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CHAPTER 21

A Comprehensive Model of
Uncertainty in Spatial Data

J. Cottsegen, D. Montello, and M. Goodchild

INTRODUCTION .

There is a developing interest in the problem of
uncertainty as compared to accuracy or error in spa-
tial data (Unwin, 1995). The notion of uncertainty is
broader than error or accuracy and includes these more
restrictive concepts. While accuracy is the closeness
of measurements or computations to their “true” value
or some value agreed to be the “truth” (Unwin, 1995),
uncertainty can be considered any aspect of the data
that results in less than perfect knowledge about the
phenomena being modeled. Thus it is a statement of
doubt and distrust in results and is a form of “unknow-
ing” (Thrift, 1985). Researchers of uncertainty in
nonspatial data have sometimes used the term “imper-
fect” data (Motro, 1997).

Uncertainty in data also encompasses data quality
described as “fitness for use” by Chrisman (1982).
While the terms error and accuracy connote judgments
of the appropriateness or usability of data based solely
on the comparison of data values to some other set of
values, data quality begins to consider the needs of
the data user as important in determining the adequacy

of data. Issues such as scale, level of aggregation, or

classification scheme are critical in a user’s assessment
of whether a particular set of data is useful for a given
task.

This chapter represents an effort to develop a com-
prehensive view of uncertainty in spatial data. It con-
siders the user a critical component in the definition
of uncertainty, and it identifies the processes in the
use and creation of data that may contribute to uncer-
tainty. It presents a general model of uncertainty as a

framework for this identification and as a possible basis
for relating the work being done on the assessment
and management of uncertainty in data.

This chapter proceeds by first considering the ob-
jectives of defining a conceptual model of uncertainty.
It then discusses some of the specific aspects of spa-
tial data development and data use that lead to uncer-
tainty. It then presents the uncertainty model, and
identifies where literature in the field fits into the
model. It concludes with a consideration of insights
gained from the model and the research suggested by
the model.

REQUIREMENTS OF A GENERAL MODEL
OF UNCERTAINTY

A model of uncertainty should serve several func-
tions. It should expose potential sources of uncertainty
and provide ideas for managing or addressing these
various sources of uncertainty. This includes identify-
ing sources of uncertainty that cannot be managed. It
should also serve as a framework for designing em-
pirical research that can inform efforts resulting from
the first function. Finally, it can be used as a bench-
mark to assess how spatial data researchers are pro-
gressing in addressing the topic of uncertainty.

A model of uncertainty needs to address all of the
aspects of the use and development of spatial data that
constrain a user’s knowledge of appropriate uses for
the data and the phenomena represented by the data.
Such a model must represent the relationship between
the data user’s knowledge of the world and the data or
information maintained by a system (Smets, 1997). It
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must also integrate the well-accepted definition of data
quality as “fitness for use”™ and the ideas of accuracy
and error that have been the subject of considerable
research over the past several years. For example, un-
certainty in the use of spatial data is partially inversely
related to spatial data quality, but it can be considered
a distinct concept. That is, high quality spatial data
implies a degree of knowledge (i.e., low degree of
uncertainty) about the data, the methods used to cre-
ate it, and its underlying data model or characteristics.
The converse is not necessarily true, however. One
may have a great deal of metainformation about data
that are of low quality simply because they are inap-
propriate for a certain use. Similarly, accuracy and error
have a component that relates directly to uncertainty.
The random component of error is, by definition, im-
possible to know and measure. At best it can be esti-
mated or inferred based on some hypothesized model
of its distribution. Bias is deviation from a benchmark
that is known to follow a pattern. Hence if error is
composed only of bias, there is no uncertainty in terms
of the locations (or other measurements) comprising
the data.

