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Modeling the Uncertainty of Slope and Aspect
Estimates Derived from Spatial Databases

Estimates of slope and aspect are commonly made from digital elevation models
(DEMs), and are subject to the uncertainty present in such models. We show
that errors in slope and aspect depend on the spatial structure of DEM errors.
We propose a general-purpose model of DEM errors in which a spatially auto-
regressive random field is added as a disturbance term to elevations. In addition,
we propose a general procedure for propagating such errors through GIS oper-
ations. In the absence of explicit information on the spatial structure of DEM
errors, we demonstrate the potential utility of a worst-case analysis. A series of
simulations are used to make general observations about the nature and severity
of slope and aspect errors. ‘

1. INTRODUCTION

In recent years, there has been a dramatic increase in the use of digital com-
puters to capture, store, process, analyze, and model geographic information,
that is, information about specified locations on the Earth’s surface. Much of
this activity is subsumed under the rubric of geographic information systems
(GIS; Burrough 1986; Maguire, Goodchild, and Rhind 1991), though it also
owes much to related geographic information technologies of remote sensing
and global positioning. It is now routine to create digital databases of such geo-
graphic variables as ground elevation, soil class, ownership, or land cover class,
and to use them in analyses, and ultimately in decisions.

Although digital computers are relatively precise, the spatial databases used
in GIS analyses are often of surprisingly low quality. Many are captured from -
printed maps, which are often designed to convey impressions about the distri-
bution of geographic phenomena rather than precise scientific measurements.
Many sets of data are the result of subjective interpretation of the landscape,
and not replicable between observers. Thus the subject of uncertainty in spatial
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databases has received increasing prominence as users of GIS have come to
realize that (1) the quality (or fitness for use) of their products may be less
than that required for their tasks; and (2) that without knowledge of quality,
the integrity of past, present, and future decisions may be jeopardized. The lat-
ter concern is particularly pertinent to agencies responsible for making regula-
tory decisions that may be subject to judicial review.

In this paper we use the term “uncertainty” to denote a lack of knowledge of
true value, that is, the value that would be discovered if one were to visit the
field and make an observation using a perfectly accurate instrument. Used in
this way, uncertainty includes “error,” or uncertainties due to imperfections in
measuring instruments, as well as the effects of cartographic generalization, which
alter observations in the interests of cartographic simplicity and related objec-
tives. It also includes uncertainty due to inadequate definition, and consequent
variation between observers. To be consistent with usage in statistics, we use
the term “error” in this paper, in the context of “error model,” in the broader
sense of uncertainty rather than the narrow sense of mistake. We also use the
term “error” to refer to an instance of the difference between observed or
recorded value and the corresponding true value.

For the purposes of this paper we adopt a very simple model of the operation
of a GIS. Observations and measurements are used to populate the GIS database,
and are subject to uncertainty. The functions of the GIS are used to process and
analyze the data, perhaps incorporating them as input to models. Finally, the
results of processing are output as products, and form the basis for decisions.
In this simple model, three steps are necessary to address the issue of quality:
(1) develop error models for each data component; (2) determine how uncer-
tainty propagates during product creation; and (3) devise appropriate measures
and visualizations of product uncertainty. This process is particularly important
‘when the response of output to input is nonlinear, or when it is otherwise dif-
ficult to anticipate intuitively the effects of input uncertainty on output.

The theory of error analysis is well developed for scalar measurements
(Taylor 1982), and relies heavily on the Gaussian distribution. In surveying,
the theory of errors in point positions is based on the multivariate Gaussian dis-
tribution and forms the basis of least-squares adjustment (for example, Leick
1990, pp. 105-26). But in many spatial databases it is impossible to identify
the original measurements that support each item of information, since much
of a data set may have been obtained by interpolation between observations.
Such complex patterns of lineage lead to strong interdependencies between
the errors in items of information, particularly when the items are located close
together in space.

