Spatial Prediction (Kriging) Revisited

- locally optimal (in least squares sense) prediction of unknown attribute values
- attribute data are reproduced, and prediction error statistics are reported
- spatially varying (data configuration dependent) smoothing

Problems:
- locally accurate predictions do not preserve: (i) histogram of original data, and (ii) their spatial structure (variogram model)
- smoothing effect could be detrimental if Kriging predictions are used as parameters in non-linear multiple-point models, e.g., visualization or flow simulation
- Kriging variance is not a complete measure of spatial attribute uncertainty

Remedy via stochastic simulation: (the other route being getting more or related data)
- impose reproduction of: (i) sample data, (ii) their histogram, and (iii) their spatial correlation (variogram)
- use in a Monte Carlo framework for uncertainty propagation/analysis

Example: Objective and Data

- calculate length c of submarine cable required to connect locations A and B
- $y = [y(t_m), m = 1, \ldots, M]^T$: vector with $M = 200$ true sea floor depth values at equally spaced ($d = 1$ unit) intervals between A and B
- $y_s = [y(s_n), n = 1, \ldots, N]^T$: vector with $N = 15$ sample depth soundings

$$c = \sum_{m=1}^{M-1} \sqrt{[y(t_m) - y(t_{m+1})]^2 + d^2} = \text{662} \quad \text{depth at A and B}$$

True cable length c = non-linear function of unknown depth profile y, i.e., $c = \phi(y)$
Example: Kriging-Derived Depth

Kriging of sea floor depth: \(\hat{y} = [\hat{y}(t_m), m = 1, \ldots, M]^T \)

- Simple Kriging using \(N = 15 \) sample data and true depth covariogram model:
 \[\sigma_Y(h) = 0.05\delta_{h,0} + 0.95\exp(-3h^2/20^2) \]
- Kriging-derived sea floor depth reproduces (“passes through”) sample depth data
- predicted sea floor depth = smooth (generalized) version of true depth

\[
\hat{c} = \sum_{m=1}^{M-1} \sqrt{[\hat{y}(t_m) - \hat{y}(t_{m+1})]^2 + d^2} = 367
\]

Relative error of predicted cable length: \(\frac{\hat{c} - c}{c} = \frac{367 - 662}{662} \approx -45\% \ !!! \)

Example: One Conditional Depth Realization

Simulated sea floor depth: \(y_1 = [y_1(t_m), m = 1, \ldots, M]^T \)

- using \(N = 15 \) sample data and true depth covariogram model:
 \[\sigma_Y(h) = 0.05\delta_{h,0} + 0.95\exp(-3h^2/20^2) \]
- simulated sea floor depth realization reproduces sample depth data
- simulated sea floor depth = approximate version of true depth

\[
c_1 = \sum_{m=1}^{M-1} \sqrt{[y_1(t_m) - y_1(t_{m+1})]^2 + d^2} = 631
\]

Relative error of simulated cable length: \(\frac{c_1 - c}{c} = \frac{631 - 662}{662} \approx -5\% \ !!! \)
Example: Multiple Conditional Depth Realizations

- numerous \((L)\) alternative versions of reality: \(Y = [y_1 \cdots y_I \cdots y_L]\)
- all \(L\) realizations reproduce measured depths at their respective sampling locations, as well as (approximately) the data histogram and variogram model
- ensemble (set) of \(L\) simulated depth realizations provides model of uncertainty regarding true sea floor depth

![Graph showing two alternative sea floor depth realizations](image)

no single realization can be regarded as truth; some are more likely than others

Use all \(L\) simulated realizations to propagate uncertainty in sea-floor depth to uncertainty in cable length

Example: Uncertainty in Cable Length

1. generate \(L\) simulated sea floor depth realizations \([y_1 \cdots y_I \cdots y_L]\)
2. compute \(L\) simulated cable lengths \([c_1 \cdots c_I \cdots c_L]\)
3. construct distribution of \(L\) simulated lengths

