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Abstract—This paper examines methodologies for dynamically displaying information about uncer-
tainty. Modeling uncertainty in elevation data results in the generation of dozens or hundreds of realiz-
ations of the elevation surface. Producing animations of these surfaces is an approach to exploratory
data visualization that may assist the researcher in understanding the effect of uncertainty on spatial ap-
plications as well as in communicating the results of the research to a wider audience. A nonlinear
method for interpolation between the surface realizations is introduced which allows for smooth anima-
tion while maintaining the surface characteristics prescribed by the uncertainty model. © 1997 Elsevier

Science Ltd
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INTRODUCTION

Recent research has resulted in several models of
the uncertainty for spatial data and their appli-
cations (Dettinger and Wilson, 1981; Heuvelink,
Burrough, and Stein, 1989; Theobald, 1989;
Goodchild, 1992; Goodchild, Sun, and Yang, 1992;
Hootsman and van der Wel, 1993; Ehischlaeger and
Goodchild, 1994b). A model of uncertainty is often
needed when the data available are too coarse or
generalized for the application. In the example used
in this paper, the problem to be solved uses digital
elevation data with a sampling interval of 30 m, but
the only data available have a sampling interval of
3 arc sec, approximately three times more coarse. In
such situations, it is useful to know the uncertainty
that has been introduced by using data that is too
coarse for the application. A model of uncertainty
can provide the answer, if it is capable of simulat-
ing the missing variation; in other words, the range
of possible 30 m DEMs that would be consistent
with the available 3 arc sec DEM. The parameters
of this model would come, as they do in this paper,
from analysis of areas for which both 3 arc sec and
30 m DEMs are available for comparison. The situ-
ation is not only theoretical; whereas complete
3 arc sec DEM coverage is available for the 48 con-
tiguous United States, many areas lack 30 m cover-
age (for current United States 30 m DEM coverage,
see USGS, 1996).

Stochastic approaches to modeling spatial uncer-
tainty result in the creation of many potential re-

alizations for the spatial dataset of interest (for
examples, see Openshaw, 1979; Goodchild, Sun,
and Yang, 1992; Fisher, 1993a; Ehlschiaeger and
Goodchild, 1994b; Ehlschlaeger and Shortridge,
1996). Examining these realizations (which may
number in the hundreds) and exploring the simi-
larities and differences between them can be a
major challenge. The authors’ efforts to accomplish
this prompted an exploration of non-traditional
forms of cartographic representation, including ani-
mation. A particular problem in the generation of
smooth animations from a series of “stills” is the
creation of intermediate images to blend from one
still to the next. These intermediate images are criti-
cal for a smooth blending from one realization to
the next, but if they lack the statistical character-
istics of the actual realizations then the animation
will misrepresent the data and the form is inap-
propriate for analysis or communication.

The following section discusses the goals and
methodology involved in the creation of the simu-
lated surface realizations. The third section covers
the application of surface realizations to a least-cost
path algorithm, which provides a measure for the
expected distribution of path costs. The fourth sec-
tion describes the role that animation can play in
visualizing uncertainty: the user may develop a bet-
ter understanding for the impact of generalized
spatial data on the outcome of the least-cost path
algorithm. Then, the fifth section examines concep-
tual and practical issues for the interpolation
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between realizations necessary for generating an
animated sequence. Finally, the paper addresses the
contribution animations may make in the analysis
and communication of uncertainty in spatial data.
Animation, if correctly produced, may offer an
alternative to the usual examination of tens or hun-
dreds of static maps during the exploratory phase
of data analysis, or to the usual slides and transpar-
encies developed for a presentation. It is worth in-
vestigating whether animation could provide any
additional benefits for uncertainty analysis beyond
simply keeping the audience awake during a presen-
tation. ) :

POTENTIAL REALIZATIONS OF THE LANDSCAPE

The research which resulted in this paper was
primarily concerned with examining the impact of
spatial uncertainty in elevation data upon a corri-
dor location algorithm (Church, Loban, and
Lombard, 1992). The outcome of this analysis was
a large number of potential realizations of the el-
evation surface and the cost surface. This paper
-oncentrates on issues of representation, so the the-
ory and methodology employed to generate the re-
ilizations are covered only briefly here. The
nterested reader is referred to Ehlschlueger and
Shortridge (1996) for a more detailed discussion.
[he following paragraphs provide a concise
fescription of the elevation uncertainty model.

