Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon

R.L. Powell a,*, N. Matzke a, C. de Souza Jr. a,b, M. Clark a, I. Numata a, L.L. Hess c, D.A. Roberts a

a Department of Geography, University of California, Santa Barbara, Ellison Hall 3611, Santa Barbara, CA 93106, USA
b Instituto do Homem e Meio Ambiente da Amazônia Imazon, Caixa Postal 5101, Belém, PA 66613-397 Brazil
c Institute for Computational Earth System Science ICESS, University of California, Santa Barbara, CA 93106, USA

Received 29 August 2003; received in revised form 9 December 2003; accepted 13 December 2003

Abstract

Valid measures of map accuracy are critical, yet can be inaccurate even when following well-established procedures. Accuracy assessment is particularly problematic when thematic classes lie along a land-cover continuum, and boundaries between classes are ambiguous. In this study, we examined error sources introduced during accuracy assessment of a regional land-cover map generated from Landsat Thematic Mapper (TM) data in Rondônia, southwestern Brazil. In this dynamic, highly fragmented landscape, the dominant land-cover classes represent a continuum from pasture to second growth to primary forest. We used high spatial resolution, geocoded videography as a reference, and focused on second-growth forest because of its potential contribution to the regional carbon balance. To quantify subjectivity in reference data labeling, we compared reference data produced by five trained interpreters. We also quantified the impact of other error sources, including geolocation errors between the map and reference data, land-cover changes between dates of data collection, heterogeneous reference samples, and edge pixels.

Interpreters disagreed on classification of almost 30% of the samples; mixed reference samples and samples located in transitional classes accounted for a majority of disagreements. Agreement on second-growth forest labels between any two interpreters averaged below 50%, while agreement on primary forest was over 90%. Greater than 30% of disagreement between map and reference data was attributed to geolocation error, and 2.4% of disagreement was attributed to change in land cover between dates. After geocorrection, 24% of remaining disagreements corresponded to reference samples with mixed land cover, and 47% corresponded to edge pixels on the classified map. These findings suggest that: (1) labels of continuous land-cover types are more subjective and variable than commonly assumed, especially for transitional classes; however, using multiple interpreters to produce the reference data classification increases reference data accuracy; and (2) validation data sets that include only non-mixed, non-edge samples are likely to result in overly optimistic accuracy estimates, not representative of the map as a whole. These results suggest that different regional estimates of second-growth extent may be inaccurate and difficult to compare.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Error; Accuracy assessment; Brazilian Amazon; Second-growth forest

1. Introduction

Thematic maps derived from remotely sensed data are used in many applications, including as input parameters to models, as source of regionally extensive environmental data, or as basis of policy analysis. Meaningful and consistent measures of thematic map reliability are necessary for the map user to assess the appropriateness of the map data for a particular application; additionally, the accuracy of the thematic map may significantly affect the outcome of an application. For example, in the tropics, an important application of land-cover maps is assessing the rate and extent of land-cover change to estimate the contribution of tropical forest conversion to global and regional carbon budgets. Accurate accounting of the carbon budget has important implications for national policy aimed at complying with international treaties to reduce greenhouse gases (Houghton, 2001). Currently, unquantified sources of uncertainty in estimating the carbon flux of tropical forest regions include the spatial extent of secondary forest (i.e., forest regrowth) and the associated rates of carbon sequestration (Houghton, 2003).

Measures of map accuracy are equally important for the producer of a thematic map to analyze sources of error and
weaknesses of a particular classification strategy. Yet, documenting map accuracy is not a straightforward task. While individual measures of map accuracy are well established in the literature (e.g., Congalton, 1991; Congalton & Green, 1999; Stehman, 1997a), considerable ambiguity remains concerning the implementation and interpretation of thematic map accuracy assessment. Uncertainties include the selection of which accuracy measures to report, how to interpret them, and the nature and quality of reference samples. As a result, map quality remains “a difficult variable to consider objectively” (Foody, 2002).

Fundamental to the challenge of accuracy assessment is the problematic nature of thematic maps themselves, in that thematic maps partition continuous landscapes into discrete, mutually exclusive classes (Gopal & Woodcock, 1994). While many distinct boundaries may exist on a landscape (e.g., a forest at the bank of a river), virtually all environments include land-cover classes that represent segments of a continuum (e.g., in the tropics, pasture to second-growth forest to primary forest). The extremes of such classes may be spectrally distinct and therefore easily separated; however, the boundaries between such classes can be arbitrary, and distinguishing between the two classes becomes increasingly difficult near the boundary (Gopal & Woodcock, 1994).

