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ABSTRACT

Link prediction is an important and frequently studied task that con-
tributes to an understanding of the structure of knowledge graphs
(KGs) in statistical relational learning. Inspired by the success of
graph convolutional networks (GCN) in modeling graph data, we
propose a unified GCN framework, named TransGCN, to address
this task, in which relation and entity embeddings are learned simul-
taneously. To handle heterogeneous relations in KGs, we introduce
a novel way of representing heterogeneous neighborhood by intro-
ducing transformation assumptions on the relationship between
the subject, the relation, and the object of a triple. Specifically, a
relation is treated as a transformation operator transforming a
head entity to a tail entity. Both translation assumption in TransE
and rotation assumption in RotatE are explored in our framework.
Additionally, instead of only learning entity embeddings in the
convolution-based encoder while learning relation embeddings in
the decoder as done by the state-of-art models, e.g., R-GCN, the
TransGCN framework trains relation embeddings and entity em-
beddings simultaneously during the graph convolution operation,
thus having fewer parameters compared with R-GCN. Experiments
show that our models outperform the-state-of-arts methods on both
FB15K-237 and WN18RR.
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1 INTRODUCTION

Knowledge graphs (KGs) such as DBpedia and Freebase that en-
code statements about the world around us have attracted growing
attention from multiple fields, including question answering [7, 18],
knowledge inference [19], recommendation systems [32], and so
on. By their very nature KGs are far from complete as the state of
the world evolves constantly. This has motivated work on auto-
matically predicting new statements based on known statements.
Among these inference tasks link prediction has become a main
focus of statistical relational learning (SRL) [14].

A KG encodes structural information about entities and the
abundant relations among them as a directed labeled multigraph,
where entities are represented as nodes and relations between them
as labeled, directed edges. Accordingly, in the Semantic Web context
a statement in a KG can be represented as a triple (h, r, t), where h
is the head entity, r the relation, and ¢ the tail entity, respectively.

The connectivity among triples in KGs provides the basis for link
prediction.

Since the symbolic representations of KGs prohibit them from
directly being incorporated in many machine learning tasks, re-
cently many studies have proposed to embed entities and relations
of a KG into low-dimensional vector spaces [1, 17, 22, 26, 30, 31],
which can be further unitized in multiple downstream tasks, e.g.,
the aforementioned link prediction. Along this line, there are two
main branches [27]: (1) translation-based methods, which predict
the existence of a triple by measuring the distance between the
head entity and the tail entity after a translation enforced by the
corresponding relation, such as TransE [1], TransD [9], and TransR
[17] and (2) Semantic Matching Energy based methods, which mea-
sure the existence of a triple as the compatibility of two entities
and their relation in latent vector space, e.g., RESCAL [21], Dist-
Mult [31], ComplEx [26]. More recently, there are some other ideas.
For example, rather than defining a relation as a translation from
the subject to the object, Sun et al. [24] thought of a relation as a
rotation from the subject to the object in the complex vector space
and proposed RotatE, which was the first model that can handle
symmetry/antisymmetry, inversion, and composition relations sim-
ulatenoiusly. Their experiments demonstrated the effectiveness of
this assumption. More details about these methods can be found in
Section 4.

Although there are multiple successful stories in both branches,
these aforementioned models are all trained on individual triples
independently regardless of their local neighborhood structures.
Noticing this downside, Schlichtkrull et al. [22] state that explic-
itly modeling local structure can be an important supplement to
help recover missing statements in KGs. Inspired by the success of
graph convolutional networks (GCN) [13] in modeling structured
neighborhood information of unlabeled and undirected graphs with
convolution operations, the authors proposed a GCN-based method
to model knowledge graphs (R-GCN). In R-GCN, which is an en-
coder, the embedding of each entity is learned based on its up to n
degree neighboring entities by using n graph convolution layers.
Then the encoder is trained jointly with a task-specific decoder,
e.g., a DistMult-like decoder, to predict links.

The experimental results of applying R-GCN demonstrate the
importance of integrating neighborhood information in knowledge
graph embedding models. R-GCN aims at learning entity embed-
dings even though it utilizes relation-specific weight matrices. The
relation embeddings are learned in the task-specific decoder while
the learned relation-specific matrices in the encoder are discarded.
Consequently, without a task-specific decoder for learning rela-
tion embeddings, R-GCN cannot directly support tasks such as



link prediction. Even if an extra decoder is available, the encoder-
decoder framework runs into another problem of repeated intro-
duction of relation-specific parameters in both the encoder side
(relation-specific weight matrices) and the decoder side (relation
embeddings). As a result, the number of parameters increases.