The model of uncertainty should also describe as-
pects of a user’s query, retrieval, and decision-making
process that result in a loss of information about the
appropriateness of a given use for particular data. This
is the component of uncertainty that is often neglected
in the spatial data accuracy literature. However, if one
talks about uncertainty in spatial data or the use of
spatial data, one must consider the person who may or
may not be certain. Another way to view this is that a
data user inherently assumes some risk of “incorrect”
results from using data. An acceptable level of uncer-
tainty can be considered the amount of this risk that a
decision-maker is willing to accept. Information that
reduces uncertainty reduces this risk or makes it iden-
tifiable (Stinchcombe, 1990). The ability to assess fit-
ness for use implies not only sufficient knowledge
about the data, but also a well-defined conception of
the use to which the data is applied and the validity of
the constructs underlying the application of the data.
For example, are the methods for assessing ecosystem
health valid? This includes a detailed understanding
of how the data that are queried and used represent or
correspond to the phenomena that the user is inter-
ested in analyzing.

Both of the components described above resuit from
the fact that spatial data and access to them entail for-
malizations and abstractions. A user must distill her
interest in ecosystem health to a set of structured rela-

tionships between specific measurements. Addition-
ally. to retrieve data to analyze systenm health, she must
produce a set of discrete valued conditions. Of course,
spatial data is also a discrete representation of a model
of given phenomena.

The model must also include a consideration of the
representation of uncertainty. While considerable re-
search in GIS has concentrated on various techniques
of representing error in spatial data, most of it has pro-
ceeded based on the assumption that such representa-
tion is valuable. It has not developed any consistent
guiding principles about how and why such represen-
tation would be useful to the user of spatial data. The
efficacy of the representation depends on the process
by which a data user defines the query or information
request, evaluates the appropriateness of the data for a
particular use, and uses the data. The interpretation of
a representation depends on the user’s map schema
(MacEachren, 1995). Certain types of representations
may facilitate specific decisions to a greater degree,
and the user may engage different decision-making
methods or heuristics in response to the portrayals of
error. In addition, data representations themselves in-
troduce potential uncertainty.

SPECIFIC COMPONENTS OF UNCERTAINTY

Given the comments above, uncertainty in spatial
information and its use has several aspects:

1. Uncertainty includes the degree to which the
data representation differs from the world or
some higher quality representation of it. This
may be identifiable or measurable or not.
This encompasses the traditional definition
of error. The deviation of a representation
from reality may be due to (a) measurement
error (bias and random), (b) insufficient
knowledge to measure a precisely defined
concept (e.g., map precisely bounded cat-
egories), (c) concepts that cannot be pre-
cisely defined, and (d) precision limitations
of the measurement or storage device.

Uncertainty also relates to the compatibility
and consistency between the formally speci-
fied need of the user (i.e., data query or
information retrieval request) and the data
representation. This includes (a) lexical (nam-
ing) differences, (b) semantic differences (dif-
ferent assaciations or meanings for same
terms), (c) differences in classification, and
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(d) geometric and topological characteristics
of the dat (e.g.. scale, resolution).

3. Uncertainty also depends on the match be-
tween the formal specification of a user's
query or information request, her subsequent
use of the data, and the phenomena of inter-
est. This notion is similar to the idea of con-
struct validity in social sciences (Rosenthal
and Rosnow, 1991). That is, do the data and
relationships between them specified by the
user adequately represent the phenomenon
of interest. In some cases where the phenom-
enon of interest is complex, such as ecosys-
tem modeling. it is extremely difficult to
identify and specify the important relation-
ships.

In a sense, uncertainty in data use is the degree to
which the formalized structure of data is incompatible
with the concepts that a data user is trying to analyze.
Together the three aspects listed above influence the
applicability of data for a certain use. Other consider-
ations can add to the uncertainty of decisions made
with the data, for example, the robustness of the appli-
cation in which the data is used. However, these do
not pertain to uncertainty in spatial data per se.

