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Hierarchical spatial data structures offer the distinct advan-
tages of data compression and fast access, but are difficult to
adapt to the globe. Following Dutton, we propose projecting the
globe onto an octahedron and then recursively subdividing each of
its eight triangular faces into four triangles. We provide proce-
dures for addressing the hierarchy and for computing addresses in
the hierarchical structure from latitude and longitude, and vice
versa. At any level in the hierarchy the finite elements are all
triangles, but are only approximately equal in area and shape; we
provide methods for computing area and for finding the addresses
of neighboring triangles. © 1992 Academic Press, Inc.

INTRODUCTION

Hierarchical spatial data structures (HSDSs) such as
the quadtree and octtree (see, for example, {4]) have been
adopted in numerous geographic information systems
and spatial databases. They offer advantages in data
compression and sampling efficiency, since the depth of
the tree, and thus the density of information, can be var-
ied from one area to another in response to the variability
of the phenomenon being represented. Numerous pro-
cesses operate faster on HSDSs, particularly various
forms of spatial search. The address of a cell in an HSDS
embeds both of its spatial coordinates and .thus effec-
tively compresses two dimensions into one [5]. Cells
lower in the tree have longer addresses, and the length of
an address is therefore a direct measure of spatial resolu-
tion. This has led to the suggestion that HSDSs offer a
powerful solution to the problems of accuracy in spatial
databases, since the spatial resolution of a position can be
determined directly from the length of its spatial address
[2, 6].

Three properties of quadtree and octtree implementa-
tions of HSDSs are of particular interest in this paper: (1)
at any level, the cells are equal in area; (2) at any level,
cells are equal in shape; and (3) the data structure cor-
rectly encodes the adjacency relationships between cells.
The value of an HSDS for analysis and modeling would
clearly be reduced without these properties, particularly

in modeling based on finite elements. Unfortunately it
has proven difficult to find a method of hierarchically
subdividing the earth’s surface so that these properties
are retained. Many global databases have been based on
rectangular cells superimposed on simple cylindrical pro-
jections such as Mercator’s or the cylindrical equidistant
projection. However, although these schemes may
achieve one of our required properties (as a conformal
projection, the Mercator projection achieves property
(1)), we note that it is well known that no projection of
the earth onto a plane can satisfy both of properties (1)
and (2). Moreover any cylindrical projection must violate
property (3) because of the interruption at the poles. A
method based on a cylindrical equal area projection was
proposed by Tobler and Chen [7]; cells at a given level
have equal area, but unequal shape.

An HSDS called Triacon or Quaternary Triangular
Mesh (QTM) was suggested by Dutton [1, 2]. In this pa-
per we follow Dutton’s approach in first projecting the
Earth onto an octahedron and then recursively subdivid-
ing each of the eight triangular faces of the octahedron
into four triangles. Each level of the hierarchy after the
first thus contains four times as many triangular cells or
elements as the previous level. We simplify Dutton’s ap-
proach in our numbering of the triangles, in order to ob-
tain an addressing system that provides easy transforma-
tion to and from latitude and longitude. Our scheme
satisfies property (3), and although properties (1) and (2)
are only approximately satisfied, each triangular cell has
an area that can be computed from a simple expression.

An approach somewhat similar to ours has been pro-
posed by Fekete on the basis of recursive subdivision of
the triangular faces of an icosahedron [8-10]. Fekete’s
scheme has the advantage that the larger number of faces
of the basic Platonic solid (20 rather than 8) produces a
greater uniformity of area at any given level of sub-
division. However, the algorithms associated with our
octahedral scheme tend to be simpler, and the six ver-
tices of the base octahedron align with the poles and
equator. ;.

The discussion is organized as follows. We first de-
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32 GOODCHILD AND YANG

scribe the coordinate systems used to develop the prop-
erties of the proposed global HSDS. Subsequent sections
develop the transformations between coordinate sys-
tems, particularly between cell address and latitude/lon-
gitude. Section 4 discusses the calculation of cell area,
and Section 5 and Section 6 present an algorithm for
finding the neighbors of a cell and the average data file
storage distance, which corresponds to the expected cost
of transition from one data cell to its neighbors.