To address the issue, we propose a novel model inspired by
R-GCN [22], a GCN-based knowledge graph encoder framework
which can learn entity embeddings and relation embeddings simul-
taneously by performing relation-specific transformations from
head entity embeddings to tail entity embeddings, hence called
TransGCN. In principle, any presumed transformation assumption
from the subject to the object, such as translation assumption, rota-
tion assumption, etc., can be exploited in the proposed framework.
Take the translation assumption as an example, specifically in which
translation operators acted by relations are resorted to connect en-
tities in a KG. The basic idea of TransGCN is illustrated in Figure
1. In such a scenario, TransGCN first translates the embeddings
of 1-degree neighbors of one center entity v; with their specific
relation embeddings. The resultant embeddings serve as the initial
embedding estimations of the center entity v;. Then a convolutional
operation is performed over these initially estimated embeddings
to derive a new embedding v; for each v;, which encodes local
structural information of the center entity. Similar to R-GCN, ag-
gregated structural information and self-loop information of a node
are combined for entity embedding updates. Moreover, we also
define a novel relation embedding convolution process so that the
entity and relation embeddings can be handled in a layer-based
manner as GCNs do.
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Figure 1: The basic idea of TransGCN. Red lines show updat-
ing rules of an entity v;, where the neighborhood informa-
tion is aggregated from neighbors with corresponding rela-
tions (+/- denotes incoming/outgoing relations) and then is
combined with self-loop information (red self-loop arrow).
Blue lines disclose the update phases of relations, which are
achieved simply by transforming the previous relation em-
beddings.

The research contributions of our work are as follows:

(1) We propose that transformation assumptions in which re-
lations are assumed as transformation operators transform-
ing the subject entity to the object entity can be utilized
to convert a heterogeneous neighborhood in a KG into a

homogeneous neighborhood, which can be readily utilized
within a GCN-based framework.

(2) We develop a novel GCN-based knowledge graph encoder
framework called TransGCN which can encode entity and
relation embeddings simultaneously. Compared with R-GCN,
this method has less parameters and can be directly used for
link prediction.

(3) Based on the transformation assumptions behind TransE
and RotatFE, respectively, we instantiate our GCN framework.
Experimental results on FB15K-237 and WN18RR show that
two TransGCN models achieve substantial improvements
against the state-of-the-art methods on both datasets.

The paper is structured as follows. In Section 2 we elaborate on the
main idea of the TransGCN framework. Experimental details on
FB15K-237 and WNI18RR are presented in Section 3. In Section 4,
we introduce two branches of learning methods on graphs. One is
the classic translation-based models and the other are GCN-based
approaches. Section 5 concludes this work and suggests future
research directions.

2 PROPOSED ARCHITECTURE

R-GCN model does not learn relation embeddings and thereby
would not be directly utilizable for link prediction without a decoder.
Moreover, R-GCN model repeatedly introduces relation-specific
parameters in both the encoder side and the decoder side, which
results in an increase in the number of parameters. We argue that
the encoder alone for knowledge graph applications should encode
entity and relation embeddings at the same time to reduce the num-
ber of parameters (thus helping alleviate the problem of overfitting)
and thereby to improve training efficiency.

To address the issues, we propose a unified encoder framework
based on GCN to learn entity and relation embeddings simultane-
ously, in which a presumed transformation assumption performed
by relations is used to convert a heterogeneous neighborhood in a
KG to a homogeneous one. This is subsequently used in a traditional
GCN framework. Both entity embeddings and relation embeddings
are learned in a convolutional layer-based manner. A knowledge
graph G = (V, E), where V is the set of nodes/entities and & is
the set of labeled edges, contains statements in the form of a set
of triples (vj, rg, vj) € 7, where v;, ry, and vj represent the head
entity, the relation, and the tail entity, respectively. In the following,
we use the bold text to refer to embeddings and we will use (h, r, t)
and (vj, g, vj) interchangeably.

2.1 Handling a Heterogeneous Neighborhood
in a KG

Traditional GCNs [13] operate on an unlabeled undirected graph
which consists of nodes of the same type and relations of the same
type. This means that each edge has the same semantics and the
neighborhood of a node is homogeneous. We call this a homoge-
neous neighborhood. Homogeneity makes it easier to aggregate the
local neighborhood information around a node. For example, in
an undirected unlabeled academic collaboration network shown in
Figure 2(a), simply summing up information from Wendy Hall, Dan
Connolly, Ora Lassila and James A. Hendler as messages transmitted
to Tim BernersLee is reasonable. There is no need to consider the



differences in messages since their relations in such a graph are the
same.