The need to develop effective error models for spatial databases is reflected
in a growing literature (Fisher 1991; Lee, Snyder, and Fisher 1992; Goodchild
and Gopal 1989; Goodchild, Sun, and Yang 1992; Heuvelink 1993). These models
form the first stage of the approach described above. In some cases it is possible to
approach the propagation of uncertainty analytically as in classical error analysis
[for example, Heuvelink, Burrough, and Stein (1989) use a Taylor series expan-
sion] but in other cases it is necessary to adopt a Monte Carlo approach (Open-
shaw, Carver, and Carver 1991). If a suitable stochastic process can be devised
to model errors, then a sample of realizations of the process is generated; the
analysis is performed repeatedly on each realization; and finally product uncer-
tainty is computed by evaluating some suitable statistical summary of the range
of outputs, such as a standard error. Because of the strong interdependencies of
errors, each realization in this approach must be a complete data set, or “map.”
Thus we can define an error model for a spatial data set as a stochastic process
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capable of generating a population of data sets, such that the differences
between data sets are representative of the uncertainty present in each. In
essence, we have substituted “data set” or “map” for the individual scalar mea-
surement of the classical Gaussian error model; one might therefore express the
objective of this research as “finding a Gaussian distribution for maps.”

The elevation of the land surface is a particularly well-defined geographic
variable (problems of definition do nevertheless exist, but will not be reviewed
here), and data sets capturing elevations over defined geographic areas are widely
used for purposes ranging from hydrologic modeling to the siting of transmit-
ters for cellular telephone networks. Of the various alternative data models,
the most widely available is the digital elevation model, or DEM, which con-
sists of a rectangular grid of sample elevations. DEMs with a grid spacing of
three seconds of arc are widely available, and extensive areas of the U.S. land
surface are covered by available DEMs with a thirty-meter spacing. However,
like much geographic data, DEMs present problems for error modeling be-
cause of the complex pattern of dependencies between observed elevations at
grid sample points, and the data used to create the DEM. Several different
methods are regularly used, including manual photogrammetric transects, auto-
mated photogrammetry, and interpolation between contours.

Slope and aspect are important terrain parameters for many types of environ-
mental applications. Several authors have investigated the error effects of the
algorithms used to calculate these quantities from DEMs, including Carter
(1990), Skidmore (1989), Smith, Prisley, and Weih (1991), Srinivasan and Engel
(1991), and Wood and Fisher (1993). Carter (1992) has looked at the effect of
rounding elevations to the nearest meter (standard practice with the USGS data
used here), while Isaacson and Ripple (1990) have examined the implications
that different cell sizes have for the two quantities, and Kumler (1990) has in-
vestigated the error effects of the various methods available for creating DEMs.
While this research has shown the relative merits (or otherwise) of many of the
algorithms available, apart from the work of Carter (1990) it has not dealt with
the effects of elevation error as an input to those algorithms.

Hunter and Goodchild (1995) presented an error model for DEMs. The
observed value is assumed to be the sum of a true value and a disturbance term;
the latter will be modeled in this paper as a spatially correlated random field.
They showed how the model could be used to visualize the uncertainty in the
position of a contour on a topographic map. In this paper we explore the impli-
cations of the model for analyses of DEMs, particularly the calculation of slope
and aspect. We examine the propagation of data error through these two com-
mon GIS operations, and the influence of the pattern of dependencies between
errors on the results. We discuss practical strategies for coping with lack of
knowledge of the model’s spatial dependence parameter p. The approach is
partly analytic, and partly numeric. The paper is structured so as to provide an
overview of DEM error and testing procedures in section 2, followed by a
description of the test data set in section 3, and discussion of the model to be
applied in section 4. Spatial dependence is introduced in section 5, together
with a detailed description of the steps involved in implementing the model.
Finally, section 6 presents the model’s application to assessing uncertainty in
slope and aspect, while section 7 discusses the results and implications.

2. GENERAL DISCUSSION OF DEMS

DEMs are digital representations of terrain surfaces in which elevations are
recorded over a rectangular grid of points. Often the grid values will have
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been interpolated or resampled from other, possibly irregularly spaced sample
points (Burrough 1986; Skidmore 1989), and in addition the process of creat-
ing the DEM will have introduced a number of additional errors, some more
systematic than others. For instance, when aerial photography is photogram-
metrically profiled along transects, operators controlling the process tend to
underestimate elevation when moving uphill and overestimate it when moving
downhill. This produces. a characteristic “Firth Effect” whereby adjacent cells
in the same transect exhibit high positive correlation of errors while neighbor-
ing cells in adjacent transects show high negative correlation of errors. The pat-
tern becomes obvious when the DEM is displayed by interpolating contours.