1. COORDINATE SYSTEMS

In our proposed scheme, the entire earth is described
by an octahedron. One-quarter of each hemisphere is
represented by an equilateral triangle and is then decom-
posed. In order for the hierarchy to be symmetrical and
isohedral, i.e., all cells are congruent and every cell can
be mapped onto other cells through translation, reflec-
tion, rotation or a combination of these, the triangle is
subdivided into four smaller equilateral triangles and
each of them is further subdivided recursively until a
required level is reached. When the four triangles are
decomposed from their ancestor triangle, they are la-
beled 0, 1, 2, and 3. There are 24 possible distinct
schemes of labeling. Moreover while the initial subdivi-
sion occurs with the northern hemisphere triangles stand-
ing on their bases (‘‘upward’’), the southern hemisphere
triangles stand on vertices (‘‘downward’’). In subsequent
iterations, triangles in both upward and downward orien-
tations must be subdivided in both hemispheres. If this
orientation of triangles is considered, there are 48 possi-
ble labeling schemes. In order to limit the complexity of
the addressing and conversion algorithms, we use the
following method in every recursive decomposition: (1)
the center triangle is labeled cell 0; (2) the triangle verti-
cally above (below) the central triangle is labeled cell 1;
and (3) the triangles below (above) and left and right of
triangle 0 are labeled cells 2 and 3, respectively. Note
that the terms in the parentheses are used when the trian-
gle being subdivided stands on a vertex (downward).

The initial representation of the globe as eight triangles
is termed the level 0 subdivision; after j further subdivi-
sions of each triangle we reach level j of the HSDS. Thus
at level j, there are 8 X 4/ cells. For much of the discus-
sion in this paper the level 0 subdivision is ignored, and
we refer simply to the recursive subdivision of one-
quarter hemisphere. Figure 1a is a triangle decomposed
to level 4, with each cell identified by its address, which
consists of four base-4 digits, identifying the triangles
selected at each level of subdivision. The full address
including level 0 would require an initial base-8 digit.
Figure 1b shows the decimal address of cells in the trian-
gular decomposition. Figure lc¢ shows the ordering of
cells and emphasizes the consistent choice of the left cell

as cell 2 at every level, irrespective of whether the trian-
gle is upward or downward.
In this study, we use the following coordinate systems:

(1) Positions on the globe are referenced by latitude ¢
and longitude A.

(2) Each of the eight isosceles triangles of the level 0
octahedron contains one-quarter hemisphere. Locations
within each triangle are identified by Cartesian coordi-
nates x and y, with respect to an origin in the lower left
corner. The triangles are numbered 0 through 3 in the
northern hemisphere and 4 through 7 in the southern, in
both cases in anticlockwise order when viewed from the
north pole (see Fig. 2).

The triangles vertices are assumed to lie at (0, 0), and
(27, 0) and (2771, 27-1V/3) in the (x, y) coordinate system,
where r is the highest level of subdivision. We assume
that x depends linearly on longitude for a given latitude,
and that y depends linearly on latitude. Figure 3 shows
the relationships between latitude and longitude and (x,
y) schematically. The left, right, and bottom edges of the
triangle in Fig. 3 can be described by the following equa-
tions: '

Left edge: y = V3x or A=0 (1-1)
Right edge: y=(2"—xV3 or A= % 1-2)
Bottom edge: y =0 or ¢ =20. (1-3)

From Fig. 3 and expressions (1-1) to (1-3), we have the
following expression for the relation between y and ¢:

_w _2"V3
¢~2n\/§y or y==—-——2¢. (1-4)

From the point p(x, y) in Fig. 3, we have

x=x +x', where x; =

1
Ve ke
and x’ is the horizontal distance from p(x, y) to the left
edge of the triangle. Since the distance between x; and x;
corresponds to the maximum longitude difference at lati-

tude ¢ = 7ry/(2”\/§), which is also defined as #/2, we
have

X —x; wm’
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FIG. 1. The triangular data structure applied to a quarter hemisphere, showing (a) quaternary addressing, (b) decimal addressing, and (c) the
ordering of level-4 triangles.

From expressions (1-1) and (1-2), we have Then

2N ntly 21~-n
n=2-2 =B =T (1-22y)
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FIG. 2. Initial octahedral decomposition of the Earth at level 0.
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Zloen(i-24)

The expressions for transformation of longitude X\ and
latitude ¢ to x and y in the triangle are

x=2[¢+2)\<1—%¢>>], y=2n;/§d) (1-5)

T
or
N Vix—y 6= T (1-6)
- 1 - y. -
2" /3 — 21my’ 27V3
y -
b
Ymu=2l_]\[3_\ ¢=%
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FIG. 3. Relationships between the coordinate systems.

TABLE 1
Basic Geometric Parameters of Decomposed Triangles
Edge Center to Center to  Center to
Level  length Height left side bottom top
2n——l 2n
2n 21-14/3 n=1 =
0 V3 V3
2n—2 2n—1
pn-1 21-24/3 n-2
! V3 V3
2n43 2n—2
2n=2 27-3/3 on=3
2 V3 V3
J 2 2ntiV3 2 2t 2
V3 V3

The parameters of the triangles at different levels are
shown in Table 1. Table 2 shows the lengths of edges of
the triangles at different levels of decomposition. At the
20th level, the edges of triangles are less than 10m, and 20
quaternary digits or 40 binary digits (approximately 12
decimal digits) are required for addressing.