For the purposes of this paper, we assume that
he corridor location problem to be solved requires
. DEM of 30 m sampling interval. However, such
fata are not always available, and thus we examine
he effects of replacing them with coarser 3 arc sec
lata, using an error model calibrated in regions for
vhich both are available. We assume that the
lifferences between the two resolutions are consist-
nt between both areas: the area where the problem
nust be solved, and the area where both datasets
we available. The relationship between 30 m and
he coarser 3 arc sec data may be characterized by
xamining the distribution of differences between
he two datasets at a large number, J, of randomly
elected spatially uncorrelated locations on the sur-
ace. The difference is modeled using the mean and
tandard deviation of 96 sets of randomly drawn,
patially independent points scattered across the
urface. Unconditional stochastic simulation can
1en be employed to define a probability density
anction (p.d.f). The p.d.f. generates random sur-
wes with a Gaussian distribution matching the
1ean and standard deviation observed in the differ-
nce maps and is represented by:

E(u) = m(u) + m(m(D) + (m(T)Zw) (1)

‘here E(u) is a realization of the higher quality
Om elevation data using the more generalized
arc sec data m(u), T is a group of sets of spatially
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uncorrelated sample points, € is a random variable
with mean 0.0 and variance 1.0 perturbing the re-
alizations’ standard deviation, and Z(u) is a ran-
dom field perturbing all points u within the

- realization. The following expressions define the

remaining terms:
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where m(m(T)) is the average mean for all
sets; m(s” (T)) is the average variance for all
sets; s°(s° (T)) is the variance .of the variances for
all sets; and Z(u) specifies the random field with
spatial dependence parameters where u is a point
on the random field with a theoretical mean of 0.0
and theoretical variance of 1.0, v is the set of points
affecting u, v is the spatial autocorrelative effect
between points u and v, €, is a random variable
with a mean of 0.0 and variance of 1.0, d,, is the
distance between u and v, D is the minimum dis-
tance of spatial independence, E is the distance
decay exponent, and F is a parameter that adds
flexibility to the probability distribution function
model fitting process. Matching the spatial autocor-
relation using F is important in order to capture
the terrain texture observed in the higher resolution
dataset (Goodchild, 1986; Theobald, 1989), and
was implemented as the GRASS command
r.random.surface (Ehlschlaeger and Goodchild,
1994a). The result of performing this analysis is a
set of parameters defining the p.d.f. for modeling
the uncertainty of the 3 arc sec elevation surface:

E(u) = m(u) — 6.57 + (23.53 + 5.06)Z(u)  (6)

where D = 4600, £ = 0.07, and F = 200 for the
parameters of Z(u). Each surface created from
these parameters is a potential realization of what
the actual difference surface might be. By adding
each difference field to the 3 arc sec surface, a large
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collection of alternative, equally probable models of
the elevation surface is created.

The digital elevation models cover a large study
area around Santa Barbara, California, as depicted
in CD-Figure 1 in the digital version of the paper.
The 3 arc sec dataset, USGS quad Los_Angeles-w,
extends from 119-120°W and from 34-35°W. The
terrain is characterized by mountainous topography
extending inland from the Pacific Ocean, punctu-
ated by river valleys and narrow coastal plains. A
test area several kilometers on each side was
defined within this DEM. It extends from the
coastal plain at the town of Goleta in the south
across the Santa Ynez mountains to the Santa Ynez
river valley in the north. For the purposes of this
paper, we assumed that no 30m data existed for
this test area, and that we would have to determine
the location of a path within this area using 30 m
quality data.