However, in a knowledge graph such as shown in 2(b), using
such oversimplified summations would be problematic. Neighbor-
ing entities are linked to the center entity via different relations in
different directions. For instance, the relation DeathCause is very
different from the relation BirthPlace and their directions to Van-
tile_Whitfield are pointing in opposite directions. We call this a
heterogeneous neighborhood. We argue that in order to make a KG
be easily handled by a GCN-based framework, it is necessary to
convert a heterogeneous neighborhood in a KG to a homogeneous
one. In this work, we propose to approach this challenge by assum-
ing relations in KGs are transformation operations which transform
the head entity to the tail entity.
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Figure 2: Neighbors in homogeneous and heterogeneous net-
works

Common ways of transformation between two entities include
translation, rotation, reflection, and so on. In any such a transforma-
tion, a statement in KGs can be interpreted as that the head entity
is transformed to the tail entity by a relation. More specifically, the
tail entity in a statement may be the head entity after being trans-
lated/rotated. Accordingly, the embedding of a tail entity can be
estimated by the head entity after a relation-specific transformation
operation. For ease of generality, a statement < h, r, t > following
a transformation assumption can be written as:

{t:hor (1)

h=txr

where x and o are defined as two transformation operators, which
vary from different assumptions. We will specify them later in 2.3
and 2.4. The diversity of relation types and the direction of relations
are two main characteristics of heterogeneity of heterogeneous
graphs, e.g. KGs. Obviously, in this equation, the fact that each
relation type is encoded differently takes care of the diversity of
relation types and the transformation operators are usually specially
designed to address the relation direction.

Based on the transformation assumption, we define the esti-
mations of a central entity derived from connected entities with
corresponding relations as the embeddings of neighbors of the
entity. Take TransE as an example. Given an entity v; with an out-
going triple (v;, r¢., v), we define the estimation (vj—ry) of v; based
on (vj, g, vj) as the embedding of one neighbor of v;. Similarly,
for an incoming triple (v, rm, v;) of v;, the embedding of another
neighbor is v] + rp, which is another estimation of the central
entity v;. More concretely, in Figure 2(b), the estimations of the en-
tity Ovantile Whitfield from incoming triples can be expressed as
{YWashington * TBirthPlace}, While embedding estimations from

outgoing triples can be expressed as {Viycra — TAlmaMaters
VAlzheimer's_Disease — rDeathCause}~

Formally, under any transformation assumption, the embedding
estimations of an entity v; can be shown as follows:

T (vi) = Tin(vi) U Tout (vi)

Tin(vi) = {(vj, rg, i) | Yoj, i (v, 15, 0i) € T}
Nin(vi) = {vj ot | V(vj, 1, vi) € Tin(vi)} 2)
Tout (i) = {(Vi, 1, vj) | Voj, g (Vi Tk, v5) € T}

Nout(vi) = {vj * 1y | Y(vi, 1, j) € Tour(vi)}

where 7 (v;) denotes all the triples associated with v;, consisting
of 7in(v;) as incoming triples and 75,,+(v;) as outgoing triples, and
Nin(v;) and Npy ¢ (v;) both are the sets of the estimated embeddings
derived from incoming and outgoing neighbors, respectively.

After these transformation operations along different triple paths,
the resultant estimated embeddings for the center entity should
have the same semantics to the true center entity, by which the het-
erogeneous neighborhood in a KG is converted to a homogeneous
one that can be easily handled by the GCN framework.

2.2 Model Formulation

Our model can be regarded as an extension of R-GCN [22]. In the
following, we introduce how our model learns entity and relation
embeddings at the same time. Like other existing GCN models
[11, 22], our model can be formulated as a special case of Message
Passing Neural Networks (MPNN) [5], which provide a general
framework for supervised/semi-supervised learning on graphs.

In general, MPNN defines two phases: a message passing phase
for nodes and a readout phase for the whole graph. Since in this
paper we care about nodes and relations instead of the whole graph,
we focus only on the message passing phase. Basically, this message
passing phase of a node is executed L times to aggregate multi-hop
neighborhood information and is composed of message passing
functions M) and node update functions U(l), where [ denotes
the I-th hidden layer. M O mainly aggregates messages from local
neighbors, while UD combines MY with self-loop information in
the previous step. Both of these two functions are differentiable.
In addition, Gilmer et al. [5] indicated that one could also learn
edge features by introducing similar functions for all the edges in
a graph, but so far only Kearnes et al. [11] have implemented this
idea. To fit it into our task, we instantiate MDD and UD for message
propagation and entity embedding update for each entity v;, and
additionally introduce the update rule for a relation.

