Revised Schedule:

- **Tuesday April 26th** –
 - Lecture Kat Grace – Modeling Kenyan Malnutrition
 - Lab Catch up Diego Pedreros
- **Thursday**
 - Lecture Chris Funk - Modeling variograms
 - Lab 5 Chris Funk – Analyzing East Africa rainfall

Lab Policy – New lab centricism

- First 20 minutes spent on new lab
- Priority given to questions on new lab

Lecture today

- Output of Fest function
- Index of dispersion and X^2 distribution
- Variance matrix re-explained
- Variograms
Fest Output

A data frame containing up to seven columns:

- **r**
 - the values of the argument r at which the function F(r) has been estimated

- **rs**
 - The border corrected estimator of F(r)

- **km t**
 - The spatial Kaplan-Meier estimator of F(r)

- **hazard**
 - The hazard rate lambda(r) of F(r) by the spatial Kaplan-Meier method

- **cs**
 - The Chiu-Stoyan estimator of F(r)

- **raw**
 - The uncorrected estimate of F(r), i.e. the empirical distribution of the distance from a random point in the window to the nearest point of the data pattern X

- **theo**
 - The theoretical value of F(r) for a stationary Poisson process of the same estimated intensity.
G function definition: Proportion of event-to-nearest-event distances $d_{\text{min}}(u_i)$ no greater than given distance cutoff d

- $\hat{G}(d) = \frac{\#[d_{\text{min}}(u_i) \leq d]}{n}$

F function definition: Proportion of point-to-nearest-event distances $d_{\text{min}}(t_p)$ no greater than given distance cutoff d

- $\hat{F}(d) = \frac{\#[d_{\text{min}}(t_p) \leq d]}{m}$

Expected G and F function under CSR for relatively small distances to avoid edge effects:

$$\mathbb{E}\{G(d)\} = \mathbb{E}\{F(d)\} = 1 - e^{-\lambda \pi d^2}$$
\[\tilde{X} = X - \overline{X} \]

\[\Sigma = \frac{1}{n} \tilde{X}^T \tilde{X} \]
First & Second Order Effects

First-order effects: influence of external or environmental factors on process outcomes; e.g., abundance of plants within a sub-region could depend on soil type.

- Note: first-order effects are typically assumed to influence the magnitude of process outcomes at each location, and hence are associated with the mean of all possible process outcomes at each location.

Second-order effects: influence of process outcomes at one location on possible process outcomes at nearby locations; e.g., non-contagious versus contagious diseases.

- Note: second-order effects typically express some measure of “similarity” between possible process outcomes at different locations once the first-order effects have been removed, and are often associated with the covariance or correlation coefficient between different random variables.
Distance-based Metrics

- Under assumptions of stationarity (e.g. \(\mu = 0 \) or \(\lambda = \) some constant), location itself can be discarded, and the relationship between locations (e.g. distance) used in instead.

- Examples include the K-function and semivariograms.
1. construct set of concentric circles (of increasing radius \(d \)) around each event
2. compute # of events in each distance “band”, excluding event at the center
3. cumulative number of events up to radius \(d \) around all events becomes the sample \(K \) function \(K(d) \)

\[
K(d) = \frac{\mathbb{E}\{ \text{# of events within distance } d \text{ of any arbitrary event} \}}{\mathbb{E}\{ \text{# of events within study area} \}} \approx \frac{1}{\lambda} \frac{1}{n} \# \{d_{ij} \leq d, \ i = 1, \ldots, n, \ j = 1, \ldots, n\} = \hat{K}(d)
\]

CSR-Expected K Function

- K(d) & L(d) functions under CSR
 \[\mathbb{E}\{K(d)\} = \frac{\lambda \pi d^2}{\lambda} = \pi d^2 \]

 this can become a very large number (due to \(d^2\)), and consequently small differences between \(K(d)\) and \(\mathbb{E}\{K(d)\}\) cannot be easily resolved.

- use L function instead:
 \[\hat{L}(d) = \sqrt{\frac{\hat{K}(d)}{\pi}} - d \]

- With \(\mathbb{E}\{L(d)\} = 0\)

- Interpreting the L function
 - \(L(d) > 0\) implies clustering
 - \(L(d) < 0\) implies stratification

- Watch out for edge effects
 - Reality tends to be ‘patchy’
 - Can we use Monte Carlo simulations instead of edge effect corrections?
Sample and Population Semivariogram

Setting: Set of N measurements $\{y(s_n), n = 1, \ldots, N\}$ of attribute Y which varies continuously in space; $y(s_n)$ denotes n-th measurement obtained at n-th sample location with coordinate vector s_n.