Six 30 m datasets outside of the test area were
compared to collocated data from the Los_Angeles-
w DEM to develop parameters for the p.d.f The
p.d.f. was used to generate 250 realizations simulat-
ing 30 m quality elevation data for the test area.
These elevation surfaces were processed to create
250 corridor realizations. The next section describes
how the corridor realizations may be used to
demonstrate uncertainty in the route location appli-
cation caused by the coarseness of the 3arcsec
elevation data.

CORRIDOR LOCATION ANALYSIS

Generating accumulated cost surfaces is a two-
step procedure. First, a cost surface for each of the
250 realizations of the test area elevation datasets
was produced. Cost is a function of horizontal dis-
tance, slope (Horn, 1981), and absolute elevation,
as calculated for each cell by the following:

Cost = 30 + 300 tan(S/ope) + max(0, Elev — 400).
)]

Second, two locations in the test area were cho-
sen to be the endpoints for a hypothetical path. For
each of the 250 realizations created in the first step,
an accumulated cost surface was generated. The
value in each cell of the accumulated cost surface
represents the accumulated cost to travel to this cell
from both of the endpoints across the cost surface
produced in step one (Church, Loban, and
Lombard, 1992). The resulting cost pattern in any
single realization gives a visual indication of the
degree to which the character of the terrain restricts
the corridor of the least-cost path.

The authors have explored two methods for dis-
playing realization results. The first method, used in
an earlier study, condenses optimal routes from all
realizations into a single, static map. The second

method presents route cost information in anima-
tions of cost surface realizations.

Using method one, as visualized in CD-Figure 2,
routes were generated connecting the two white
spheres. This figure portrays the terrain of the study
area (at a vertical exaggeration of 1.5) draped with
a representation of the 250 optimal paths. Because
the density of paths across certain portions of the
test area was so great, displaying each path indivi-
dually on the same image was impossible. Instead,
we have colored the raster based on the number of
optimal routes passing through each cell. Out of the
250 realizations, 40 or more optimal paths traveled
through blue cells, 20 or more optimal paths
through red cells, five or more paths through green
cells, one path through yellow cells, and no optimal
paths through gray cells. The white line on the sur-
face outlines the optimal route traced on the orig-
inal 3 arcsec dataset, which had a cost of 56,561
units. Using the actual 30 m data for the test area,
the optimal path had a cost of 61,368 and followed
the red line in CD-Figure 2. The distribution, as
seen in the histogram in Figure 1 was unimodal; the
mean cost of the 250 optimal paths was 64,034
units with a standard deviation of 2991 units.

Although this information provided a good
measure of expected costs, it left several questions
unanswered. Since a major goal of spatial data
uncertainty research is to understand impacts of
generalized map data on applications, these ques-
tions include: Under what conditions does a rea-
lized optimal path deviate from the optimal path on
the 3 arc sec dataset? Whereas it is obvious that the
quality of DEM necessarily depends on the choice
of start and stop locations, does the large spatial
variability of optimal paths indicate that 3 arc sec
elevation data are inadequate for determining the
optimal path between these two locations? Method
two attempts to answer these questions through the
generation and dynamic visualization of accumu-

36—
30~

24|

0
55000 38000 60000 62000 64000 66000 6B00C 70000 72000

Figure 1. Histogram of potential optimal paths.
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ated cost surface realizations, rather than individ-
1al optimal paths.