Even if classes are clearly defined and spectrally distinct, a thematic map is based on the assumption that each region represents a single land-cover class. However, all satellite imagery used to derive thematic maps—regardless of the spatial resolution of the sensor—will include mixed pixels as a result of three situations. When classes are discrete or easily separable, mixed pixels are located on the border between them; when classes are portions of a continuous landscape gradient, mixed pixels are located in the transition zone between classes. Finally, mixed pixels can result when subpixel objects—such as a road, building, or tree—are present on the landscape (Cracknell, 1998; Fisher, 1997; Foody, 1999). This may cause problems, not only in interpreting the thematic map product, but also in collecting reference data samples for accuracy assessment. Regardless of the source of reference samples (e.g., ground surveys, aerial photographs), human interpretation is almost always required to assign a class label to the reference sample. Consistent assignment of class labels may be confounded by samples that occur on boundaries or in transition zones between classes, or that include subpixel objects. The frequency of mixed pixels is a function of both the spectral complexity and the spatial fragmentation of the landscape, and therefore the confidence level of an accuracy assessment is compromised by an increasingly heterogeneous landscape.

Estimation of the thematic accuracy of land-cover maps by means of a set of labeled reference samples is based on several assumptions: (1) that the reference data set is a statistically valid sample of the mapped area; (2) that the reference samples are accurately coregistered with the map; (3) that the samples can be consistently and unambiguously labeled as one of the map classes; (4) that each map pixel corresponds to a single land-cover type; and (5) if time has elapsed between acquisition of the map and reference data sets, that land cover has not changed in the interim (Foody, 2002; Gopal & Woodcock, 1994; Lunetta et al., 2001). This study examines the validity of these assumptions for the accuracy assessment of a regional land-cover map derived from Landsat Thematic Mapper (TM) imagery, using digital aerial videography as the source of reference data. We select as an example a land-cover map from a highly fragmented, dynamic landscape in the southwest Brazilian Amazon. The dominant classes represent a land-cover continuum, ranging from pasture to second-growth forest to primary forest, and the class of greatest interest is the transitional class, second-growth forest, because of potential impact on the regional carbon budget (Fearnside, 2000).

Our specific goals are twofold: First, we test the subjectivity of assigning land-cover classes to samples of high spatial resolution videography by comparing independent interpretations of reference data and analyzing the sources of disagreement between interpreters. Second, we assess the disagreement between the thematic map and the highest quality reference data set in light of the standard assumptions of accuracy assessment listed above. Many previous studies have acknowledged that failing to meet any one of these assumptions impacts accuracy assessment; we strengthen these conclusions by quantifying the impact of each assumption on the accuracy assessment measures reported. Specifically, we quantify disagreements due to the following factors: geolocation errors between the map and the reference data, mixed reference samples, edge or boundary pixels on the map, and change in land cover between the collection of the reference data and the map imagery.

2. Background

To evaluate the frequency and detail of accuracy assessment reported in studies that map second-growth forest in the Brazilian Amazon using remotely sensed data, we reviewed 26 papers published in the refereed literature between 1993 and 2003. The primary goal of secondary forest mapping as presented in these papers could be divided into three categories: (1) to map and assess the extent and rates of forest clearing and regrowth; (2) to characterize the spectral properties of second growth, especially to distinguish between age classes of second-growth forest; and (3) to characterize field data to facilitate mapping second growth with remotely sensed data (one paper). Study sites ranged in scale from the entire Brazilian Amazon (approximately 5 million km²) to less than 2500 km², with almost one-half of the studies in the latter category. While study sites were distributed across the Brazilian Amazon, 12 of the studies included sites in the state of Rondônia, in the southwest Brazilian Amazon.
In our evaluation of accuracy reporting, we examined whether and at what level of detail each study reports accuracy and how clearly each study defines the thematic classes mapped. Almost one-half of the papers (12) do not include any discussion of the accuracy of the map products that are developed or applied. Of the papers that do present some discussion of accuracy assessment, eight include at least one major methodological weakness. For example, six papers select samples for the reference data set from within homogeneous polygons defined in the field, and then treat the samples as statistically independent. This results in accuracy measures that are optimistically high (Foody, 2002). A second example of methodological weakness occurs when class transition information from a time series of classified imagery is used as reference data to validate the age of mapped second growth. In all but one of these cases (five of six papers), no discussion of the time series accuracy is included. In other words, the reference data are based on a second classified map (or series of classified maps), which is taken as “truth” without any accuracy assessment analysis.