In cases where the GPM2 automated image correlation system has been
employed, the DEM is constructed in 9 x 8-millimeter patches (at photogra-
phy scale), and the assembled DEM may show distinct steps in elevation (up
to ten meters in magnitude from the authors’ experience) at patch boundaries
throughout the model [see Hunter and Goodchild (1995) for an illustration of
this effect]. In addition, there is a rounding error associated with providing all
elevation values as integers. These are just some of the errors which may occur
in DEMs and, while it is not the purpose of this paper to present a comprehen-
sive review, with the numerous combinations of data sources and processing
methods employed to produce DEMs there is clearly much that remains un-
known about this topic. Carter (1988, 1989) and Theobald (1989) are sug-
gested for further reading.

The U.S. Geological Survey (USGS) is a major producer of DEMs and since
this research uses one of their products it is worth examining their error assess-
ment techniques. Considering only their 7.5-minute products, their method
(described in USGS 1990) is to test the DEM by comparing a minimum of
twenty-eight test points (eight on the boundary and twenty inside the file) with
ground control values that are taken to represent true elevations. The root
mean square error (RMSE) is the resultant summary statistic provided with

the file, defined as follows:

L

1/2
RMSE = [Z (z — 2%)° /n] _ (1)

=1

where n is the number of sample points, ¢ denotes a sampled point, z; is the ele-
vation of the DEM at the sampled point, and z*; is the true value at the sampled
point.

Level 1 DEMs (the most common) are generally considered to have an
RMSE of less than or equal to seven meters, although some may have an
RMSE as high as fifteen meters, and the stated USGS policy in this regard is
that

an absolute elevation error tolerance of fifty meters (approximately three times
the fifteen-meter RMSE) be set for blunders for any grid node when compared
to the true height from mean sea level ... (USGS 1990, p. 14)

While not specifically mentioned in their documentation, the USGS has clearly
assumed a Gaussian distribution of the elevation error and the authors have made
the same assumption in this paper. Level 2 and Level 3 DEMs are considered
more accurate and have more stringent tolerances.

The focus of this paper is on the derivation of slope and aspect estimates
from DEMs. To avoid possible ambiguity, we define gradient as a vector quan-
tity with components equal to the partial derivatives of the surface in the z and
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y directions. Slope § is defined as the magnitude of this vector, or the tangent
of the angle of steepest slope of a plane tangential to the surface (we use the
term slope angle to refer to this quantity’s arc tangent). Aspect A is defined as
the direction of the horizontal projection of the line of steepest slope, or the arc
tangent of the negative ratio of the gradient vector’s two components. Thus:

S =[(02/0z)* + (02/dy)*| | 2)
and
. tan A = —_aaZL//aig . 3)

3. THE TEST SITE

The data for the exercise comes from a 448 row by 334 column subset (86
percent) of the USGS DEM for the 7.5-minute, 1:24,000 State College (Penn-
sylvania) mapping quadrangle. It should be noted that the scale of 1:24,000
has no relationship to the DEM, other than to assist in identifying the map
quadrangle for which the DEM applies. The total number of elevation values
in the test file is 149,632. The values represent elevations of points in a rectan-
gular array defined on a projection of the Earth’s surface with a spacing of thirty
meters. -

The DEM was supplied as part of the “Visualization of Spatial Data Quality
Challenge”—a research contest jointly sponsored by the U.S. National Center for
Geographic Information and Analysis (NCGIA); the U.S. Environmental Protec-
tion Agency (EPA) Center for Environmental Statistics; the U.S. Department of
Agriculture Soil Conservation Service (SCS); and the Statistical Graphics Sec-
tion of the American Statistical Association (Beard 1992). Figure 1 shows a con-
tour plot of the test site topography at a contour interval of twenty meters. The
test site measures approximately ten kilometers by thirteen kilometers and has
considerable variation in terrain, with elevation values ranging from 255 meters
in the north to 743 meters in the southeast.