2. CONVERSION OF TRIANGLE ADDRESS TO
CARTESIAN COORDINATES

The addresses of vertices can be calculated by using
the parameters listed in Table 1. For triangles decom-
posed to the kth level, the triangle address is represented
by k quaternary numbers

ay, az, az, . . ., g, (2'1)
where 1 < k = n, plus the base-8 digit a,. In this section
we consider the problem of determining the Cartesian

TABLE 2
Length of Triangle Edges at Increasing Levels of Subdivision of
a Spheroid with Radius 6378 km along Equator and 6356 km
along Meridian

Along equator Along meridian

Level Degree (longitude) (latitude) 4
0 90° 10018.5380 km 9983.8912 km
2 22°30’ 2504.6345 ki 2495.9953 km
4 5°37'3¢" 626.1586 km 623.9988 km
6 1°24'22.5" 156.5397 km 155.9997 km
8 21'5.625" 39.1349 km 38.9999 km
10 5'16.40625" 9.7837 km 9.7500 km
12 1'19.1015" 2.4459 km 2.4376 km
14 19.77539" 611.5m 609.4 m
16 4.,9438" 153.9 m 1523 m
18 1.23596" 38.2m 38.1m
20 0.3089904" 9.55m 9.525 m
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TABLE 3
Relative Distances of Successor Triangles’ Centroids to the Centroid of Their Ancester Triangle
Ov; — Oy O1; = O 0y = Ojy 0s; = 0
Level (AX, AY) AX, AY) (AX, AY) (AX, AY)
2n-1 2n—2 2n—2
—_— —n-2 _ n=-2 _
! ©.0 <0’ \/§> ( % \/5) (2 ’ \/§>
2n—2 2n~3 2n—3
—n-3 - n=3
2 ©,0) (O, o \/5) ( 2r3 —a \/5) (2 3, —a \/§>
2mi 2ni-t 20t
i —_n—j-1 n—j-1 _
j 0, 0) (0, a \/§> ( 2ndl ) —q 3 ) (2 Il — 3 >

coordinates of the centroid of a triangle with given trian-
gle address, ignoring the level-0 digit. The coordinates of
the triangle’s vertices can be determined from the param-
eters listed in Table 1 and from knowledge of the trian-
gle’s orientation.

With the triangle cell ordering shown in Fig. 1, there
are the following relations:

(1) Let
k-1 k-1
NZ, = Z [a; = 0] = 21 (@ N anl -2)

denote the number of zeros in a; to ax—. a;; and a;, are
two binary digits representing each quaternary digit a;.
a;1, a;, are logical negative of (or NOT) a1, ain. (ai, ain)
= (0, 0), (0, 1), (1, 0), (1, 1) correspond to a; = 0, 1, 2, 3,
respectively.

If the level 0 triangle is upward, then the kth level trian-
gles with address

A=a15a27a37- e s Gk

are upward if NZ, is even and downward if NZ; is odd.
NZ; is zero when k = 1.

We can readily generalize to include the base-8 digit
representing the initial octahedral decomposition at level
0. If the base-8 digit is represented as three binary digits,
then the level zero triangle is upward if the first digit is 0
and downward if it is 1. The generalized definition of NZ,
is

k—-1
NZy = aw + 2, [ay N anl,
i=1

where ag is the first bit of the binary representation of the
base-8 digit.

(2) For the triangles in the kth level with the same
ancestor triangle, i.e., having identical a, to a;-,

1. the triangle with a; = 1 is a complex conjugate or
a reflection of the triangle with a; = 0;

2. the triangles with a; = 2 and a; = 3 are the left-
down (or left-up) and right-down (or right-up) translation
of the triangle with @, = 1, respectively.

(3) The centroid coordinates of the 0 level (original)
triangle are

o, ¥ = (271, 25) @)

(4) The relative distance of the triangle centroids at
the kth level Oyg, Oy, Ok, and O, ; from the centroid
of their ancestor at the (k — 1)th level O;_; are (see
Table 3)

Ok-10 = Okt (AXpp, AYyo) = (0, 0) (2-4a)
Octo = Ot (WX A% = (0,2 25) Gy
Ok-10 = Ora: (AXy2, AYy2) = (“2""‘"1 —a 2n_k_1>
’ ’ o ’ V3
(2-4¢)
Ok-10 — Or3: (AXyp3, AYy3) = (2”_"_1 —a 2n—k—1>
, , 35 AY, ; 3 )
(2-4d)
where

a = ()N,

The triangle address A = a;, a2, . . . , a; can be con-
verted to Cartesian coordinates by the expressions

k
Xk — 2n—1 + 2 [(_l)a,»2+l ai12n—i—1]
i=1

k
— [zk + 2 [(_l)a,-zﬂailzk—i]] n—k=1 (2-5a)
i=1
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_2m o+ S (DN 2@ N ag) + an]2n ]