In(il+1) _

DD (D) (D)

M )(Vi 2V ,rk)
(vj, 1, vi)ET (V)
_ 1w o
= :WO ( (v; o) 3)

! (0, Tk, vi)ETin (Vi)
1 1

+ Z (vi,) * r(k)))

(V15 7> 0j)ETout (Vi)

v§l+1) _ U(l)(mglﬂ),vgl)) _ U(mgm) N Vgl)) @
0
1
in the I-th layer with a dimensionality of d. ng) ecd
a layer-specific matrix. 77, and 75y are defined in Eq. 2. ¢; is an

() . . .
€ 4" denotes the hidden representation of entity v;
(g )

where v



entity-related normalization constant that could be the total degree
of v;. o is the activation function, e.g., ReLU.

Basically, there are two terms in Eq. 3 that are used to encode lo-
cal structural information for entity update representing messages
from incoming relations and outgoing relations, respectively. The
messages from incoming/outgoing relations are first accumulated
by an element-wise summation and then are passed through a lin-
ear transformation. Then in the next step (Eq. 4), these messages
are combined with self-loop information by simply adding them
up to update entities. This idea is inspired by the skip-connections
in ResNet [8] so that our model can perform at least as well as the
simple transformation-based model instantiated in this framework.
Figure 3 illustrates the computation graph for an entity. Typically,
Eq. 3 considers the first-order neighbors of entities. One could
simply stack multiple layers to allow for multi-hop neighbors. In

:Self-loop informnlion:

Entity Update
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Relation Update
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Figure 3: Diagram for the update of entity/node and rela-
tion/edge in the proposed TransGCN model.

addition, we realize that every update of entity embeddings in Eq. 3
and Eq. 4 may transform the original vector space. Consequently,
the relationships between relations and entities would be affected,
which makes it impossible to perform presumed transformation
operations between them in the next layer. To address this prob-
lem, instead of applying a similar message passing mechanism for
relations as in Eq. 3 and Eq. 4, for ease of efficiency, we introduce a
transformation matrix ng) operated on relation embeddings for
each layer. We assume that the introduced matrix can project re-
lation embeddings into a vector space that has the same relation
to the new entity vector space as they have before. Note that this
is a soft restriction on the vector space; one could choose other
more strict restrictions as well. For example, enforce constraints on
the basis vectors of entities and relations so that these two vector
spaces are ensured to be the same. Following the soft restriction,
the update rule of relations in each layer is formed as follows:

(Y = oW )

1
where rgcl) e €4 is the hidden state of relation re in the I-th

layer with a dimensionality of d®. ng) e cd"*"xd" s o Yinear

transformation across relations in the I-th layer.

In the following subsections, we instantiate our TransGCN frame-
work by using two different transformation assumptions. One is
based on the translation assumption and TransE is selected owe to
its simplicity and popularity, while the other follows the rotation
assumption and RotatE is chosen to achieve this assumption.

2.3 TransE-GCN model

Under the translation assumption, the relation is assumed to serve
as a translation from the head entity to the tail entity. For an entity
v;, Eq. 1 can be instantiated as follows:

(D

i (6)

W {v(,l) + rgcl), (vj, ks vi) € Tin(vi)

J
1 1
v; = rgc), (Vi 1, vj) € Tour (i)
where o and % are + and —, respectively.
Like in TransE, the score function for a triple (v;, r¢, v;) is defined

according to:
=] o

El), rgcl) and vﬁ.l)

last layer, respectively.

Similar to previous studies [28], this model is trained with nega-
tive sampling. For each existing triple in a KG, a certain number of
negative samples (e.g., one positive triple with 10 negative samples)
are constructed by replacing either the head entity or the tail entity
randomly. Positive samples are expected to have high scores while
negative samples are expected to have low scores. A margin-based
ranking function is written as the loss function for training:

where v are the embeddings of v;, r and v; in the

£= 5 D1 max(0, ~fr, (03, 0) + fry (V) V) 1) (B)
(vi,rk,vj)eT(vg,rk,v})e']"

where max(a, b) is used to obtain the maximum between a and b,
y is the margin, 7 is the set of observed triples in a KG, and 7’
is the set of negative samples associated with the positive sample
(vi, g, vj). It is noteworthy that in this implementation, all the
embeddings are in the real vector space.