![Histogram showing distribution of cable lengths](image)

Risk-conscious prediction of cable length: Using: (i) the distribution of simulated cable lengths – this is called uncertainty analysis, and (ii) an appropriate loss (or profit) function – this is called cost-benefit analysis, (iii) compute the optimal prediction \(\hat{c}_{opt}\) for the true cable length \(c\) – this is called decision-making under uncertainty

Note: Uncertainty is independent of reported predictions
Example: Ensemble Average

- mean of simulated sea floor depth values at any target location t_m:

$$
E\{Y(t_m)|y_s\} \approx \frac{1}{L} \sum_{l=1}^{L} y_l(t_m), \quad m = 1, \ldots, M
$$

- one summary of simulated realizations; **not** a valid realization

- for multi-Gaussian data, ensemble average $E\{Y(t_m)|y_s\}$ of L realizations approaches Kriging prediction $\hat{y}(t_m)$ as L increases

Example: Ensemble Variance

- variance of simulated sea floor depth values at any location t_m:

$$
V\{Y(t_m)|y_s\} \approx \frac{1}{L} \sum_{l=1}^{L} [y_l(t_m) - E\{Y(t_m)|y_s\}]^2, \quad m = 1, \ldots, M
$$

- a measure of **local** (per-point) uncertainty regarding simulated values

- for multi-Gaussian data, ensemble variance $V\{Y(t_m)|y_s\}$ of L realizations approaches (homoscedastic) Kriging variance as L increases
Example: White Noise Depth Realizations

All L realizations reproduce (approximately) the histogram (and possibly the data values at their sampling locations), *not* the covariogram model.

Classical Monte Carlo simulation from depth histogram is not enough !!!

It is the histogram of the depth gradient that is needed

Monte Carlo simulation from the depth gradient histogram would suffice.

Example: Unconditional Depth Realizations

All L realizations reproduce (approximately) a histogram and covariogram model, *not* the data values at their sampling locations (correct shape or wavelength but random phase).

Uncertainty in true cable length is independent of phase of sea-floor depth !!!

You just need a histogram and variogram model (not the data locations)

It is the histogram of the depth gradient that is needed
Joint Spatial Uncertainty for Continuous Attributes

Definition: Uncertainty regarding \(M' \leq M \) unknown attribute values at a set of \(M' \leq M \) locations, given the sample data \(y_s \); e.g., probability that all \(M' \) values at \(M' \) locations be **simultaneously** no greater than an arbitrary threshold \(a \)

Inference problem: Joint \(M' \)-variate conditional CDF \(\mathbb{P}\{Y(t_1) \leq a, \ldots, Y(t_{M'}) \leq a | y_s\} \) can be evaluated analytically only for few multivariate distributions

Solution: evaluate above CDF numerically:

1. generate \(L \) simulated attribute realizations \([y_l, l = 1, \ldots, L] \) at \(M' \) locations, conditional on the source data \(y_s \)
2. for each realization \(l \), compute an indicator \(i_l(a) = 1 \) if all \(M' \) attribute values are no greater than \(a \), \(i_l(a) = 0 \) if not.
3. Compute joint probability that all \(M' \) attribute values be simultaneously no greater than threshold \(a \) as the proportion (mean) of above indicators \(\frac{1}{L} \sum_{l=1}^{L} i_l(a) \)

Joint Spatial Uncertainty for Categorical Attributes

Definition: Uncertainty regarding \(M' \leq M \) unknown category codes at a set of \(M' \leq M \) locations, given sample codes; e.g., probability that all \(M' \) pixels be **simultaneously** black; \(M' \) black pixels constitute a pattern

Key concepts:
- set of \(M' \) single-point probabilities of code occurrence **not** sufficient for modeling joint spatial uncertainty, i.e., probability of pattern occurrence
- uncertainty in many spatially explicit model predictions = function of pattern occurrence, **not** of single-point (pixel-wise) code occurrences