Y. =
k V3
264 3 (DY@ N an) + an]2] —_—
G .
(2-5b)

Coordinates of the three vertices of the triangles can be
calculated from

Top vertex:  Xitop = Xk (2-6a)
Yerop = Vi + (—1)N% 2:/_; (2-6b)
Left vertex:  Xppen = Xp — 277471 (2-7a)
YiLet = Yi + (D! zn\_/];l (2-7b)
Right vertex: Xjgignt = X + 277%71 (2-8a)
Right vertex: Yigigne = Yi + (—1Nat1 zn_Tk; (2-8b)

ExaMPLE 1. Find the Cartesian coordinates of the
centroid of triangle A = 3023:

A=3023=11 00 10 11

or
an=1,ap=1; ay =0,an=0;
any=1l,ap=0; ay=1,ap=1;

=[2¢ 4+ 1 X (=1)1*123 4 0 X (—1)0+122
+ 1 X (10121 + 1 x (=1)1+120]27=5

=[2¢+ 23 — 21 + 20]275 = 23 x 275
Y =24+ 1 X (=1)°123 + 0 x (—1)0+022

D
|

n-5
+ 1 X (=121 + 1 x (—1)1+129] 2
2n—5 2n—5

=[24-22+ 21420 =11 X —.
[ ] V3 V3

ExaMPLE 2. Find the Cartesian coordinates of the
centroid of triangle A = 1033:

A=1003 =01 00 00 11
or

an=0,ap=1; ay =0, an=0;

a1 =0,a=0; anu=1a90=1;

X = [24 + 0 X (_1)I+123 + 0 X (_1)0+122

+ 0 X (__1)120+1 +1x (_1)1+120]2n—5
= [24 + 20]2n-—5 =17 X 2n—5

Y =24+ 2 x (—1)0+023 + ( x (—1)0+022
2n—5
+ 0 X (=02 + 1 x (=1)?"120] =—
(=1)**129] 3
2n—5
V3

2n—5

= [25 — 20] 73

= 3] x

3. CONVERSION OF CARTESIAN COORDINATES TO .
TRIANGLE ADDRESS

For implementation of the triangular tessellation data
structure in a global geographic information system, it is
necessary to convert the coordinates of the Earth to the
triangle address. Since longitude and latitude can be di-
rectly represented by Cartesian coordinates, the problem
can be reduced to conversion of Cartesian coordinates
into the triangle address. A recursive approximation al-
gorithm for conversion of Cartesian coordinates to trian-
gle address is derived below.

Let an equilateral triangle be divided into four triangles
and let the centroid of the parent triangle be denoted by
O;_1,; the centroids of four son triangles are denoted
O;0, O;1, Oj3, O;3 as shown in Fig. 4. We have O;- =
O, and the distance between the centroid of the parent
triangle and the centroids of the other three son triangles
can be calculated by expressions (2-4a) to (2-4d).

If p(x, y) is an arbitrary point with Cartesian coordi-
nates (x, y) and is inside the parent triangle, the point p(x,
y) will be a point in the kth son triangle if p(x, y) is closest

Gj0= 0510

0j2

0 i3 P 32nI2 PLe]

x

FIG. 4. Centroids of triangular cells and distance to the centroids.




HIERARCHICAL SPATIAL DATA STRUCTURE

to the centroid of son triangle & (k = 0, 1, 2, or 3). This
can be seen by drawing three bisectors of the parent tri-
angle and connecting p(x, y) to the centroids of four son
triangles as shown in Fig. 4.

We start the recursive approximation procedures from
level 0. To simplify the calculation, the distance squared
is used instead of distance.

(1) Calculate the relative distance

n—1

V3

Axg=x—2""1, Ay,=y - (3-D

between (x, y) and the centroid of the original triangle.
(2) Calculate

D, D) = (Axo — AX1)* + (Ayo — AYyy)? (3-22)

37

forl =0, 1, 2, 3, where AX;, and A Y, are the relative
distance from the centroids of the first-level triangles to
the centroid of the 0-level triangle as expressed in (2-4a)
to 2-4d) and « = 1 for j = 1 (level 1). If

min[D(1, 0), D(1, 1), D(1, 2), D(1, 3)] = D(1, ky),
(3-2b)

then p(x, y) is in the triangle &; of the first level triangles
and we set ’

a; = kl (3-2C)

and

Ax; = Axo — AX,,, Ay =Ay,—AY,,. (3-2d)