We refer to each of these realizations as accumu-
ated cost surfaces, because they portray the aggre-
sate cost to travel to any particular cell on the
aurface. These surfaces may be preferred to a
imple calculation of the optimal route for a given
Jevation realization. In addition to showing a
iingle specific optimal path, accumulated cost sur-
‘aces provide a better idea of the general optimal
sath corridor. By comparing the different patterns
rom all of these realizations, the researcher can
zain insight into how uncertainty in the spatial data
affects the result of the path algorithm. Although
250 realizations were used to calculate the statistics
>f DEM uncertainty for the optimal route problem,
1 maximum of 35 were used in these animations.

The colors in both static and dynamic depictions
of these accumulated cost surfaces (see the anima-
lions in “Optimal Route Movie”, as well as CD-
Fig. 4; both are in the digital version of this paper)
attempt to maximize the contrast between the least
expensive optimal route and the most expensive op-
timal route of the accumulated cost surfaces. The
color scheme employed is different from the one
used for the path image. The least expensive route
(or routes if multiple paths have the same cost)
within a realization are represented by white cells.
Black cells indicate the cells that fall within one per-
cent of the least expensive optimal route cost in the
250 realizations. The colors then ramp from black
through blue and green to yellow (yellow cells have
accumulated costs 10% greater than the least ex-
pensive optimal path in the 250 realizations). Gray
cells have costs greater than 10% of that for the op-
timal path. The red line encompasses the set of cells
with costs below that of the most expensive optimal
path, 83,809 units, of any realization.

We were interested in determining the effective-
ness of non-traditional methods of visualization for
illustrating the impact of uncertainty on the appli-
cation. The following section discusses the methods
we employed to generate a smooth animation to
accomplish this.

ROLE OF ANIMATION IN VISUALIZING
UNCERTAINTY IN SPATIAL DATA

Data visualization may be categorized along a
ontinuum that stretches throughout the duration
of a research project (DiBiase, 1990). During the
arly stages of the work, animation of uncertainty
an be an invaluable aid for exploratory analysis of
he data. The methodology employed here to gener-
ate animation sequences did not consume a large
imount of time, so incorporating animations into
his phase is technically feasible. At the opposite
:nd of the continuum, graphic representations of
the data and analysis can assist in communicating

results and clarifying important points to the scien-
tific community.

Spatial autocorrelative characteristics can play a
significant role in understanding the impact of
uncertainty during the research process. This infor-
mation can be especially critical in a spatial appli-
cation for which the relative locations of objects are
important (e.g. optimal path routes and viewshed
analysis). The video “Random Fields and their use
in Representing Spatial Autocorrelation™
(Ehlschlaeger, 1994) communicates the importance
of spatial autocorrelation in representing spatial
uncertainty. The video includes two animations,
both of which show the impact of potential sea-
level rise on the shoreline of Boston Harbor. The
first animation, “Ignoring Autocorrelation Movie",
assumes the uncertainty term has a constant value
for each realization. Although the magnitude of
error is represented correctly at every cell, the
shoreline shapes do not represent potential results.
The second animation, “Spatial Autocorrelation
Included Movie™, incorporates the spatial autocor-
relative characteristics of uncertainty. In both ani-
mations, the amount of time a section of land
remains underwater represents the probability of
submergence given a 1.9m rise in sea level.
However, the second animation details the effect of
ocean level rising on contiguous regions (e.g.
“What is the probability that this road will not be
covered with water?”).

The spatial autocorrelative  characteristics
described for the second animation movie are used
in the realization for the animation developed in
this study. Each realization possesses different land-
scape elevation values. As a result of the changes to
each elevation surface, the accumulated cost surface
is also unique for each realization. In an attempt to
portray both simultaneously, the main approach
adopted in this paper employed a 2.5-dimensional
perspective view of the test area with the accumu-
lated cost surface draped over the elevation surface.
Although visually appealing, the use of the perspec-
tive view is not immune from criticism because of
the problems of displaying three-dimensional data
on a flat, two-dimensional screen. People may have
trouble perceiving perspective models (due to distor-
tion and obscured sections) and gathering useful in-
formation from them (Dorling and Openshaw,
1992). Therefore, for comparative purposes, a 2-D
animation using elevation contours to portray the
terrain was produced; it is viewable at the main ani-
mation page. In either instance, however, the goal
of the visualization is not to provide precise render-
ing of the detail of a single scene, but to promote
understanding of the magnitude of change between
images.