We assume for the purposes of this paper that as a Level 1 DEM the test
data set has a spatially stationary RMSE of seven meters. In doing so we may
be overestimating the actual uncertainty, since seven meters is a maximum for
this class of DEMs, not a measured value for this instance; and we may also be
ignoring correlations between RMSE and other factors—it may be, for exam-
ple, that areas of steeper slope have larger errors.

4. THE ERROR MODEL

The Gaussian model (where the mean of the population is an estimate of the
true value and the standard deviation is a measure of the uncertainty of the
observations) is commonly used as an error model, but it makes only the most
general assumptions about the processes by which the error has accumulated
(total error is assumed to be the sum of a large number of random, additive
effects). When additional information is available about the structure of errors
in a data set, the Gaussian model should be replaced with a more accurate rep-
resentation.

We use a similar approach here, by proposing that in the absence of more
definitive information, error in a DEM can be modeled by adding to the true
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Fic. 1. Test Site Topography (shown at a contour interval of 20m, with 100m contours labeled)

value a disturbance term consisting of a spatially autocorrelated random field,
with parameters that are stationary across the project area. When these assump-
tions are known to be invalid, the model should be modified accordingly, by
substituting a more complex pattern of spatial dependence of errors, or a multi-
plicative error term, or spatially varying parameters, as appropriate.

A variety of methods can be used to estimate slope and aspect from a DEM
grid. Srinavasan and Engel (1991) review four such methods: weighted least
squares fit of a plane to a 3 x 3 neighborhood centered on each point (Bur-
rough 1986, p. 50); exact fit of a nine-term partial quartic surface to a 3 x 3

S~
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neighborhood (Zevenbergen and Thorne 1987); finding the maximum slope
between a point and its eight queen’s-case neighbors (Shanholtz et al. 1990);
and a method due to Beasley and Huggins (1982). Of these four methods, the
first is most amenable to a mathematical analysis of error propagation.
Consider a 3 x 3 neighborhood centered on (0,0) and with spacing 1 between
points. If rook’s-case neighbors are given weights of 2 and bishop’s-case neigh-
bors weights of 1, reflecting the former’s greater proximity, the least-squares
estimators for the = and y components of the gradient vector are

aZ/a.'B = [21,1 + 2Z1yo +21-1—Z11— 2Z_1,0 — Z_1’_1]/8 (4)
0Z [0y = [Z1n+2Zy1+ Z_11 — Z1, 1 — 2Zp1 — Z1,1]/8. (5)

Now assume that the RMSE of each elevation error is s,, and that the correlation
between errors at pairs of grid points is a function only of the distance between
them. Because the estimating equations are linear, the RMSEs of the compo-
nents of the gradient vector, s, and s,, can be easily obtained as

52 =50 =s[6+8r(l) —4r(2) - 8r(v/5) — 2r(v/8)]/32 (6)
where 7(d) denotes the (signed) correlation between elevation errors at points dis-
tance d apart.

The correlation between errors in the two components of the gradient vector
is readily shown to be 0, despite the existence of common terms in the estimat-
ing expressions. If errors in grid point elevations are also independent (r = 0),
then s; = s, = 0.433s, (for example, a seven meters RMSE and a grid spacing
of thirty meters will produce an RMSE of 0.101 in estimates of the components
of the gradient vector; on a slope angle of 20 degrees the addition of two RMSE
is equivalent to a slope angle of 29.5 degrees). If errors are perfectly correlated
(r =1), then as expected s; = s, = 0, and there is no uncertainty in estimates
of slope or aspect. Unfortunately expressions for error in slope and aspect are
not as simple as those for the components of the gradient vector because of the
nonlinear nature of the estimating equations.

Thus a more useful approach to error modeling might be to bypass the ana-
lytic treatment of individual algorithms entirely, by examining the effects that
changes in input parameters have upon the outputs via a simulation process.
By using such a model, an alternative means can be provided for overcoming
the first two requirements of the three-part error management approach given
in section 1, which in turn provides the basis for considering the third compo-
nent of managing uncertainty—rvisualization (or communication) of the results
to users.