The recursive approximation algorithm for conversion of Cartesian coordinates to triangle address is as follows:

AX; )P + (Ay;oy — AY; )2

input x, y, k;
output ap, ay, Az, . . . , 4y,
begin {main}
2n—1
Axg = x — 27, Ayy =y 3
J=0;
repeat
for j=1tok
for [=1to3
j—1
NZj = dgo + 21 [aj = 0]
D(j, 1) = (Axj-y —
if
D(j, kj) = min[D(j, 0), D(j, 1), D(j, 2), D(j, 3)]
then
aj = kj
j=Jj+1
continue
end

.y

EXAMPLE 3. Given the Cartesian triangle address (x, y) = (23 X 2775, (11 x 27-5)/\/3) find the triangular tiling

=

address a;, ay, as, a,.

(1) For j = 0, we have a = +1:

Axg = (23 — 16)2"3 = 7 x 2775,

(2) Forj=1, we have a = +1:

Axjp= (7= 0) x 25 =7 X 2773,

(11 — 16)273 _
Ayy = ~——F—— = =5 X 2175,
Yo V3
Ay = 26 =0 X 2n5 -5 x2S
10 V3 V3
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D(1, 0) = 57.33333:

—(5 + 16) x 205 =21 X 2773

V3 V3

Axl,l = (7 - 0) X 2n=3 7 X 2”‘5, Ayl,l

D, 1) = 196:

—(5 -8 x 273 3 x 2

I

Axj, = (7 +8) x 23 =15 X 275, Ay,

V3 V3
D(1, 2) = 228:
_ _ —(5 -8 x2%35 3 x 275
Ax(;=(7 — 8) x 2n75 = —2n73, A = =
1,3 ( ) Y1,3 V3 V3
D(1, 3) = 4:
min D(1, [) = D(1, 3) = 4.
We have
3 X 2n—5
a; = 3: Axy = =273, Ay, = T

(3) Forj =2, we have @ = +1 since a; # 0:

B -0 x2"5 _3x23
V3 V3

Axyo = (=1 = 0) X 2773 = —2n~3, Ayrg =

D2, 0) = 4:

_ _ B—-8 x2n5 5 x 2173
Axy = (=1 = 0) X 275 = =275, Ay, = =
X2.1 ( ) Y2,1 \/§ \/§

D2, 1) = 9.333333:

=(3+4)><2"—5=7><2"—5

Axzp = (-1 +4) X 275 =3 x 2775, Ay, 3 V3

D2, 2) = 25.333333:

3+ 4) x 2775 X -5
Axys = (=1 —4) x 2n5 = =205 Ay,; = ( ) _7

V3 V3
D2, 3) = 41.333333:
min D2, ) = D2, 0) = 4.
We have
n-5
a=0: Ax, = —2n5, Ay, = 222




=
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(4) Forj=3,wehavea = —1since 2ey (@;=0) = 1:

Axsp = (—1—=0) X 2"5 = =273,
D@3,0) = 4:

Axsp = (=1 —0) X 25 = =273,
D(@3, 1) = 17.333333:

Axsy = (=1 + 2) x 25

2n—%
D@3, 2) = 1.333333:
Axy3 = (=1 = 2) X 2"7% = =3 x 2773,

D(3, 3) = 4.333333:
min D3, [) = D3, 2) = 1.333333.
We have

as = 2: Ax; = 2"73,
(5) Forj=4,wehavea = —1since 2i-; (a; = 0) = 1:
Axgg = (1 = 0) X 2775 = 275,
D4, 0) = 1.333333:
Axgy = (1 — 0) x 2775 = 2175,
D@4, 1) = 4
Axgr = (1 + 1) x 2775 =2 X 2773,
D@4,2) =4:
Axgz3 =(1 - 1) x 275 =0,

D4, 3) =0:
min D@, 1) = D@4, 3) = 0.
We have

ag = 3: AX4 = 0,

39

(B —0)x 275 3 x2S

A =
Y30 V3 V3
oy = B H X257 x oS
Y31 V3 V3
o, = B D x2s oS
Y32 V3 V3
Ay, = B=DX 2n=5 s
33 V3 V3
2n—5
Ay; = =—.
ARV
Ay L L= 0 x 205 s
Y40 V3 V3’
Ay, Q42 X275 3 xS
Yal V3 V3
1 —1) x2n3
A)’4,2 = (_“\)/—3— =0
1—1) x2n5
Ayys = (—\)@—‘— =0

Ay4 = 0.
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Therefore, the triangular tiling address is

A= a) ay as dg — 3023.