Of our survey, only four papers clearly included randomly selected reference samples collected from a combination of high spatial resolution imagery and field data, rather than from a second classified map (Ballester et al., 2003; Lu et al., 2003a, 2003b; Roberts et al., 2002). However, three of these studies report accuracy for classes using significantly fewer than 50 reference sample points, a number recommended for statistical robustness (Congalton, 1991), and the fourth does not report an error matrix—only user’s, producer’s, and overall accuracies. One other paper estimates the overall accuracy of a time series by conducting accuracy assessment for two different dates, using reference data collected during two different field seasons, although the statistical independence of the sample points is not discussed.

A second issue critical to the discussion of accuracy assessment is the explicit definition of each thematic class. In tropical forest environments, the main classes of interest—pasture, second-growth forest, primary forest, and most recently degraded forests—represent segments of a continuum, and the boundaries between each class must be prespecified. That is, pasture and cropland that are “abandoned” or not well maintained are rapidly invaded by woody species, which develop into second-growth forest, but the point at which land cover ceases to be “pasture” and becomes “second growth” is essentially an arbitrary decision. On the other hand, while the distinction between second growth and primary forest may be relatively clear in ecological terms (Brown & Lugo, 1990), many researchers report that second growth becomes spectrally indistinguishable from primary forest on Landsat TM imagery after approximately 15 years (Lucas et al., 2000; Mausel et al., 1993; Nelson et al., 2000), although exceptions occur (e.g., Vieira et al., 2003).

Of the 26 papers surveyed, 14 included no specific definition of second-growth vegetation, while eight included a brief discussion of the dominant species present and/or general structure of second-growth forest. Only three studies (Lu et al., 2003a; Moran et al., 2000; Vieira et al., 2003) included discussions of second-growth vegetation structure that reported specific height measurements; another study (Lu et al., 2003b) refers to the definitions presented by Moran et al. (2000). Only one paper surveyed makes a clear distinction between pasture and second-growth classes (Lu et al., 2003a), although several discuss the relatively high degree of confusion between the two classes (e.g., Ballester et al., 2003; Roberts et al., 2002). Without clearly defined classes, however, it is not possible to compare extents and rates of land-cover change generated from different classification techniques or calculated for different regions because differences in such estimates may simply be a matter of definition. In addition, clearly defined classes are needed to extrapolate field measurements to larger regions using maps derived from remotely sensed imagery, one of the goals of the NASA-funded Large Scale Biosphere–Atmosphere Experiment in Amazônia (LBA, 1997).

Similarly, without including a statistically rigorous accuracy assessment with clearly detailed methods, confidence in the thematic maps produced cannot be well founded and comparison of classification techniques is difficult. One of the limitations to conducting rigorous accuracy assessment has been the collection of a sufficient number of randomly selected samples for each map category. This is especially an issue in tropical forests such as the Brazilian Amazon, which contain vast tracts of land that are virtually inaccessible from the ground. In such areas, it is often simply not feasible to collect enough sample points from ground-based surveys, and the only cost-effective and/or feasible means of collecting enough independent samples for regional-scale maps is to rely on high spatial resolution remote sensing products, such as aerial photographs, aerial videography, or satellite imagery (e.g., Ikonos or QuickBird). In the past, such products have not been readily available, and so accuracy assessment, when conducted, could not necessarily meet the required number of independent samples. Today, such data are available, and mapping exercises can be expected to meet requirements for rigorous accuracy assessment.

Measures of map accuracy are well established in the literature (e.g., Congalton, 1991; Congalton & Green, 1999; Stehman, 1997a; Story & Congalton, 1986). Most commonly, accuracy assessment involves the comparison of a classified thematic map with the classification of randomly selected samples of reference data (Stehman, 1997a). The most widely used measures of accuracy are derived from an error matrix (Congalton, 1991; Foody, 2002), which is a table that compares counts of agreement between reference and map data by class. The error matrix is used to generate both descriptive and analytical statistical measures (Congalton, 1991). Descriptive measures of map accuracy provide the potential user of the final map product with a measure of overall confidence in the map, as well as
measures of accuracy by class. Analytical statistical measures of map accuracy provide a means of comparing two map products (Stehman, 1997a). Many researchers argue that any thematic map product should report an error matrix and include a thorough description of the reference collection process so that the user can analyze map accuracy in a means appropriate to the intended application of the map product (Foody, 2002; Stehman, 1997a; Story & Congalton, 1986). However, the results reported in an error matrix should be interpreted with caution, as the error matrix measures the degree of agreement between the reference data and the map data, which is not necessarily equivalent to the degree of agreement between the map product and reality (Foody, 2002). If the error matrix is incorrect because the reference data are less than perfect, all accuracy measures derived from it are suspect (Congalton, 1991). As a result, any accuracy assessment should involve close scrutiny of the reference data.