Although the correlation function r(d) clearly has a critical effect on the
uncertainty of slope and aspect calculations, and although estimates of RMSE
for published DEMs are generally available, almost nothing is known about
the empirical spatial structure of DEM errors, or how it varies between meth-
ods for DEM generation. We explore this critical issue of spatial dependence in
the next section.

5. DISCUSSION OF SPATIAL DEPENDENCE
5.1 Case 1: Spatial Independence (r = 0)

The first option available is to consider the error in the elevation of each
point to be spatially independent of its neighbors (r = 0). In other words, knowl-
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edge of the error present at one point provides no information on the errors
present at neighboring points, even though the elevations themselves may
have similar values. Following the definition of an error model given in section
4, a realization can be achieved by disturbing each elevation by an independent
disturbance term: ' )

#(z,y) = 2'(z,9) + N(0,s.) (7)

where 2*(z,y) is the observed elevation at (z,y) and N(0, s;) is an independent,
normally distributed random variable with mean 0 and standard deviation s,.
Heuvelink (1993) illustrated the impact of this spatially independent model on
slope and aspect estimates using Monte Carlo simulation, and by a Taylor series
expansion of the relevant equations.

In this analysis we have assumed that the mean error is zero, and thus that
the RMSE statistic is equal to the standard deviation (s,) of error. Monckton
(1994) and Li (1991) discuss the presumption by DEM producers that there is
no systematic bias in DEM elevations, and note evidence that small nonzero
mean errors for DEMs exist, particularly over certain regions of a map.

Figure 2 shows a realization of the model as a contour map. Addition of a
spatially independent disturbance term has raised and lowered adjacent grid
elevations and created a landscape that is clearly much more rugged and noisy
than the observed landscape shown in Figure 1. The uncertainties of the two
components of the gradient vector are also very high, implying that slope and
aspect estimates from such data are highly unreliable. On visual appearance
alone, it is clear that this model of independent disturbances is not acceptable.
Thus although no information about spatial dependence of errors is available
from the producers of this DEM, we can safely surmise that correlations be-
tween adjacent errors are in reality positive. Indeed, if they were not, the prac-
tice of estimating slope and aspect from published DEMs would be close to
useless.

5.2 Case 2: Spatial Dependence (limit r = 1)

At the other extreme, consider the limit where spatial autocorrelation is max-
imum, all errors are perfectly correlated, and there is in effect only 1 degree of
freedom in the disturbance field being applied to the DEM. This is equivalent
to specifying a systematic error in elevations, or a mean error not equal to zero;
it seems unlikely that any DEM production process would generate errors of
this nature. On the other hand, it is possible to imagine appropriate motivating
circumstances. Suppose an area is to be flooded, but the eventual elevation of
the water surface is uncertain. We know, however, that the elevation is per-
fectly correlated in space, and that the water surface therefore has only one
degree of freedom.

5.3 Case 3: Spatial Dependence (0 < r < 1)

The case of positive correlation less than 1 is clearly most realistic. Of the
many methods available for defining the disturbance field e(z,y), we adopt the
spatially autoregressive process:

e=pWe+N(0,1) (8)

where e denotes a vector of grid values of the disturbance field, p is a parameter,
W is a matrix of weights, and N(0, 1) is a vector of independently and normally
distributed random deviates. The elements of the weights matrix are set to 1 for
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F1G. 2. Topography Modified by a Spatially Independent Disturbance Term [Equation (7); shown
at a contour interval of 50m]

rook’s-case neighbors and zero otherwise. This definition of the weights matrix
forces p to lie in the range 0 to 0.25.

To simulate disturbance fields, we use the iterative approach proposed by
Heuvelink (1992), which computes left-hand-side values of e and inserts them
on the right-hand side until convergence occurs.