4. THE AREA OF DECOMPOSED TRIANGLES

The process we have described for creating an HSDS
for the globe does not satisfy properties (1) and (2) pre-
cisely; triangles at level k¥ > 0 are not equal in area and
have varying shapes, although we believe that our
scheme represents a reasonable compromise between
these conflicting objectives. In this section we examine
the areas of triangles explicitly. We assume that the earth
is spherical, although the results should generalize easily
to the more accurate ellipsoid of revolution.

The earth surface area A between latitude ¢; and ¢,
covered by a level-0 triangle is

A= 1123—2 (sin ¢, — sin ¢y). 4-1

At level n, the total number of triangles in the belt be-
tween ¢ and ¢ + 7/27 1 is

_ 2n+1 (z B ) _ 2n+2 (z )
Ny=2x"—(3-¢)-1="—(3-9¢)-1

and the Earth surface area of a triangle at level n is

_ A _@R%’sin(¢ + 27" !7) — sin ¢
Ady = Ny 2" @2—¢—27"1q¢ 4-2)

When 271 > 1, we have
sin(p + 27" 17) — sin¢p = % cos ¢

and
KR SR S
> ¢ — 27" g 5 ®.

Expression (4-2) can be written as

_ cos¢ _  siny o )
AA¢~kﬂ_/2_¢~—k k sinc x, (4-3)
where
" miR? g
= Smrd> Xzf”d"

From expression (4-3), it is interesting to note that the
area covered by a high-level decomposed triangle varies

with the sinc function. In the range from x = 0 to x = 7/2,
sinc x is a monotonically decreasing function of x, or AA,
is an increasing function of ¢ for ¢ = 0 to ¢ = #/2. For
¢ = 0and ¢ = 7/2, we have

AAy = g‘lf, AA.p =
T
and
A141'1'/2 _ ZT_
—AAO =5 (4-4)

That is, for high-level decomposed triangles, the corre-
sponding area increases /2 = 1.5708 times when latitude
changes from 0 to 7/2. Only the triangles along a given
latitude have the same area and the area changes with
latitude according to the sinc function as shown in Fig. 5.

5. ALGORITHM FOR FINDING NEIGHBORS
OF TRIANGLES

Algorithms for finding neighbors in hierarchical recur-
sive schemes such as the quadtree have been described
by Samet [4, 11, 12] and others. The problem of finding
neighbors in our scheme is more difficult because of the
special conditions at octahedron edges.

It is often necessary to find the three directly con-
nected neighbors of a given triangle with address

A=a1,a2,a3,. e oe oy Qg

ERVAVAVAVAVAVAVAN
SVAVAVAVAVAVAVAVAVAVAN
VAVAVAVAVAVA

_ VAVAVAVANGER
 INONININININININANNNN
INOONINININININININ/NIN

A=90°

FIG. 5. Distribution of the area of triangular cells at different lati-
tudes (sinc function).

o
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We denote the three neighbors as top, left, and right
neighbors. The direction of the neighbors depends on
whether the triangle A is upward or downward as fol-
lows:

Top Left Right

Upward (NZ even) S NwW NE
Downward (NZ odd) N SW SE

We use the codes

T= I, by l3, . o ., L,
L= lls 12’ 133 soe ey lk’
R=r15r29r35' RN

to represent the addresses of the top, left, and right
neighbors, respectively. Both the triangle and its neigh-

bor are inside a triangle of the jth level if a;, as, . . . ,

a;-; does not change. The problem is to determine the
level of triangle within which a neighbor of a given trian-
gle is contained and to change the code of @}, aj+1, . . . ,
a, for the top, left, and right neighbors of a given triangle
separately.

Recall that the triangles are ordered as follows:

(1) the center, top, left and right triangles within a
triangle are ordered 0, 1, 2, and 3 respectively;

(2) the triangle with a; = 1 is a reflection of the trian-
gle with a; = 0;

(3) the triangles with a; = 2 and a; = 3 are the left-
down (or left-up) and right-down (or right-up) translation
of the triangle with a; = 1, respectively.

The neighbor addresses can be searched using the follow-
ing conversion table:

a; Top Left Right

0 1# 2# 3#
1 0# 3 2
2 2 1 0#
3 3 O# 1

for a; (i from k to j), where # is the search terminate
symbol. It can be implemented as follows.