3. Methods

3.1. Study site

The study area includes two Landsat TM scenes (approximately 54,000 km²) over the central portion of the state of Rondônia in the southwest Brazilian Amazon (Fig. 1), where deforestation rates have been among the highest in Brazil throughout the decades of the 1980s and 1990s (Alves, 2002). Elevation in the region varies between 100 and 1000 m, including some areas with steep terrain. Annual rainfall ranges between 1930 and 2690 mm/year, and there is a pronounced dry season from approximately June through October (Gash et al., 1996). Natural land cover is predominantly tropical moist forest, which covered approximately 89% of the state area prior to deforestation, and there are also significant areas of natural savanna shrublands (Skole & Tucker, 1993).

Modern Brazilian exploration and settlement in the region increased exponentially after the 1968 opening of the Cuiabá-Porto Velho (BR-364) highway (Moran, 1993), which bisects the study area, and large tracts of land on either side of the highway were included in government-sponsored colonization projects, first initiated in 1971 (Pedlowski et al., 1997). The majority of properties are relatively small (< 100 ha) and are located in close proximity to the major highway and secondary roads (Alves et al., 1999; Alves & Skole, 1996), resulting in a “fish-bone” pattern of deforestation that is commonly associated with frontier colonization projects (Geist & Lambin, 2001). Deforestation in Rondônia has largely been driven by the conversion of land for agriculture, especially pasture, with
some logging and mining activities (Moran, 1993; Pedlowski et al., 1997). The region covered in this study includes a range of pasture and second-growth ages, as well as a gradient in the degree of pasture maintenance.

Data for the Ji-Paraná Landsat TM scene (P231, R67) were acquired in August 1999, while for the Ariquemes scene (P232, R67), data from July 1998 and October 1999 were combined due to cloud contamination. The Landsat scenes were coregistered to digital base maps supplied by Brazil’s Instituto Nacional de Pesquisas Espaciais (INPE, 2003). The scenes were intercalibrated using relative radiometriccalibration techniques to account for differences in atmospheric conditions between scenes and between dates (Furby & Campbell, 2001). As described by Roberts et al. (1998, 2002), land cover was mapped using a multistage process based on spectral mixture analysis. Endmember fractions and root mean square error values were used to train a binary decision tree classifier. The rules generated by the decision tree were used to classify both images into seven classes: primary forest, pasture, green pasture, second-growth forest, water, urban/bare soil, and rock/savanna. For the purpose of accuracy assessment, we combined the pasture and green pasture classes, and did not include the rock/savanna class because of its scarcity on the landscape.

Reference data were visually interpreted from digital aerial videography collected over Rondônia in June 1999, as part of the Validation Overflights for Amazon Mosaics (Hess et al., 2002). Wide-angle and zoom videography were collected simultaneously, with average swath widths of 550 and 55 m, and average pixel dimensions of 0.75 m and 7.5 cm, respectively. Global positioning system (GPS) location and time code, aircraft attitude, and aircraft height data were encoded on each videography frame and used to automatically generate geocoded videography mosaics, with an estimated absolute geolocation error of 5–10 m along the center third of the videography swath.

3.2. Accuracy assessment

The methods can be divided into three major components. First, sampling and evaluation protocols for the reference data were developed. Second, individual interpreters independently evaluated the reference data, and differences between interpreters were analyzed. Third, interpreters worked as a group to develop a “gold standard” reference data set, and this was used to evaluate the sources of disagreement between the reference data and the thematic map. These steps are outlined in Fig. 2 and described in detail below.

3.2.1. Sampling design

Central to the implementation of a valid accuracy assessment is the development of a rigorous sampling design and an explicit response design (Stehman & Czaplewski, 1998). The former defines the reference sample population and the rules for selecting reference sample units, while the latter specifies the rules for assigning a single land-cover class to each sample unit. The only rigorous sampling scheme for selecting reference data in terms of scientific objectivity, as well as in terms of meeting the criteria for

![Flowchart summarizing the accuracy assessment procedure and subsequent analysis.](image-url)
accuracy assessment measures such as the kappa statistic, is that based on random sampling (Congalton, 1991; Stehman & Czaplewski, 1998). However, as is commonly the case in the collection of reference data, two factors confound our ability to implement a true simple random sampling design. First, the population of reference sample units was limited to points along the videography flight lines, and the flight lines were not planned according to a random sampling strategy. Second, some classes are much more abundant than others on the landscape (e.g., primary forest is the dominant class in the study area, followed by pasture, with significantly smaller areas covered by second-growth forest). Therefore, a simple random sampling design could result in very small numbers of samples for the secondary forest class.