2.4 RotatE-GCN model

Another assumption recently explored in knowledge graph embed-
ding is rotation. Sun et al. assumed that the tail entity is derived
from the head entity after being rotated performed by a relation in
the complex vector space [24]. Accordingly, we can formalize the
neighbors of an entity v;:

a _ {V(~l) © rgcl), (Uj7 Vk,Ui) € %n(vi) (9)

v, 7
DT o S0 67, o0 € Tt
where o and * are © and @, respectively. More specifically, ©
is the element-wise product in the complex space and r} is the
complex conjugate of rg. | r; |= 1. Note that here the existence of
r and 7y rather than different transformation operators guarantees
the relation direction is considered naturally.
Similarly, the distance function serves as the score function:

Fro(vinv)) = —”vﬁ.’) orl —vﬁ.’)H (10)



Table 1: Basic statistics of FB15K-237 and WN18RR.

Dataset FB15k-237 WN18RR
Entities 14,541 40,943
Relations 237 11
Training triples 272,115 86,835
Validation triples 17,535 3,034
Test triples 20,466 3,134

To keep consistent with RotatE, we adopt self-adversarial nega-
tive sampling to train the model rather than vanilla negative sam-
pling. The main argument of self-adversarial negative sampling is
that negative triples should have different probabilities of being
drawn as training continues, e.g. many triples may be obviously
false, thus not contributing any meaningful information. There-
fore, a probability distribution p is used to draw negative samples
according to the current embedding model.

exp (afrk (v, v]’,))
Z(v;’, Tie» v}/)E‘T' exp(afrk (U;,, U},))

P}, rie, Vi(vs, Tk 0))) = 11
where « is a constant which controls the temperature of sampling
and o is the sigmoid function.

Then the above probability of a negative sample is treated as
the weight of the sample to help construct the loss function. For
a positive sample (v;, g, v;), the loss function can be written as
follows:

L =-log(a(y + fr(vi,v))))
- D @k oDlog(a(—fr (@], 0)) ) (12)

(v, i, v))ET”

where all the embeddings are in the complex vector space.

3 EXPERIMENT

To test the performance of our models, we evaluate our TransGCN
models on the task of link prediction on two datasets: FB15K-237
and WNI8RR.

3.1 Datasets

In previous studies, the performance of link prediction methods was
commonly evaluated on two datasets, namely FB15K from Freebase
and WN18 from WordNet. However, there are inverse triples in both
training and testing data, resulting in methods showing better per-
formance on these datasets by means of memorizing these affected
triples rather than having a better ability of prediction. Therefore,
we use the two filtered data sets: FB15K-237 and WN18RR, proposed
in [25] and [2], respectively, in which all the inverse triplet pairs
were removed. These two datasets have been shown to be more
challenging for models to perform link prediction [22]. Table 1
shows basic statistics for these two datasets.

3.2 Experiment Setup

Evaluation metrics. In the testing phase, for each triple, we re-
place the head entity with all other entities in current KG, and
calculate scores for those replaced triples and the original triple
using the scoring function specified in section 2. Since some of the
replaced triples might also appear in either training, validation or
test set, we then filter these triples out and produce a filtered rank-
ing which we denote as the filtered setting. Then those triples are
ranked in a descending order of scores and the rank of the correct

triple in this ranking list is used for evaluation. The whole proce-
dure is repeated while replacing the tail entity instead of the head
entity. Following previous studies [1], we adopt Mean Reciprocal
Rank (MRR) and Hits@k as evaluation metrics. We report filtered
MRR scores as well as Hits at 1, 3, and 10 for the filtered setting.
For all the metrics, higher values mean better performance.

Baselines. Six baselines (TransE, DistMult, ComplEx, R — GCN,
ConvE and RotatE) are selected for the evaluation. TransE is a stan-
dard translation-based model, which is simple but performs well on
most datasets. This model is wrapped in our TransE-GCN model
to achieve the conversion from heterogeneous neighbors to homo-
geneous neighbors. DistMult, as a factorization model, also shows
promising performance on standard datasets. Furthermore, our
model is compared with ComplEx [26], one powerful state-of-the-
art model for link prediction, and R — GCN [22], a strong baseline
of modeling directed labeled graph. ConvE uses a multi-layer con-
volutional network to model the iterations between entities and
relations[2]. RotatE is the most recent KGE model, which is built
on the rotation assumption [24]. This model is exploited in our
RotatE-GCN model to derive homogeneous neighbors.