(1) To find the top neighbor, starting from i = k, a;
changes to ¢,

= 2

;= 3

if a,~=2
if ai=3,

and process a;—; for #,_;. On the other hand if a; # 2 and
a; # 3, then

I
=

t; 1 if g
t: =20

Il

if a;
and the search finishes. We define this { as j and set

y = ag

fori=1toi=j— 1.
(2) For the left neighbor, starting from i =
changes to [;,

k’ a;

li:3
l

1
2,

if a;

1 if a;

and process a;_; for [;_;. On the other hand if ¢; # 1 and
a; ¥ 3, then

li=2
l,'=0

if a; = 0
lf a; = 3
and the search finishes. We define this i as j and set

Iy = ai

fori=1toi=j— 1. .
(3) For the right neighbor, starting from i = k, q;
changes to r;,

I
Il

2 if =1
1 if a =3,

r;

r;

and process a;_; for r,_;. On the other hand if ¢; # 1 and
a; ¥ 3, then

if a,-=0
if a;=2

I’,‘=3

= 0
and the search finishes. We define this { as j and set
Fp = ag

fori=1toi=j— 1.

The algorithm for finding neighbor addresses described
above is easy to implement as only k — j + 1 quaternary
digits have to be determined by simple criteria and the
other j — 1 digits are only a copy of the corresponding
digits in the given triangle. The average number of qua-
ternary digits that need to be changed to find a neighbor
can be determined as follows:

(1) The probability of changing only the last (kth)
digit is %;
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T,

\VAVAVAVAVAVAVAVAVAV,
JAVAVAY \/\7\/;/\/\/\/\/\/\/\7X
LNNNNNNAN NN NN NN

Y
4

FIG. 6. Hexagon including a given triangle, and 12 neighbors of a
given triangle: (a) top hexagon with given triangle upward; (b) top hexa-
gon with given triangle downward; (c) left hexagon with given triangle
upward; (d) left hexagon with given triangle downward; (e) right hexa-
gon with given triangle upward; (f) right hexagon with given triangle
downward; (g) 12 neighbors with given triangle upward; (h) 12 neigh-
bors with given triangle downward.

(2) The probability of changing j quaternary digits is
2.

Therefore, the average number of steps of calculation is

Sav is less than two quaternary or four binary digits.

The neighbor finding algorithm can be used for search-
ing hexagons with a given triangle included or to find the
12 neighbors of a given triangle (Fig. 6). Let a given trian-
gle be denoted by T, and the other five triangles in a
hexagon are T, T, T3, T4, and Ts, respectively. They can
be found as follows whether the given triangle is upward
or downward.

For a hexagon with the given triangle as a top triangle,

T, = R(Ty), T,=T(Iy),
T, = L(Ty) Ts5=T(T).

T; = L(Ty),

For a hexagon with the given triangle as a left triangle,

T, = L(Ty),
Ts = R(T3),

L, = L(Ty),
T5 = R(T4)

T3 = T(Ty),

For a hexagon with the given triangle as a right triangle,

T, = T(Ty),
T, = IT(T3),

T> = R(Ty,
T5 = L(T4)

T3 = R(T»),

where T; = T(T)), T; = L(T;) and T; = R(T;), which imply
that the triangle T} is the top, left, and right neighbor of
triangle T;, respectively. The first 4 triangles in the 3
hexagons above are the 12 neighbors of the given triangle
as shown in Fig. 6.

Another application of the neighbor finding algorithm
is that a chain code with a series of codes T(top), L(left),
and R(right) can be used to describe lines or borders of
areas.

6. AVERAGE DATA FILE STORAGE DISTANCE

One of the important indices in data file structures for
large geographical information systems is the Average
Data File Storage Distance [5, 13]. This is defined as the
average absolute difference between the addresses of
neighboring cells or tiles; in our case, each triangle is
assumed to have three neighbors. Goodchild and Grand-
field [13] used the index in a study of the data compres-
sion achieved by different ordering of a lattice, whereas
Goodchild [14] argued its usefulness in predicting the
time required to access database partitions in very large
spatial archives. In this analysis we are concerned only
with subdivisions of the level-0 triangles and ignore the
differences that occur across edges of the octahedron.

The average data file storage distance is the sum of
absolute differences between adjacent triangular cells
Dy, divided by the number of edges OCigtar, OF

D.. = D total
av — .
0 Ctotal

The total differences for triangular cells can be repre-
sented as

Dj =4 X Dj+1 + ADJ
and
OCj =4 X 0Cj+1 + AOCj,
where 4 X D;,; and 4 X OC;,; are the total differences
and number of edges of triangular cells for level j + 1
triangles and AD; and AOC; are the distances and edges
added at the jth level (see Fig. 1b).
AD; = 6 X 2k x 4k = 6 x 23¢=))

is the sum of edge cell values of triangles 1, 2, and 3
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minus the sum of edge cell values of triangle 0 at the jth
level, and

AOC; = 3 x 2k

is the total number of edges added at the jth level. There-
fore

k) ] L' I
Dij=6x > 2i=6x2%D)x Y
i=2(k—j) i=0

and

2k-1)
OC; =3 x > 2i=3x 2102k — 1),

i=k-1
The average distance at the jth level is

D
0C;

Dav,j = = 2k"]+1.