THE MODEL

The following model describes the different com-
ponents mentioned above in detail. It identifies sev-
eral steps in the formalization of user’s conceptions of
an issue into a query and in the formalization of a con-
ception of a phenomenon into a digital spatial data set.
Understanding these steps allows us to see where in-
formation is lost or changed in this process. This loss
of or change in the information results in the mis-
matches described above. _

The general structure of the model is shown in Fig-
ure 21.1. It has two sides, one representing the data
user and one representing the data development com-
ponent and an arrow indicating data representation.
The data user and development components begin with
a person’s conceptualization of the world and proceed
to a formal specification that is entered into a com-
puter either as a query or a data set. The database sys-
tem or query processor matches the two specifications
and returns the query results. Each of these compo-
nents involves a'séquence of transformations from less
to more formal specifications, and each transforma-
tion can entail a potential loss, alteration, or creation
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of information. The details of the transformations for
the data user and development components are shown
in Figures 21.2 and 21.3. respectively. The result of
these transformations is that a perfect match of tormal
specifications may not represent a close match to
conceptualizations of a phenomenon.

Data User

The process of choosing which specific set of data
is required for a given use involves a continual refine-
ment from a rough identification of a problem or ques-
tion to a formal specification of the specific data
elements of interest. The rough identitication of the
problem is often simply the recognition that a prob-
lem or question is important. The formal specification
is often a query in a specific query language.

Step 1

The user of spatial data often begins with a per-
ceived problem or question to be addressed. This may
be in the form of a query (e.g., “I wonder where wet-
lands are in this county?”), or it may be a more com-
plex need, such as assessing the impacts of land-use
change on riparian habitats. In either case, the prob-
lem or question begins as informal perception of a need.

Step 2

After perceiving a need for spatial data, the user
must formulate a conceptualization of the problem in
more detail and with greater structure. This formula-
tion begins to specify the parameters of the decision
and therefore the necessary aspects of data used for it.
For example, in our case of the hypothetical land-use
change assessment, the potential data user will start
identifying the possible types and magnitudes of
change that may be detrimental. She will also identify
the spatial characteristics of these changes that are
important (e.g., distance from sensitive habitat, pat-
tern of changes, intervening land uses between the
habitat and land-use change, etc.).

Step 3

From the formulation of the problem, the data user
then identifies the type of data and the aspects of them
that she is interested in (e.g., attributes, classification,
spatial and attribute resolution, etc.). This eventually
results in an informal expression of a data query. That
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is, it is an informal specification of the information
that the user requires from the database.

Step 4

The informal specification of the required informa-
tion leads to a formal query of a database. This can be
a query of a data repository where the desired result is
a data set, or it can be a query of an individual data set
where the desired result is a set of features that match
a given condition. Of course, this query is most often
expressed in a formal query language.

Data Development

The steps in this component of the model corre-
spond to the data modeling process outlined by many
authors (Peuquet, 1984; Ullman, 1988). The process
of developing a data set entails defining a data model
on which the data set is based. This begins as a fairly
informal decision about the features to be represented
in the data set and moves to a rigorous, formal specifi-
cation of the way features and their relationships are
represented and stored.

Step 1

The first step in developing a data set is deciding
what features and what information about them should
be included in the data set. This is often known as the
external data model. Thus a data developer may de-
cide that land cover classified in a specific way (e.g.,
Anderson level I) is important or that streams and
stream order numbers are important. In addition, a data
developer may also decide that the data set should rep-
resent connectivity between stream reaches.

Step 2

The data developer has to make a decision about
how the data should be represented in a data set. This is
known as the conceptual data model. For example, will
land cover be represented as a set of continuous objects
or a field of land cover? There are other possibilities,
but the field-object differentiation has occupied much
of the literature in spatial data modeling (Couclelis,
1992; Goodchild, 1992). We will not dwell on this dif-
ference at this point since the reader may peruse one of
the papers that treats this difference in detail.
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Step 3

The conceptual model is then transtormed into a
computational or logical model. This specities the types
of data structures that will be used to store the infor-
mation required. This includes models such as the geo-
relational model used in Arc/Info or others. This logical
mode! determines the input of data into a spatial data-
base. In some cases, it also determines the method of
measurement or data collection; however, in other
cases it may be partly determined by the data collec-
tion method used.

Step 4

As mentioned above, the next step is measurement
or data input. The notion of accuracy is the compari-
son of the results of this process to the world. Thus
accuracy must incorporate random and systematic
sources of differences between the data and the actual
characteristics of the features.