The spatial pattern of any single realization is not
of particular interest, for no single realization is
more likely than any other to approximate the
actual elevation surface. Instead, more interesting
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information may be gleaned from the details of the
relationships between the realizations. The changes
in the width and route of the corridor illustrate the
impact of uncertainty. If there is little change from
one realization to another, one can be fairly certain
that the least-cost path lies along a well-defined cor-
ridor. On the other hand, if change is dramatic, and
a variety of differing corridors are suggested, then
error in the spatial data has translated into a great
deal of uncertainty in the application. Much can be
gleaned from comparing static images of multiple
realizations, but developing an implicit understand-
ipg of the changes between each image can be time
consuming. Researchers may benefit from the
ability of animation to depict dynamically the
range of uncertainty inherent in their data; they
may spot relationships in the data, identify
errors in their assumptions, or consider new
directions for research (Fisher, 1993b; van der
Wel, Hootsmans, and Ormeling, 1994). The par-
ticular animation method employed may affect
how the viewer perceives the data and the re-
lationships between variables. Although this work
does not address the impact of various anima-
tion techniques on viewer perception, it does pre-
sent a method of interpolation which avoids
smoothing the intermediate images.

Another role for animation during the explora-
tory phase of research is the generation of ad-
ditional information about the uncertainty of data
and how data uncertainty affects the application.
The process of interpolation employed here creates
a large number of statistically valid dependent re-
alizations. Animating these images provides a natu-
ral way to view this massive influx of data in a
time-effective manner (Dorling, 1992). Viewers also
see the simultaneous movement of elevation and
accumulated cost surface, providing greater under-
standing for that relationship. As mentioned in the
reviews section, there were two questions we wished
to answer with this animation: Under what con-
ditions does a realized optimal path deviate from
the 3arcsec optimal path? And, does the large
spatial variability of optimal paths indicate that
3arcsec datasets are inadequate for determining
the optimal path between these two locations? The
animation in this study, “Optimal Route Movie",
helps to answer these questions.

Observing the animation, the viewer may notice
several factors. The most obvious is that optimal
paths often change location and cost for reasons
not easily perceived simply by viewing the elevation
surface. Although the overall shape of the 3 arc sec
dataset does not change, many smaller ridges and
valleys appear and disappear within the realiz-
ations. By comparing the images of the 3 arc sec
dataset and the 30m dataset side-by-side, one
notices that the 3 arcsec dataset is missing many
ridges and valleys apparent in the 30 m data. This
missing terrain texture is apparently why optimal

routes on the realizations of the fine resolution
30 m DEM are approximately 12% more expensive
than the optimal route on the coarse resolution
3 arcsec DEM. The viewer will also notice realiz-
ations for which the optimal path shifts to a dra-
matically new location. The animation makes it
clear that there is no simple relationship between
the optimal routes on different realizations, or
between the optimal routes computed at different
spatial resolutions. Some-fine resolution optimal
paths are similar to the coarse-resolution optimum,
but some are different. Clearly, the uncertainty
introduced by resorting to coarse resolution data is
propagated and amplified in the optimal routes. To
answer the two questions posed eatlier, the anima-
tions demonstrate that there are no simple relation-
ships between optimal paths at the two resolutions;
and coarse-resolution data are indeed inadequate
for the original purpose of finding an optimal path
between the two endpoints originally chosen.