We addressed the first issue with the following observations: The flight lines crossed both scenes several times and were designed to cover a diversity of land-cover types. As can be seen in Fig. 1, the flight lines cross areas of high heterogeneity and avoid large areas of primary forest in the eastern and western portions of the study area. We therefore assumed that the videography data were representative of the target classes in the study area, and that our findings of class accuracy within the videography subregion could be generalized to the entire map extent. This assumption was also supported by the authors’ combined general knowledge of the area based on prior field work. In addition, the population of potential samples represented by the videography coverage was quite large, as the flight lines covered a distance of approximately 800 km over the study area and included a total of approximately 3 h of flying time, resulting in a sample population of 10,800 one-second mosaics. Given an average swath width of 0.55 km, this represents an area of 440 km², equivalent to almost 1% of the entire study area.

We addressed the second issue by implementing a modified version of stratified random sampling. The flight lines that cross the two scenes were segmented according to dominant land-cover class present, and image frames were extracted from each segment based on their randomly selected recorded time codes. Image frames were sampled more intensively from segments with more heterogeneous land cover. While we did not achieve an equal distribution of sample points by class (see Table 4 for a distribution of samples by count), we were able to capture sufficient numbers of samples (i.e., >50 as recommended by Congalton, 1991) for the three classes of greatest interest: primary forest, pasture, and second-growth forest. Finally, despite the limitations imposed on our sampling design, the distribution by class of sample points included in the reference data set closely reflects the proportion of classified map pixels in the study area (Table 1), a condition for establishing reliable estimates of individual class accuracy and overall map accuracy (Richards, 1996). This strengthens the claim that the reference data set is representative of the map as a whole.

The next step in designing a sampling protocol is to define the sampling unit (i.e., the unit that links the reference data to the classified map) (Stehman & Czaplewski, 1998). Currently, there is no consensus in the literature concerning the selection of the sampling unit size; however, there is some agreement that the sample unit selected should correspond to the mapping objective (Congalton & Green, 1999; Plourde & Congalton, 2003). In our case study, the mapping objective was per-pixel characterization of landcover type. We therefore chose to use a 30-m pixel centered on the videography mosaic as the sample unit, and note the following advantages: (a) the pixel sample is physically correlated with the minimum mapping unit of the Landsat TM imagery, and therefore that of the classified map; (b) using a pixel sample unit allowed us to assess the number of mixed reference pixels and the number of edge sample pixels on the map; and (c) as the videography mosaics generated for analysis are quite large relative to the size of a Landsat pixel, using a pixel sample unit allowed us to collect more than one sample per mosaic (discussed in detail below). Some researchers have argued that the geolocation errors between the reference and map data compound error in accuracy assessment when a sample unit on the order of the minimum mapping unit is used (e.g., Plourde & Congalton, 2003). However, Stehman and Czaplewski (1998) argue that as long as boundary and edge pixels are included in the accuracy assessment analysis, geolocation error can be “equally problematic whether the sampling unit is a pixel, polygon, or larger area.” In addition, using sample units larger than the minimum mapping unit in a heterogeneous landscape increases the probability that the sampling unit includes more than one land-cover type, and therefore complicates the response design (i.e., how a land-cover class is assigned to the sampling unit).

Mosaic construction is quite time-consuming, and each mosaic is large relative to the size of the sampling unit. Mosaics were approximately 300–900 m in each dimension (equivalent to 10–30 Landsat pixels), depending on the altitude of the aircraft. In an attempt to utilize more of the information available on each mosaic, we employed a one-stage cluster sampling method (Stehman, 1997b). Cluster sampling involves two levels of sampling units: first, the cluster itself (i.e., the primary sample unit), which is centered on a randomly selected location; and second, the fixed arrangement of secondary sample units, which make up the cluster. Each sample unit within the cluster is treated as an independent sample (Stehman & Czaplewski, 1998).

<table>
<thead>
<tr>
<th>Class</th>
<th>Pfor (%)</th>
<th>Sfor (%)</th>
<th>Past (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference samples</td>
<td>54</td>
<td>14</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>Classified map</td>
<td>66</td>
<td>7</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

Pfor = primary forest; Sfor = second-growth forest; Past = pasture.
For this study, videography flight lines were randomly sampled by flight timecode, and georectified mosaics were constructed from wide-angle videography frames covering 1 s (30 frames) of aircraft flying time. Mosaics were printed at a map scale of 1:2000 using a fine-resolution laser color printer. A 5 × 5 grid of 30-m pixels printed on a transparency was superimposed and centered on each mosaic. The center and four corner pixels were collected as reference samples, for a total of five samples per mosaic (Fig. 1). Non-adjacent sample units were selected for analysis in order to reduce autocorrelation between samples of the same cluster. A total of 158 mosaics, generating 790 sample points, were included.