Implementation details. To optimize our TransGCN models, we
used the Adam optimizer [12] and fixed the learning rate A = 0.001.
The best parameters were selected when filtered MRR achieved
the best performance on respective validation sets. First, for both
models, the embeddings of entities and relations produced by these
two base models, i.e. TransE and RotatE, were used to initialize the
embeddings needed in our models. For TransE, the embeddings
pretrained by Nguyen et. al in [20] were utilized. Then, the num-
ber of layers in GCN was selected by comparing the experimental
results on validation set. Finally, L = 1 was the best choice for
both datasets. For RotatE, we trained this model by using the im-
plementation provided by the authors to gain initial embeddings
of entities and relations. Then most of the hyperparameter values
of RotatE remained unchanged except that we ignored the batch
size, since in GCN the batch size is achieved by setting graph batch
size, which we leave as default. The only tuned parameter was the
number of layers L € {1, 2}. Finally, the best parameter settings in
our experiment are L = 2 on FB15K-237 and L = 1 on WNI18RR.

3.3 Results

Main Results. The results for both datasets are reported in Table 2.
Results on the baseline models DistMult, TransE, ComplEx, ConvE,
and RotatE are taken from [24], and R-GCN’s results are taken from
[22].

In Table 2, one important observation is that our TransE-GCN
model and RotatE-GCN model both outperformed their base models,
i.e. TransE and RotatE, on both datasets in terms of all the metrics
by noticeable margins, which demonstrates the effectiveness of
our proposed framework. Besides, the improvements restate the
significance of explicitly incorporating local structural information
in knowledge graph embedding learning. Moreover, compared with
all the other baselines, the RotatE-GCN model was consistently
better while the TransE-GCN model performed differently on the
two datasets. To be specific, TransE-GCN performed better than
ComplEx on FB15K-237 while worse on the other dataset. This can
be interpreted by the difference between TransE and ComplEx that



Table 2: Prediction results of different models on FB15K-237 and WN18RR

FB15K-237 WN18RR
MRR(Filtered) | Hit@1 Hit@3 Hit@10 | MRR(Filtered) | Hit@1 Hit@3 Hit@10
DistMult 0.241 0.155 0.263 0.43 0.39 0.44 0.49 0.447
TransE 0.294 - - 0.465 0.226 - - 0.501
TransE-GCN 0.315 0.229 0.324 0.477 0.233 0.203 0.338 0.508
ComplEx 0.247 0.158 0.275 0.428 0.44 0.41 0.46 0.51
R-GCN 0.248 0.153 0.258 0.417 - - - -
ConvE 0.325 0.237 0.356 0.501 0.43 0.40 0.44 0.52
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
RotatE-GCN 0.356 0.252  0.388 0.555 0.485 0.438 0.51 0.578

TransE is not good at dealing with relation types except 1-to-1
relations, as pointed out by researchers before. During the training
process, for each triple (h,r,t), TransE enforces h + r to be as close
as possible to t, which would be problematic when dealing with
1-to-N, N-to-1, and N-to-N relations. For example, given a 1-to-N
relation r, we have two triples (h,r,t;) and (h,r,t). fh+r =t
holds, t; and t; should have the same vector representations. To
meet this requirement, h + r is close to the center of all the positive
tails t at the end of training instead of a particular tail (which may
be the correct prediction). Therefore, the performance of TransE
dropped extremely on WNI18RR, where there are four times more
entities but 20 times less relations than those in FB15K-237. The
superior performance of RotatE-GCN model over TransE-GCN
model indirectly showed the importance of a base model used in
our framework.

Comparison with R-GCN. 1t is necessary to elaborate on the com-
parison between our models and the R-GCN model that inspired our
work. The experimental results showed that our models (TransE-
GCN, RotatE-GCN model) both consistently yielded better results
with improvements of 10.8% and 6.7% in terms of MRR(Filtered) on
FB15K-237, respectively. We believe the improvements are attrib-
uted to two reasons. First, thanks to the idea of converting hetero-
geneous neighbors into homogeneous neighbors in KGs, proposed
in this paper, it successfully captured both local structural infor-
mation by considering entities and relations in the neighborhood
and semantic information residing within transformation opera-
tors. Besides, by doing so, relations in a KG were just modeled once
and simultaneously with entities, and relation-specific matrices in
R-GCN being replaced by shared matrices potentially facilitated
the encoding of more complex latent information. Thus, fewer pa-
rameters were needed to learn in our models, which helps alleviate
the problem of overfitting. In total, our TransE-GCN model has
((B=1)xLxd?+2xBxRxL) fewer parameters than R-GCN in terms
of basis decomposition regularization and (2><B><R><L><(%)2 —Lxd?)
fewer parameters in terms of block-diagonal decomposition, where
B denotes the number of basis matrices, L denotes the number
of layers, d denotes the dimension of a hidden layer, and R de-
notes the number of relations. As for our RotatE-GCN model, we
followed the implementation proposed by [24]. They used real num-
bers to express complex numbers by treating the first half dimen-
sions of entity embeddings as the real part and the last half as the
imaginary part. Therefore, the dimensions of entities are doubled
in the complex vector space. Finally, our RotatE-GCN model has
((B=5)xLxd?+2xBxRxL—Exd) fewer parameters than R-GCN
(basis decomposition) and (2 X BX R X L X (%)2 —5xLxd*—Exd)