To illustrate, Figure 3 shows six realizations (p =0.0000, 0.2000, 0.2400,
0.2450, 0.2490, and 0.2499) to demonstrate the effect of increasing p. Note
that in the range 0 < p < 0.20 there is little obvious change in the autocorrela-
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F1c. 3. Realizations of the Spatially Autoregressive Disturbance Field for p =0.0000, 0.2000,
0.2400, 0.2450, 0.2490, and 0.2499, Using the Same Random Number Seed. Cells are shaded using
a 256-value gray scale.

tion effect, and it is not until p takes values very close to the limit of 0.25 that
distinct patterns start to emerge.

In principle, the correlation function (d) of realizations of this autoregressive
process depends only on p, and equation (6) could thus be rewritten to express
the standard errors s, and sy as functions of p also. Unfortunately while it is
clear that r(d) is a decreasing function, it has not been possible to obtain a sim-
ple closed-form expression in this case (Whittle 1950). Thus for the remainder
of the paper we discuss results in terms of the parameter p, and suggest that
correlograms and standard errors be obtained by simulation.

6. APPLICATION OF THE MODEL TO SLOPE AND ASPECT ESTIMATES

In order to investigate the effect of simulated changes in elevation at different
levels of spatial autocorrelation on calculations of slope and aspect, an experi-
ment was designed whereby ten realizations of the error model for the test
site DEM were made for each value of p from 0.0000 to 0.2000 (in 0.0100
increments), from 0.2000 to. 0.2400 (in 0.0050 increments), from 0.2400 to
0.2490 (in 0.0010 increments), and for 0.2495 and 0.2499. These simulated
error fields were each added to the DEM, and slope and aspect estimates
derived using the 3 x 3 neighborhood least squares method analyzed previ-
ously. The process is summarized in Figure 4.

Calculating the difference between “true” and realized aspect values requires
that the angular differences be interpreted correctly. For example, the differ-
ence between aspects of 5 degrees and 355 degrees is 10, not 350.
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DEM Aspect
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Realized Realized
Slope Aspect

Source Source

Slope Aspect

Diff. in Diff. in
Slope Aspect

Mean difference in slope Mean difference in aspect
Standard deviation of difference Standard deviation of difference

Fic. 4. The Two-Stage Procedure for Deriving Realized Slope and Aspect Grids, Followed by
Determination of Differences between “True” Grid and “Distorted” Grid for the Two Quantities

The first assessment of the experimental results is shown in Figure 5, which
shows the effect of the realization procedure on slopes. The cells in each image
have been shaded according to their slope angle (with white representing 0
degrees slope angle and black representing 45 degrees, the maximum value
occurring in any of the data sets). The slope estimates for the source DEM
are given in the lower-right image. Note the increase in feature clarity with
increasing p, as expected. Distinctive features such as the river valley in the
top center of the test site and the mountain ranges in the east and southeast
remain relatively unaffected due to their size in relation to the RMSE of 7m.
The parallel linear features visible near the lower edge of some images, partic-
ularly the source DEM, are examples of the GPM2 processing error discussed
in section 2.

Figures 6 and 7 show statistical summaries of the differences in slope and
aspect between the source DEM and error model realizations. Figure 6 shows
standard deviations of differences in slope angle plotted against p; Figure 7
shows the same results for aspect. Although results are shown for all four hun-
dred simulations, there is little variation among the realizations for each value
of p in either figure.

In Figure 6, standard deviations are generally steady up to p = 0.2000, then
there is a transition zone between p = 0.2000 and 0.2400, followed by a sharp
decrease to almost zero. In Figure 7 there is a more distinct turning point at

around p = 0.2400. The implications of these results are discussed further in
section 7.



FiG. 5. Realizations of Slope for the DEM with p =0.2000, 0:2400, 0.2450, 0.2490, and 0.2499,
Using the Same Random Number Seed. Cells have been shaded by slope angle, with white =0
degrees and black =45 degrees.
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Fic. 6. Standard Deviation of Differences in Slope Estimates Plotted against p. Ten replications
were made for each value of p.