3.2.2. Response design

The response design consists of two components: the evaluation protocol, which details the criteria and procedure to determine the land-cover type(s) within each sampling unit; and the labeling protocol, which specifies how a single class is assigned to the sampling unit (Stehman & Czaplewski, 1998). Our goal in designing an evaluation protocol was to develop explicit definitions of each land-cover class based on physical characteristics. Clearly demarcating class boundaries was a deliberate effort to increase consistency between interpreters, as well as to provide a basis for comparing our map product with other thematic maps. Because pasture, second-growth forest, and primary forest represent a continuum of vegetation cover, boundaries between each class were delimited based on prespecified physical criteria instead of current land use or age since cut. Interpretation of land cover based on current or past land use was avoided because such interpretations are subjective and have no direct correlation to a specific spectral signature. The class descriptions developed for the reference data evaluation protocol, presented in Table 2, are based on height, vegetation structure (woody vs. herbaceous), and canopy cover (continuous vs. sparse). While height is not directly measurable from the videography mosaics, other characteristics that are correlated with vegetation height are detectable. In particular, crown diameter and shadows were used to infer vegetation height.

<table>
<thead>
<tr>
<th>Class</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary forest</td>
<td>Trees >20 m in height, continuous canopy</td>
</tr>
<tr>
<td>Second-growth forest</td>
<td>Shrubs >2 m in height, trees < 20 m in height, perennial crops</td>
</tr>
<tr>
<td>Pasture</td>
<td>Shrubs <2 m in height, herbaceous vegetation, sparse canopy, annual crops</td>
</tr>
<tr>
<td>Urban/bare soil</td>
<td>Human-built structures, roads, bare soil</td>
</tr>
<tr>
<td>Water</td>
<td>Open water surfaces</td>
</tr>
</tbody>
</table>

Table 2: Class definitions for evaluation protocol

Interpreters viewed each sample in the context of the entire 1-s mosaic and recorded the percentage of all land-cover classes present in each sample unit. The labeling protocol was simple: Each sample unit was assigned the class of majority cover, based strictly on the land cover located directly within the boundaries of the sample unit. For example, if the sample unit landed on an isolated tree surrounded by pasture, the sample would be assigned the class of either primary forest or second-growth forest, depending on the tree height, as inferred by crown size. As each sample had to be assigned to one—and only—one class, interpreters had to make judgment calls when sample units had near 50–50% splits between two classes. An application of the response design is presented in Fig. 3.

3.2.3. Videography interpretation

Five researchers were trained in photointerpretation of this region. Three of the researchers had prior experience working in the Amazon region of Brazil; the other two had extensive experience working in tropical forests in other regions of the world. An effort was made to increase consistency between interpreters. After all interpreters agreed on the criteria for each class based on the simple biophysical descriptions presented in Table 2, they practiced classifying the videography as a group on mosaics not included in the accuracy assessment. After the training period, each interpreter independently analyzed the same samples on all mosaics included in the analysis. Each set of reference data (one per interpreter) was compared to the classified map, as well as to each other. This resulted in 10 pairwise comparisons between interpreters, and five pairwise comparisons between interpreters and the map.

Error matrices were central to all comparisons and used to derive the following descriptive and statistical accuracy measures: overall agreement, user’s accuracy, producer’s accuracy, the kappa coefficient of agreement, and kappa variance (Congalton, 1991; Congalton & Mead, 1983; Hudson & Ramm, 1987). All of the accuracy measures except kappa variance are identical for simple random sampling and cluster sampling. However, the kappa variance formula for cluster sampling must incorporate autocorrelation between samples within the same cluster; thus, kappa variance is expected to be higher for cluster sampling than for simple random sampling (Stehman, 1997b). Kappa and kappa variance were used to test whether error matrices from each interpreter–map comparison were statistically different (Congalton & Mead, 1983; Hudson & Ramm, 1987).

As a final step, the interpreters reassembled as a group and produced the reference data set used for the final accuracy assessment analysis of the classified map, hereafter referred to as the “gold” reference set. Reasons for disagreement between the independent videography interpretations were recorded and analyzed. In cases where the group continued to disagree or remained uncertain, the
zoom videography was accessed to clarify the vegetation structure on the ground.