We have j = 1 when the 0-level triangle is decomposed to
kth level. In this case

7. CONCLUSIONS

The hierarchical data structure that we have described
in this paper satisfies one of our original requirements in
full, by preserving the relationships between neighboring
cells. The distortions of area inherent in the structure,
and described by the sinc function, range up to a factor of
1.57 at the poles. Triangles become increasingly equilat-
eral toward the center of each level-0 triangle at higher
levels of subdivision, but the triangles adjacent to each
level-0 vertex always contain one right angle. Our re-
quirements of equal area and equal shape are thus satis-
fied only approximately. Figure 7 shows the level-4 sys-
tem of triangles viewed orthographically from over the
Pacific Ocean at approximately 110°W 15°E.

In this structure every object on the Earth’s surface
can be indexed by the address of the smallest enclosing
triangle. The length of the address is then a direct index
of the object’s size. To find the smallest enclosing trian-
gle of a polygon, we simply determine the triangle ad-
dress of one of its vertices to some arbitrary but high
level k and then identify a largest value j < k such that all
other vertices share the same quaternary digits 1 through
Jj. For example, the lower 48 states of the United States,
which span two level O-triangles, have a null address,
while the block formed by 3rd and 4th Streets, Broad-
way, and Fulton in the City of Troy, New York, has the

FIG. 7. The level-4 system of triangles viewed orthographically
from over the Pacific Ocean at approximately 110°W 15°E.

address 30223022113013 (level 13). The approximate edge
length of a level-16 triangle is 150 m, or the rough dimen-
sions of a city block, according to Table 2. However,
while the Broadway and Fulton faces of the block are
both wholly within level-16 triangles, the smallest trian-
gle enclosing the entire block is at level 13. We have
computed the triangle address of the residence of Profes-
sor Waldo Tobler in Santa Barbara. Using the 1983 North
America Datum (NAD 83), the latitude/longitude loca-
tion at 119°48'26"W longitude, 34°26’41"N latitude trans-
lates to a level-18 address of 2102032302232013311, with
an accuracy of approximately 40 m. The change of datum
from NAD 27 produced a 3" change in longitude, which is
equivalent to a change of digits 16—18. The reverse opera-
tion of conversion from triangle address to latitude/longi-
tude can be implemented very efficiently in bitwise form.

Length of address can also be used as a measure of
uncertainty of position, by identifying the smallest trian-
gle that encloses the union of the object’s possible posi-
tions. For example, the accuracy currently provided by
the Global Positioning System (GPS) is about 20 m. The
corresponding length of address for any point on the
earth’s surface is 19 quaternary digits or 38 bits, any
further precision being spurious. For comparison, to
achieve 20 m precision in latitude/longitude coordinates,
it is necessary to specify location to the nearest second,
which requires seven decimal digits plus sign for longi-
tude and six digits plus sign for latitude.
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The ideal workstation for global systems modeling
would allow the user to browse freely through data dis-
tributed over the surface of the globe. With datasets
based on rectangular subdivision of a cylindrical projec-
tion it is relatively easy to browse in the equatorial re-
gion, but difficult near the poles because of high levels of
distortion and interruption at the pole itself. Similar prob-
lems occur using rectangular subdivision of any other
standard projection. For example, the orthographic pro-
jection gives a view of the globe as it would appear from
space. However, it would be time consuming to recom-
pute ‘and redisplay the projection for every change of
viewpoint.

Recent developments in 3D graphics display technol-
ogy may make browsing on the globe much more practi-
cal. Instead of projecting to a plane, a solid is represented
digitally by a polyhedron with triangular faces and dis-
played in perspective directly from a display list of trian-
gles. The graphical rendering (color or texture) of each
triangle can be controlled directly from its attributes.
Workstations that can display polyhedra of 10,000 trian-
gles in 1 s are currently available for less than $20,000,
and we can expect orders of magnitude improvement in
these specifications in the near future. Thus we are able
with current technology to create a browse of a global
dataset at level 6 (approximately 1° resolution). For spa-
tial variables such as land/water, subdivision can be
much higher in some areas because of the relative homo-
geneity of continents and oceans. Thus the developing
technology of 3D display based on polyhedra with trian-
gular faces gives a powerful argument for triangle-based
tessellation over more conventional methods.

The results presented in this paper suggest several po-
tentially fruitful areas for further work. We have thus far
ignored the nonspherical nature of the earth in calculating

“triangles areas. Associated algorithms, particularly for
building the triangle data structure from vector data, such
as the world’s coastlines, have been developed and will
be described in subsequent papers. In the longer term, we
plan to develop a prototype workstation for global data
based on the triangular structure and triangle display
lists. -
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