7. DISCUSSION OF RESULTS

The results obtained from the experiment and their operational application
are now discussed. Firstly, the model provides a means of creating different
realizations of an output that is software and hardware independent, since it
operates on whatever algorithms and processor are being used at the time.
Even where an empirical error model can be defined or the effects of error
propagation obtained by analysis, the user is not necessarily able to understand
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Fic. 7. Standard Deviation of Differences in Aspect Estimates Plotted against p.

what the final variation in product may be. The general approach given in this
paper overcomes that problem.

Lack of knowledge of the structure of spatial dependence in DEM errors
presents a serious problem, given the critical importance of this structure in
determining uncertainty in the products of many GIS calculations. Since it
seems unlikely that such information will become routinely available for pub-
lished DEMs, at least in the near future, we propose an alternative strategy
that may still provide useful results. Study of the graphs in the preceding sec-
tion shows that there is a point in the domain 0 < p < 0.25 below which there is
no significant change in the difference between source and realized DEMs. This
could be selected as a worst-case p value, and a series of realizations might be
made at this level representing the outer limit of variation in aspect that a user
could expect from the specific combination of DEM, its RMSE, and the aspect
algorithm employed. The transition point for slope is not as well defined as it is
for aspect, but a user could still apply a minimum p value of about 0.2 (Figure
6) with confidence that the mean difference in slope angle from the process will
not increase by more than about 1 degree (which is within the bounds of the
data set used, given that the combination of thirty meters grid cells with eleva-
tions rounded to the nearest meter produces a precision in slope calculation of
no better than about 1.9). Indeed, it might not be necessary to look at the
graphs to assess where the transition value of p lies, since users may be able to
judge its value effectively by examining the output. This can be seen in Figure
5, where realizations at p = 0.2000 essentially remain featureless in flatter ter-
rain due to their randomness, and it is only those features whose size is at least
several times greater than the RMSE of the DEM that are maintained. Thus,
presenting users with single, initial realizations at selected p values could just
as easily allow them to choose the limit at which they wish to operate.

The procedure has widespread application to many operations. These include
land suitability/capability analysis; soil classification where slopes are used to assist
in class definition; viewshed calculations; computation of parameters such as
“northness,” which is used for assessing vegetation reflectance; derivation of
combined elevation/slope/aspect parameters for vegetation growth indices; cal-
culation of snow wetness when examining spring thaw runoffs; and throughout
hydrologic modeling in general. In this paper, only slope and aspect realizations
are shown, but there is no reason why each realization should not be further
processed by whatever models and algorithms a user has applied to the source
DEM, in order to give realizations of other derived quantities. Indeed, the pro-
cess applies not just to DEMs but also to other attributes that may be modeled
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by grid cell structures, such as noise or pollution values. The procedure might
also be used to test the effect of different DEM cell resolutions or RMSEs, in
addition to alternative process models and algorithms. Finally, a series of real-
izations at selected p values might be produced and cell counts recorded to
develop confidence levels in cells to satisfy nominated criteria (for example,
whether they are “seen/not seen” in a viewshed, or “above/below 10 degree
slope™ for a land use study).

8. CONCLUSIONS

In this paper, a spatially autoregressive error model has been applied to study
the effects of uncertainty in digital elevation models upon slope and aspect
estimates derived from them. Use of the term “uncertainty” is preferred to
“error,” since it conveys the fact that it is our lack of empirical knowledge
about errors in the source data and the algorithms used in the computational
process that has led to a lack of understanding about the quality of the final
product. The model can be described as a stochastic process capable of gener-
ating a population of distorted versions of the same reality, with each version
being a sample from the same population. A procedure is given for developing
alternative realizations of slope and aspect maps with differing levels of spatial
autocorrelation (p). It has been demonstrated both analytically and empirically
that errors in slope and aspect depend on the structure of spatial dependence of
errors. Thus it is important that producers of DEMs develop appropriate meth-
ods for measuring and characterizing such structure, in addition to the tradi-
tional RMSE. Each method of DEM production likely has its own structure of
spatial dependence, and the spatially autoregressive model used in this paper
may not be ideal for any of them. Nevertheless, just as the Gaussian distribu-
tion is accepted as a first approximation to the distribution of errors in scalar
measurements, the methods used in this paper remain appropriate as a first
approximation until more is known about the real spatial structure of DEM
errors.
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