3.2.4. Evaluation of reference data map disagreement

The gold reference set was compared to the map data by generating an error matrix and associated accuracy measures. The error matrix represents the degree of agreement/disagreement between the highest quality reference data set and the map data; however, the error matrix also incorporates sources of disagreement between the two data sets, which may not reflect map accuracy, namely georegistration errors and change in land cover between collection of the videography and collection of the Landsat imagery. To quantify the degree to which each of these errors affected the accuracy assessment, we visually compared each 1-s mosaic to the classified map overlaid with the coordinates of the mosaic centers and manually adjusted clear errors of georegistration. Where additional context was needed, we observed longer portions of the wide-angle videography. Similarly, we visually inspected areas of potential change (based on reference and map classifications) by comparing such locations to classified maps from the previous year, which had been generated following identical classification procedures (Roberts et al., 2002).

Finally, we assessed the impact of including mixed reference pixels and map edge pixels in the accuracy assessment. Mixed reference pixels were identified by the interpreters as a group and consisted of any sample unit that contained more than one land-cover type based on videography interpretation; samples that fell in transitional zones were not included in this count. Edge pixels were identified as any map pixel corresponding to a sample unit that bordered a map pixel of a different class along one of its cardinal directions. Mixed reference samples, map edge pixels, and change pixels were determined independently from each other, and, in some cases, a sample fell into more than one group. For each category of “corrections” to the reference data, an error matrix and associated accuracy parameters were generated. Once we accounted for disagreements due to geolocation errors, change between dates, mixed reference samples, and edge pixels on the map, we assumed the remaining disagreement between the reference data and the map was due to classification error. We analyzed the remaining error for systematic trends, as well as to identify weaknesses in the current classification scheme.

4. Results and discussion

4.1. Interpreter disagreement

At least one interpreter disagreed with the others on the assignment of class labels for almost 30% of all samples. The range of overall agreement between any two interpreters spanned almost 10% (Table 3), with the highest agreement just under 90%. Because there is no reference standard when comparing two interpreters, agreement between each class was determined by selecting the lower producer’s or user’s accuracy for that class. Agreement varied substantially by class: Average agreement between two interpreters for the second-growth class was less than 50%, while average agreement for the primary forest class was 92%, and for pasture was 81%.

Upon group review, many sources of interpreter disagreement could clearly be traced to human error. In some cases, an interpreter misinterpreted the printout image because the quality of the printout had been compromised.
in some way, such as differences between the color printouts and the true color of the image, blurring due to badly warped mosaics, or shadows due to cloud cover. Another source of human error was recording mistakes, including recording the wrong class label code, reversing the order of the samples within a cluster, or misorienting the overlay on the videography printout. However, many disagreements were “unavoidable” in the sense that they resulted from differences of opinion among interpreters. These differences of opinion can be subdivided into two categories: disagreements about land-cover types and disagreements about land-cover percentages.

Despite explicit criteria for the identification of land-cover type, interpreters did not always label the same sample as the same land-cover class. The real world presents ambiguous and intermediate cases, and when the land-cover classes being identified are continuous (e.g., pasture, second-growth forest, and primary forest), visually drawing a precise line between classes can be difficult, even given specific criteria. Over 50% of interpreter disagreement was between pasture and second-growth classes, and almost 30% of interpreter disagreement was between second-growth and primary forest classes. Quite often, these disagreements would occur when sample boxes fell on edges between two classes or along transition zones. Videography samples of clearly labeled and ambiguous land cover are presented in Fig. 4.

Even if interpreters agreed on the land-cover classes found in a sample unit, the assignment of percentages was a somewhat subjective decision. Almost 50% of the total disagreement between interpreters occurred when there was mixed land cover in a sample unit, and over 70% of those samples identified by at least one interpreter as having more than one land-cover type resulted in interpreter disagreement. This was particularly an issue when the sample unit was nearly evenly divided between two land-cover classes, or contained more than two land-cover classes. In these situations, small differences in the interpretation of percent cover could result in differences in the majority land-cover class, and the class labels assigned to the sample unit would differ.

Despite the wide range of disagreements between interpreters, the range of overall percent accuracy for each interpreter compared to the map is relatively small (Table 3). The difference between the overall accuracy for each interpreter was statistically tested using kappa and kappa variance and, in all cases, pairwise differences were not significant ($p < 0.05$), implying that using the reference data of any individual interpreter would produce accuracy parameters that were equally valid. This result supports

Table 3

Summary of interpreter agreement (total agreement and agreement by class)

<table>
<thead>
<tr>
<th>N=790 samples</th>
<th>Min</th>
<th>Max</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpreter vs. interpreter (%)</td>
<td>81.4</td>
<td>89.6</td>
<td>86.0</td>
</tr>
<tr>
<td>Second-growth forest (%)</td>
<td>32.0</td>
<td>69.7</td>
<td>48.8</td>
</tr>
<tr>
<td>Pasture (%)</td>
<td>72.4</td>
<td>88.0</td>
<td>80.6</td>
</tr>
<tr>
<td>Primary forest (%)</td>
<td>86.4</td>
<td>95.5</td>
<td>92.1</td>
</tr>
<tr>
<td>Interpreter vs. map (%)</td>
<td>71.3</td>
<td>74.6</td>
<td>72.4</td>
</tr>
<tr>
<td>Interpreter vs. map (k)</td>
<td>0.551</td>
<td>0.574</td>
<td>0.549</td>
</tr>
</tbody>
</table>

Minimum, maximum, and average agreements for pairwise comparisons are reported.