Data Representation

The results of a query may be represented to the
user in a variety of forms or modes. Clearly, the most
common mode is a cartographic representation or tex-
tual representation in the form of a table. This repre-
sentation is then the basis of either decisions or analyses
or-of refining or altering the initial request or problem
formulation. If the latter is the case, then the user pro-
ceeds through the steps outlined in the model again to
produce a new query.

Thus the representation of data can influence any
of the steps in the model. Representations of metadata
may cause the data user to change her formulation of
the problem to use the data in different ways (or not
use the data at all).

LITERATURE

Considerable attention has been directed to estimat-
ing, modeling and representing error in spatial data.
Veregin (1989) provides a fairly comprehensive, al-
beit now dated, survey of the literature in this area.
This body of research relates to the data component of
our model. That is, it concentrates on the relationship
between the values stored in the database and charac-
teristics of the world. In some cases (e.g., Chrisman,
1982), these efforts have started by enumerating the
possible sources of error in the data development pro-

cess. The representation of error research clearly ap-
plies to the representation arrow in our model.

The problem of uncertainty in data has also been
addressed by computer science and artificial intelli-
gence researchers {cf,, Motro and Smets, 1997). [n most
cases, these etforts have also concentrated on meth-
ods for modeling uncertain data and the mathenmatical
techniques for manipulating the representations. Such
techniques include interval mathematics, probability
theory, Bayesian statistics, fuzzy set theory, and
Dempster-Shater Theory, among others (Bandemer,
1992). These methods represent one particular aspect
of data (e.g., imprecision, vagueness, error) in a data-
base. They also focus on the data side of our model.

Literature on decision making and judgment under
uncertainty is prevalent in cognitive psychology. Much
of it refers to a classic paper by Tversky and Kahneman
that described several biases and heuristics people use
when making judgments under conditions of uncer-
tainty (Tversky and Kahneman, 1974). Some research
has attempted to identify whether certain conditions
determine the use of certain heuristics by people (Payne.
Bettman, and Johnson, 1993). This research is critical
for the data user component of our model, although its
exact position in the model remains to be determined.
For example, representing uncertainty in data may mo-
tivate the use of heuristics or biases in decision mak-
ing. However, the substantive decision contains
uncertainty introduced from other aspects of the deci-
sion environment in addition to uncertainty components
deriving from data (Jordan and Miller, 1995).

CONCLUSION AND FUTURE RESEARCH

The model described here helps identify aspects of
data uncertainty that have not been included in the con-
sideration of data quality or accuracy. We see that there
is a gap in our understanding of the result of represent-
ing uncertainty because we do not know how a data
user might respond to information about uncertainty.
These questions depend on the way a user proceeds
through the steps of formalizing her request for data.
Thus future research is necessary to investigate the types
of information that users employ when formulating the
problem and how metainformation such as uncertainty
information would affect this process. We are proceed-
ing with such research in this project by interviewing
users to ascertain their conceptions of uncertainty in
data, what kinds of uncertainty they consider in prob-
lem solving, and what kinds of uncertainty would
change their approach to problem solving. We will in-
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tegrate these questions by investigating the changes in
their decision making resulting from changes in the
representation of uncertainty of a data set.

Certain mathematical methods of modeling and
manipulating uncertainty imply specific epistemologi-
cal conditions. For example, if an interval mathemat-
ics approach is used, this implies that users of the data
consider value intervals the most appropriate repre-
sentation of uncertain values. Conversely, fuzzy set
theory is more compatible with graded categories in
perceptions of phenomena. Categories in cognition
have been the subject of research in cognitive science
for several decades. A common model of categories is
the prototype model which is similar to a graded fuzzy
category. Thus there is a question about whether a
fuzzy representation of uncertain data is consistent with
the cognitive categories of a user. The authors are also
completing a paper that compares the representation
of fuzzy regions to perceptions of regions.

The model is also useful in directing developments

in information retrieval systems such as fuzzy queries
or natural language interfaces that attempt to provide
a more flexible interaction with a data repository. Simi-
lar to the needs for representation, the specific nature
of an interface (i.e., what kind of interaction it pro-
vides) depends on the types of uncertainty that con-
cern users.
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