Although the animations in this study show a
particular situation for which uncertainty in coarse
data renders that data inadequate, conditions in
other situations may be such that uncertainty does
not invalidate the same coarse dataset. For
example, CD-Figure 5 in the digital version of the
paper illustrates optimal paths between two
different endpoints using the same cost equation
and the same 250 surface realizations (graphic rep-
resentation is the same as for Fig. 2). The spatial
distribution of these optimal paths demonstrates
that there is little difference between corridor sol-
utions for the second set of endpoints. In this
instance, 3 arc sec data is adequate.

PRODUCING Al

ATIONS OF UNCERTAINTY

The production of animations is not technically
difficult. By stringing together a sequence of realiz-
ations and smoothing the transitions between them,
one can readily create an animated sequence of
images using current technology and public domain
software. Significant theoretical issues arise, how-
ever, in developing the interpolation method and
calibrating the frame sequencing. This section con-
centrates on these factors.

A central issue for the production of a smooth
animation is the generation of intermediate images
to ensure that the transition between images is
gentle and cohesive (MacEachren and DiBiase,
1991). Allowing for a transition permits the viewer
to see the magnitude and pattern of the differences
in elevation and cost surface between the realiz-
ations. These intermediate images are interpolations
between the original realizations; we generated eight
interpolated images between each of the 35 realiz-
ations to develop a smooth transition. Nearly 90
percent of the frames in the animation, then, are
not original realizations; they are interpolated
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Figure 2. Timelines of animations: upper from *“Optimal
Route Movie”, lower from “Spatial Autocorrelation
Included™.

images. In Figure 2 the upper timeline represents
the animation sequence for “Optimal Route
Movie™. The horizontal lines represent independent
realizations. The dark line represents the flow of
“Optimal Route Movie”. Although there are only
35 independent realizations, the 61 sec animation
portrays 306 different realizations of the optimatl
path.

For this study of uncertainty, the statistical and
spatial characteristics of the interpolated surfaces
must match the error model, or the resulting anima-
tion will become a misleading visualization tool,
or at least it will be much more difficult to
achieve desired results. For example, *‘Spatial
Autocorrelation Included Movie” used a linear in-
terpolation for the transitions. In order for the
viewer to best view actual realizations, the authors
developed the lower timeline in Figure 2. The dark
line represents the flow of the “SAI Movie”, with
the horizontal sections representing pauses in the
animation flow for 2 sec at each independent realiz-
ation. Between each independent realization, the di-
agonal lines represent intermediate frames
morphing from one realization to the next. Because
these intermediate frames were not independent re-
alizations, the goal of the “SAI Movie” was to
allow half the time to be spent showing actual re-
alizations, while the other half created a transition
between realizations. Therefore, the animation was
only able to show 29 realizations in 113 sec. In ad-
dition to only half of the time being spent viewing
realizations, terrain motion did not provide accu-
rate visual clues of uncertainty in terrain esti-
mation.

The interpolation method is clearly important for
animations of stochastic surfaces. Linear interp-
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olation results in intermediate images with different
characteristics than the independent realizations
they tie together. Mean uncertainty is modeled cor-
rectly, but variance of uncertainty is lower for the
linearly interpolated images. And, the spatial auto-
correlative characteristics of uncertainty are also
not representative. A nonlinear interpolation pre-
sented here solves this problem. The following
equations are used to interpolate between indepen-
dent realizations in “Optimal Route Movie™:

i in L fin .
€y = €xCOS 0] + €;Stn 3 ) 0<i<l (8

where m..“i. is an “interpolated” random value
between random values €, and €, with 2 mean of
0.0 and standard deviation of 1.0; and:

zZl (u)= N.q?veomAWmv + N...?E:Ammmv. 0<i<l
®

where Z ..“S.?v is an “interpolated™ surface between
surfaces Z,(u) and Z,(u), with every point having a
mean of 0.0 and a standard deviation of 1.0. We
draw attention to the word “interpolated™ because
we are trying to create values of Z7 (u) and €
that are appropriate for our p.d.f. and have values
similar to nearby values of i. In place of a formal
proof, imagine the two endpoints x and y as or-
thogonal unit vectors. Since each vector in mw.& and
Z (u) has a mean of 0.0 and standard deviation
of 1.0, we can retain their statistical properties by
locating intermediate realizations along a circle
between them centered at the origin (which explains
the sin() and cos() functions). By using the func-
tions for mw..g and Z! (u), interpolations of indepen-
dent realizations are also (dependent) realizations in
their own right. Since these interpolated images are
valid representations of the surface, the employ-
ment of the nonlinear function allows one to gener-
ate visually accurate animations.