fewer parameters than R-GCN (block-diagonal decomposition), re-
spectively, in which E is the number of entities.

Performance on Entities of different degrees. Figure 4 depicts the
performance of our models on FB15K-237 validation set as func-
tions of the entity degree. It can be observed that in the beginning
the performance of both models increased a lot with the increasing
size of neighborhood, while after a threshold, it dropped signifi-
cantly. We believe it showed that a few neighbors were only able to
provide limited local structural information, thus leading to poor
performance; by contrast, too many neighbors brought too much
mixed information, which made models hard to optimize. In the
future, more work should focus on how to deal with these two
extreme conditions.

+TransE-GCN
= RotatE-GCN

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Degree

Figure 4: MRR for TransE-GCN and RotatE-GCN on FB15k-
237 validation set with the entity degree

Table 3: Prediction results of our models on FB15K-237 in
terms of different hops

MRR Hit@10
TransE-GCN-1 0.315 0.474
TransE-GCN-2  0.297 0.453
TransE-GCN-3  0.273 0.421
RotatE-GCN-1 0.347 0.546
RotatE-GCN-2 0.356 0.555
RotatE-GCN-3 0.331 0.525

Analysis of multi-hop neighbors. Table 3 describes the prediction
performance of our two models on FB15K-237 in terms of multi-hop
neighbors, namely 1-hop, 2-hop and 3-hop neighbors. TransE-GCN
model favored 1-hop neighbors while RotatE was able to leverage
more neighborhood information. The difference lies in that RotatE
has a stronger ability to deal with complex relations and capture
more accurate entity and relation information. But both models
performed the worst when 3-hop neighbors were considered, which
were even worse than the base models. We think this may be caused



by spectral convolutional filters, since it has been proven to have a
smooth effect that could dilute the useful information[15].

4 RELATED WORK

Here we review previous work as it relates to our model.

4.1 Transformation-based Models

Until now, there exist two transformation assumptions in the lit-
erature - Translation and Rotation. A multitude of studies have
explored these assumptions to achieve knowledge graph embed-
ding learning for downstream tasks.

Translation-based models, also known as translational distance
models, employed distance-based functions to model entities and
relations in a KG. The key idea behind this kind of models is that for
apositive triple (h, r, t), the head entity should be as close as possible
to the tail entity through the relation, serving as a translation.

The most representative model is TransE [1] because of its sim-
plicity and efficiency. It encodes the observed triples in a KG and
projects entities and relations into the same vector space. TransE
directly implemented the vanilla idea of translation, which en-
forces h + r = t when (h, r, t) holds. However, Wang et al. [28]
argued that TransE cannot deal with N-to-1, 1-to-N and N-to-N re-
lations and proposed a new model called TransH, which introduces
a hyperplane H, for each relation and requires that the projected
head entity h’ on H, should be close to the projected tail entity
t’ on H, after a translation r. TransR [17] follows a similar idea,
but it introduced relation-specific translation spaces. In such a
way, relations and entities can be represented in respective vector
spaces. TransD [9] and TranSparse [10] are two other alternative
approaches to simplifying TransR. In addition, another branch of
improving TransE is to relax the strict restriction of h + r = t, such
as TransF [3]. For example, TransM assigned each triple with a
relation-specific weight 0,, and redefined the scoring function as
fr(h,r) = =0, ||h + r —t||. For a comprehensive review of these
methods, please refer to [27]. Our TransE-GCN model was based
on this translation assumption and TransE from the first branch
was exploited for carrying out translation operations.

Rotation assumption was recently exploited by Sun et al.[24].
Motivated by the Euler’s identify that indicates a rotation in the
complex plane can be achieved a unitary complex number, Sun
et al. proposed a RotatE model, which projected both entities and
relations into the complex vector space and treated each relation
as a rotation from the head entity and the tail entity. The most
attractive characteristics of RotatE is its ability to model and to
infer multiple relation patterns, including symmetry/antisymmetry,
inversion and composition. This model also adopted a distance-
based score function to evaluate the compatibility of two entities
and their relations, as shown in 10. Robust experimental results on
benchmark datasets demonstrated the effectiveness of RotatE.