Inference objective:
- Go beyond sample semivariogram to infer a model of spatial association for the population, i.e., the entire Y-attribute field; most often, one is talking about parametric semivariogram models which are expressed as functions of Euclidean distance.

Objectives
- To pinpoint the limitations of a sample semivariogram/covariogram/correlogram.
- To highlight some conditions that can be used to check whether an arbitrary function of distance is as valid semivariogram model.
- To survey some of the most frequently used semivariogram models in practical applications.
Consider a set of L lag distance classes; let $\{h_l, l = 1, \ldots, L\}$ denote the set of average distances between data pairs in each class.

Compute sample semivariance $\gamma(h_l)$, or moment of inertia of h_l-specific scatter-plot of lagged y-attribute values, for each distance class h_l:

$$\hat{\gamma}(h_l) = \frac{1}{2N(h_l)} \sum_{n=1}^{N(h_l)} [y(s_n) - y(s_n + h_l)]^2$$

where $N(h_l)$ denotes # of data pairs whose inter-distances fall in the l-th distance class h_l; h_l is the separation vector with magnitude $h_l = ||h_l||$.

Plot average distances $\{h_l, l = 1, \ldots, L\}$ versus corresponding sample semivariance values $\{\gamma(h_l), l = 1, \ldots, L\}$; such a plot is called a sample (empirical) semivariogram.
Semi-variogram Example

NDJ 1981-82 average precipitation (in mm)

Sample semivariogram of precipitation

Distance (degrees)
Squared semi-differences cloud

Structure cloud

squared attribute semi-differences vs distance
Empirical Semivariogram

2D sample auto-semivariogram

- Semivariance $\gamma(h)$
- Lag distance h
- Semivariogram values: 2D distribution of data points
Conversion between models under 2nd-order stationarity, with $\sigma(0) = \gamma(\infty)$ being the sill of the semivariogram model:

- Semivariogram \rightarrow covariogram: $\sigma(h) = \sigma(0) - \gamma(h)$

- Covariogram \rightarrow correlogram: $\rho(h) = \frac{\sigma(h)}{\sigma(0)}$

- Semivariogram \rightarrow correlogram: $\rho(h) = 1 - \frac{\gamma(h)}{\sigma(0)}$

- Covariogram \rightarrow semivariogram: $\gamma(h) = \sigma(0) - \sigma(h)$
Empirical Correlogram

2D sample auto-correlogram

Correlation $\rho(h)$ vs lag distance h for omnidirectional correlation.

Plot shows the relationship between correlation $\rho(h)$ and lag distance h for omnidirectional correlation.
Conversion between models under 2nd-order stationarity, with $\sigma(0) = \gamma(\infty)$ being the sill of the semivariogram model:

- **Semivariogram \rightarrow covariogram:**
 \[\sigma(h) = \sigma(0) - \gamma(h) \]

- **Covariogram \rightarrow correlogram:**
 \[\rho(h) = \frac{\sigma(h)}{\sigma(0)} \]

- **Semivariogram \rightarrow correlogram:**
 \[\rho(h) = 1 - \frac{\gamma(h)}{\sigma(0)} \]

- **Covariogram \rightarrow semivariogram:**
 \[\gamma(h) = \sigma(0) - \sigma(h) \]
Recall:

\[
\hat{\sigma}_X = \frac{1}{N} \sum_{n=1}^{N} x_n^2 - \hat{\mu}_X^2
\]

\[
\hat{\sigma}_Y = \frac{1}{N} \sum_{n=1}^{N} y_n^2 - \hat{\mu}_Y^2
\]

\[
\hat{\sigma}_{XY} = \frac{1}{N} \sum_{n=1}^{N} x_n y_n - \hat{\mu}_X \hat{\mu}_Y
\]

Expanding:

\[
\hat{\gamma}_{XY} = \frac{1}{N} \sum_{n=1}^{N} (x_n - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n^2 + y_n^2 - 2x_n y_n)
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} x_n^2 + \frac{1}{N} \sum_{n=1}^{N} y_n^2 - 2 \frac{1}{N} \sum_{n=1}^{N} x_n y_n
\]

\[
= \hat{\sigma}_X + \hat{\mu}_X^2 + \hat{\sigma}_Y + \hat{\mu}_Y^2 - 2 \hat{\sigma}_{XY} - 2 \hat{\mu}_X \hat{\mu}_Y
\]

\[
= \hat{\sigma}_X + \hat{\sigma}_Y - 2\hat{\sigma}_{XY} + [\hat{\mu}_X - \hat{\mu}_Y]^2
\]

What’s the difference: To estimate the moment of inertia \(\gamma_{XY}\) you do not need to know the mean values \(\mu_X\) and \(\mu_Y\); these two mean values are required for estimating the covariance \(\sigma_{XY}\).