CONCLUSION

This paper presents a method for developing ani-
mations from realizations of a surface. By viewing
the dynamic transformations of the surface, the
viewer can gain an understanding for the role that
uncertainty plays in the spatial outcome of the
analysis. The nonlinear interpolation method pre-
sented here maintains the equivalence of the inter-
mediate images to the distribution from which the
independent realizations are drawn. The resulting
frames exhibit the proper statistical characteristics
and are a valid means for visualizing uncertainty.
The utility of these animations is perhaps greatest
for exploratory analysis. The images are visually
complex, and more general audiences may find
them most useful for a quick qualitative impression
of the magnitude of uncertainty.
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Viewing animations of spatial data uncertainty as
they affect applications also provides a good mech-
anism to facilitate visual perception of the probabil-
istic nature of uncertainty (Beard, Buitenfield, and
Clapham, 1991). In a deterministic world, we expect
answers to questions such as: “How long will the

- optimal route be?” or “Where are the possible lo-

cations of optimal routes?”. Probabilistically, we
may never know what the actual answers will be

- with generalized datasets, but we may learn what

factors will determine the actual answers and how
the actual answers relate to the information that is
unavailable. And, on occasions, we will learn that
generalized data may be useful for meeting the
needs of specific applications requesting precise
data.

Several directions present themselves for further
exploration. This example is simple, as complex
interactions go. The researcher is confronted with
only one independent variable, that being elevation,
and one dependent variable, that being the cost sur-
face. Many spatial applications involve considerably
more inputs. Extending the methodology presented
here may produce a method for-visualizing the role
uncertainty plays for each input layer individually
upon the outcome of the analysis. This research
focused primarily upon the interpolation method,
but frame rate and duration are other key technical
factors which affect perception of the animation.
These were examined in earlier work on the Boston
Harbor data, but relationships between all three
factors merit continued exploration. Additional
research is also warranted to assess the relative ease
(or difficulty) people have in making sense of ani-
mations of abstract concepts like uncertainty (see
Evans, 1996 for current research into viewers’ per-
ception of simultaneous displays of spatial data and
their associated reliability). This direction is es-
pecially important for understanding the role for
animations of uncertainty to communicate results
to the community. Understanding how people per-
"ceive spatial user animation representations should
provide a stronger basis for developing more effec-
tive animations.

The implementation of the nonlinear interp-
olation method allows for the portrayal of uncer-
tainty as the image shifts smoothly through a series
of realizations. The resulting animation is a com-
plex visualization tool for perception of a complex
spatial phenomenon. Dynamic visualization may
prove valuable for developing understanding and
appreciation for the role data uncertainty plays in
spatial analysis.
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APPENDIX 1

Movies From: Visualizing Spatial Data Unceritainty
Using Animation

Four different animations illustrate many of the issues brought up in “Visualizing Spatial Data Uncertainty Using
Animation”. They are available in the digital version of this paper. The first two animations are from the video:
“Random Fields and their use in Representing Spatial Autocorrelation™ (Ehischlaeger, 1994). They are designed to com-
municate the importance of spatial autocorrelation. The third animation (a set of animations) shows different realiz-
ations of 1-Degree DEM (3 arc sec resolution) at 7.5" DEM (30 m resolution) level quality 2.5-D surfaces with Optimal
Path solutions for that realization draped over them. Vertical resolution is exaggerated 1.5 times in all animations. See
the main text for a complete description of each movie. An alternative to perspective terrain views is provided by the
fourth animation. It uses dynamically changing contour lines to portray alterations in elevation between realizations.

