodness-of-fit
record for spatial interaction models reviewed by Openshaw (1976).

Several cities share the same locations in the horizontal plane in figure 3. This is
to a degree attributable to the use of the negative exponential function, which
reaches a finite maximum at zero distance. Since a negative power function tends to
infinity as distance tends to zero, we would not expect coincident locations if such a
function had been selected for f.

Seen as a map, figure 3 is a striking portrayal of news dominance and interaction
between Canadian cities. Ottawa and Toronto occupy the centre, dominating the
English-language news pattern. The three Western Ontario sinks, Hamilton, London,
and Windsor, have been forced away from the centre because their level of interaction
with the centre does not reflect their true geographic proximity to it; and rotated
because Hamilton does not interact as much as its greater proximity would suggest.

The western cities are placed in their true locations with respect to each other, but
again rotated, for the same reasons. Cities with a strong hierarchical relationship at

® Montreal
0-93
Quebec®
1-08
Fredericton
St. John’s 2-55
0-99 e .
Charlottetown Hah;ax
2-04 1-2
« Hamilton
?t ;ﬁwa o ® Toronto 0-43
0-87
« London
® Winnipeg o lg.eglsna 0-54
0-83 Edmonton e ¢ Calgary
0-84 0-76
* Windsor
0-46

Victoria ¢ Vancouver
1-64 0-68

Figure 3. Solution space, model (6).
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the regional level, as for example between Victoria and Vancouver, and Calgary and
Edmonton, appear closer together than in reality. Montreal’s isolation, except with
respect to Quebec, is reflected in its peripheral location. And finally, the Maritime
cities appear as a compact group, with St. John’s in isolation.

Figure 3 has been constructed by calibration of the model under two major
assumptions: that locations can be represented in a space of two dimensions, and
distances measured using the Pythagorean metric. If the number of dimensions were
decreased, locations would be forced to collapse onto a line, and the fit of the model
would deteriorate. Conversely, a better fit could be achieved if three dimensions
were allocated. In either case we suspect that the general preservation of regional
relationships shown in figure 3 would continue. In three dimensions the Maritime
and British Columbia regions would no longer be forced into coincidences.

Similarly, it may be that a better fit could be achieved by the use of some other
metric. Figure 3 suggests that a better choice might be one which exaggerates short
distances, and reduces long ones, relative to the Pythagorean lengths. But although
this might give a better fit, it would reduce the usefulness of visual display, since
distances would be less directly related to interaction.

The vertical, H dimension shows the position of a city in the competitive
hierarchical system. It shows the propensity of a city to generate news, after the
removal of the effects of population, and also to absorb it. Values are shown in
figure 3 and table 2. They are consistent with the first calibration by transformation
of model (3).

The most dominant cities, relative to their size, are the strictly political capitals:
Ottawa, of course, together with Fredericton, Charlottetown, and Victoria. The large
commercial centres, Toronto, Montreal, Vancouver, etc, are not dominant once
population effects have been removed. London, Hamilton, and Windsor, each large
in their own right, are nevertheless net absorbers rather than net generators of news.

Discussion

The hierarchical dimension A was introduced through a similarity with the “forcing
function” explored by Tobler (1976). As noted earlier, the function could be
regarded as generating a pattern of flows, or winds, in order to account for
interaction asymmetries. Tobler suggested that such a pattern could be deduced
from the equation,

1 L,—I; W,

¢ = W‘—lj;eiZy'L"‘_I;D,y x;—xi, ¥ =yl (7N
where
C; is a vector describing the wind at i,
n  is the number of places, and
W; is an inverse function of Dy acting as a weight,
which he showed to be consistent with interpretations of a number of spatial
interaction models. Having found estimates of the wind field at each location, the
entire pattern was found by spatial interpolation. Finally, integration of the wind
pattern allows one to find the forcing function generating it.

The models proposed in this paper in effect model the forcing function directly, as
a property of each place. A surface could then be interpolated, and an analogy to
winds found by differentiation. However, for this particular data set it would be
entirely inappropriate to assume that the height dimension has any degree of spatial
continuity, or that it is in any sense differentiable. The dominance of Ottawa for
example is lost within a few miles of its city limits. In summary, Tobler’s approach
is appropriate to a spatially continuous phenomenon, whereas the models developed
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in this paper correspond to a discrete view of space. The choice of viewpoint is as
much determined by the pattern of zones inherent in the data as by the nature of
the phenomena under study. If the zones are contiguous and exhaustive, a
continuous view is appropriate, as it would have been had this study considered flows
of news between provinces, and the domination of one province by another.

A second difficulty arises when the forcing function reaches a sharp local peak, as
it does for example at Ottawa. A ‘wind’ map should show strong divergence around
Ottawa, but no net flow at the centre. Equation (7) would give a correct value of
zero for C. But the interpolated map would be quite wrong, because it would also
show values close to zero around Ottawa, instead of a strong divergent pattern.

A more correct pattern could be found by modelling the forcing function directly
and then differentiating.

Concluding remarks

The spatial interaction literature has paid remarkably little attention to the empirical
meaning of the origin and destination terms which are invariably present. It is
common to adopt surrogates, such as population, store-floor area, total income,
employment, etc, or to incorporate marginal interaction totals, coupled with balancing
factors. Yet the identification of the factors governing ‘attraction’ and ‘emissivity’ is
potentially the most valuable contribution which interaction modelling can make.

No constraints have been placed on the models in this paper. A production
constraint would have no meaning. But there is certainly a real constraint on the
number of stories any newspaper can consume. Let K denote the observed marginal
total .ZI}}, the number of Canadian stories used during the study period. There seems

t

no reason to require that the predicted interactions in this paper sum to the same
precise total, since K; is subject to sampling error. But if the model is to be used
for prediction of situations in which origins have been added, deleted, or otherwise
changed, then it would be appropriate to make a substitution in the model to obtain,
in the case of equation (4),

I, = PiHiK}F exp[=boDyl
Y ZPiH,- exXp [_boDij]
i

Openshaw (1976) has argued that the goodness of fit of spatial interaction models
has been comparatively neglected. The value of various measures of goodness of fit,
notably R?, has not been adequately explored; and perhaps a case can be made that
the emphasis on the finer points of calibration found in many theoretical papers is
not justified in the light of the poor fits actually obtained in many instances, or the
strong structural errors of many models. The method used to compare observations
and predictions in this paper against the assumed sampling distribution gives an
entirely different perspective to that obtained from the usual error statistics.

Hierarchies have commonly been visualized as trees, with dominance as a binary
property; a node dominates all those nodes in the branches which emanate from it,
and no others. A number of methods have been devised for reducing interaction or
flow matrices to binary data from which simple representations can be drawn, with
attendant loss of information (Rouget, 1972; and see the review by Holmes and
Haggett, 1977). But in most cases the set of places dominated by a node is fuzzy
(Gale, 1976), and interaction is indirectly a measure of set membership. In this
paper we have attempted to construct models which allow the analysis of hierarchical
relationships without loss of information, and which preserve a strong visual
component, The models have considerable predictive power, and many extensions
and refinements are possible, particularly in the choice of metrics.
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