4.2 Graph Convolutional Networks

Our TransGCN framework is primarily motivated by plenty of
works on modeling large-scale graph data using GCNs [13]. Gen-
erally, GCN can be classified into: (1) spectral-based approaches,
which introduce spatial filters from the graph signal processing
perspective [16, 23]; (2) spatial-based approaches, which simply

interpret a graph convolutional operation as aggregating informa-
tion from neighbors [4-6]. Although spectral-based methods seem
appealing in that they can be supported by the spectral graph the-
ory, in practice spatial-based methods perform better in terms of
efficiency, generality and flexibility [29].

Interestingly, Kipf and Welling [13] discovered that when ap-
proximated by the 1% order Chebyshev polynomials, the graph
convolution is localized in space. That is, to some degree spatial-
based approaches are the same as spectral-based approaches. Based
on this, they introduced a simple but efficient message propagation
rule conditioned on nodes and adjacency matrix of a graph for the
semi-supervised node classification task.

To extend the GCN model [13] to directed labeled graphs[22]
proposed an R-GCN model, which is the first work that applied
the GCN framework to knowledge graphs for link prediction. The
main contribution of this work lies in the introduction of relation-
specific weight matrices in each layer of a neural network such that
relation-specific messages can be propagated over graphs for entity
update. The message propagation method for node v; is defined as
follows:

I+1 1 (1 D (1
v(i 2 a Z Z ;Wr( )V§)+WO( )VE. )) (13)
reRjeNt

where Wrm denotes a relation-specific weight matrix in the I-th

layer, Wo(l) another layer-specific weight matrix, R the set of re-
lation types and N the set of neighbors of node v; in terms of
relation r.

To perform the task of link prediction, R-GCN, as an encoder,
must cooperate with a decoder, such as DistMult. Although this
method achieves promising performance in this task, there are
some limitations. This R-GCN model alone cannot learn relation
embeddings, which are very important for knowledge graph appli-
cations, since they only define message propagation strategies for
node update. On the other hand, despite the fact that R-GCN with
an extra decoder can learn relation embeddings for link prediction
task, relation information is repeatedly incorporated in both en-
coder side and decoder side. As a result, the number of parameters
increases. In this paper, we concentrated on solving these issues by
finding a more reasonable way to extend traditional GCN to KGs.

5 CONCLUSION

In this paper we proposed a unified GCN framework (TransGCN) to
learn embeddings of relations and entities simultaneously.To handle
the heterogeneous characteristics of knowledge graphs when using
traditional GCNs, we came up with a novel way of converting a het-
erogeneous neighborhood into a homogeneous neighborhood by in-
troducing transformation assumptions, e.g., translation and rotation.
Under these assumptions, a relation is treated as a transformation
operator transforming a head entity to a tail entity. Translation and
rotation assumptions were explored and TransE and RotatE model
were wrapped in TransGCN framework, respectively. Any other
transformation-based method could work as transformation oper-
ations. By doing so, nearby nodes with associated relations were
aggregated as messages propagated to the center node as traditional
GCNs did, which benefited the entity embedding learning. In addi-
tion, we explicitly encoded relations in the same GCN framework so



that relation embeddings can be seamlessly encoded with entities
at the same time. In this sense, our TransGCN framework can be
interpreted as a new (knowledge) graph encoder which produces
both entity embeddings and relation embeddings. This encoder
can be further incorporated into an encoder-decoder framework
for any other tasks. Experimental results on two datasets - FB15K-
237 and WN18RR showed that our unified TransGCN models, both
TransE-GCN and RotatE-GCN models consistently outperformed
the baseline - R-GCN model by noticeably large margins in terms
of all metrics, which demonstrated the effectiveness of the conver-
sion idea in dealing with heterogeneous neighbors. Additionally,
both models performed better than their base models, i.e., TransE
and RotatE, showing the significance of explicitly modeling local
structural information in knowledge graph embedding learning.

In this paper, although relations are encoded and learned in
our GCN framework, they are updated simply by being passed
through a separated linear transformation. In the future, we plan to
explore approaches to directly operating convolutions on relations
so that the local structure of graphs could also play a role in relation
embedding learning. In addition, a weighting mechanism should
be studied to measure unequal contributions of neighbors.
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