In order to facilitate the viewing of the movies, we have generated mpeg and quicktime versions of the animations.
There are various options depending on whether the user wishes to view a glimpse of each movie, or a.longer version.
We have also created a version of the third animation with only two interpolations between realizations instead of eight.
This version shows three times as many independent realizations in the same time period, but it is more difficult to see
uncertainty effects in the DEM clearly, since the transition between images is less smooth.

In the digital version, users may click on the file size (e.g. 2.4 megs) to retrieve the animation. Files should work well
using the appropriate Unix workstation software. On PCs, large .mov files will not load properly in QT for Windows 2.1
using a 486 at 66 mHz w/ 16 megs of RAM running Windows for Workgroups 3.11. The same computer can show .mpg
files using Net Toob (downloadable at < http://www.nettoob.com/ >).

Quick Peek Long Version
Mpeg Quicktime  Mpeg Quicktime
(.mpg) (.mov) (.mpg) (-mov)
Ignoring Spatial Autocorrelation 1.2 megs 0.4 megs 4.6 megs
Spatial Autocorrelation Included 1.3 megs 0.5 megs 3.0 megs L.l megs
10 Realizations 35 Realizations
Optimal Route,'8 interpolations between realizations 2.4 megs 1.9 megs 8.9 megs 7.2 megs
Optimal Route, 2 interpolations between realizations 1.4 megs 0.7 megs 5.0 megs 2.4 megs

Optimal Route, 8 interpolations between realizations, 8.9 megs
contour lines representing elevation

APPENDIX 11

Procedure

Here is a step-by-step procedure to generate the potential realizations and animation in this paper. A Silicon Graphics
workstation running IRIS 5.3 and GRASS 4.1 with SG3d (Brown, 1992) were used for this project. Shell scripts are
available at the link: <http://everest.hunter.cuny/~chuck/CGFinal/paper.htm >.

1. Randomly determine 250 samples of independent random points from the 3 arc sec dataset using makelnd.csh.

2. Develop statistics from these points by comparing the difference between the 3 arc sec dataset and available 30 m
data.

3. Find the parameters that best fit the random surface modet by fitting the difference of 3 arc sec data to available 30 m
data. So far, every time the random surfuce model parameters D, E, and F were used to describe the p.d.f,, the 3-D
solution space was valley shaped. The following shell scripts test various combinations of model parameters, moving
closer to the optimal combination: mC1.csh, mC2.csh, mC3.csh, mC4.csh. The goal of each shell script was to test 27
locations surrounding the best solution identified by that stage in the analysis. If a better solution was found, the next
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shell script would choose locations around the new optimal parameters. Otherwise, the next shell script would test 27
locations closer to the previous optimal solution.

4. Employ the spatial statistical parameters from step 3 to generate 250 realizations using makeVis.csh.

5. Build nonlinear interpolations between realizations. Building an interpolation between realizations takes less time than
building the random surface. makelnterp.csh

6. (Optional) Check to see that interpolations of random surfaces have similar statistica! and spatial statistical character-
isti¢s as the original realizations. checkInterp.csh, InterpSS.ixt.

7. Generate optimal path for 3 arc sec data and render it. Generate optimai path for 30 m data in the study area w..a
render it. In an actual application, this data would not be available. But, it is important to check and determine
whether results meet expectations. visDied.csh, visDEM.csh.

8. Determine range of optimum path values. Load data into spreadsheet for histogram. Develop color scheme to demon-
strate this range, and the color scheme to all the realizations. describeLCP.csh, makeColor.csh.

9. Generate the script that runs the animation creation software. Finally, run the animation creation software script.
mMovieCsh.csh, makeMovie.csh