Fig. 4. Examples of clear and ambiguous land-cover classes from aerial videography mosaics. On the mosaic at left, land cover can be clearly assigned to classes: A = primary forest; B = second-growth forest; C = perennial crops (i.e., second-growth forest); D = pasture. On mosaic at right, land-cover classes are not so clearly distinguished: X = second-growth forest; Y = ambiguous class (i.e., transitional zone between pasture and second-growth forest).
the assertion that there were no systematic biases between interpreters, and that, most likely, disagreements were related to the difficulty of evaluating and labeling samples, not to fundamental differences in implementation of the evaluation and labeling protocols. However, the disagreement between interpreters has significant implications for the assessment of map accuracy. In particular, the class of greatest interest, second-growth forest, had less than 50% average agreement between all interpreters. As confidence in the reference data set for that class remains quite low, we can have only limited confidence in the map accuracy measures reported for that class. Even after group reevaluation of the reference data set to create the gold standard reference, disagreement on class assignments remained, particularly for second-growth forest.

4.2. Reference sample accuracy

Comparing the gold reference set with the map (version 1) produced higher overall percent accuracy than any reference data set generated by an individual interpreter. In addition, the user’s and producer’s accuracies were as high or higher than any individual reference set for all classes. Yet, the overall percent accuracy remained relatively low at 75.4%, and the accuracy of the second-growth class remained less than 30% for both user’s and producer’s accuracies. The resulting error matrix is reported in Table 4, and evaluation of the types of confusion recorded indicated a source of disagreement other than misclassification. For version 1, the reference samples and map data were compared with no corrections. For version 2, the reference data set was geocorrected relative to the classified map. For each subsequent version, an additional “correction” was applied to the reference data set, as summarized in Table 5.

Class labels are as follows: Pfor = primary forest; Past = pasture; Sfor = second-growth forest; Watr = water; Urbn = urban/construction/bare soil.
reported in these three cases was hypothesized to be due to geolocation errors between the reference data and the map.

The next version of the accuracy assessment involved the geocorrection of the reference data relative to the map (version 2) by manually adjusting all clear georegistration errors between the reference data and the map. The result was a substantial increase in overall percent accuracy, to 83.2%, as well as a notable increase in user’s and producer’s accuracies for all classes (Table 4). In addition, almost no confusion between the three pairs of spectrally distinct classes mentioned above was recorded, and the results of version 3 (below) indicated that the remaining confusion between second growth and the urban/soil class was due to change between the two dates. Of the original total disagreement between the gold reference set and the map, 32% could be attributed to geolocation error, and the total number of disagreements between the map and reference data decreased from 195 to 132. Geolocation error between the map product and reference data had such a large impact on the total error because of the high degree of heterogeneity and fragmentation in portions of the landscape represented in the map. Especially in regions impacted by human activity, no single class dominates, and in these areas, the chances of a reference sample landing on a boundary between classes are relatively high. As a result, a slight shift in geolocation relative to the map may result in quite different map classes.

All subsequent versions of the accuracy assessment applied “corrections” to the geocorrected reference samples. Version 3 of the accuracy assessment involved removing all pixels that changed land-cover class between the date of videography acquisition and the date of image acquisition. The 19 pixels removed from the sample by this criterion represented 2.4% of the total reference samples, but accounted for 14% of the error remaining after geocorrection, implying that change pixels are a potentially important source of error in a dynamically changing landscape. Although the removal of change pixels resulted in only a slight increase in overall percent accuracy, to 85.3%, user’s and producer’s accuracies increased for most classes (Table 4).

After geocorrection, 24% of the remaining disagreements between the gold reference set and the map corresponded to reference samples with mixed land cover, and 47% corresponded to edge pixels on the classified map. We assumed that edge pixels on the map have a high probability of either being mixed pixels located on boundaries or being located in a transitional zone between classes. The error associated with mixed sample pixels and map edge pixels is potentially more an artifact of partitioning continuous land-cover types into discrete classes than a result of “misclassification” per se. Confidently assigning the source of such error as misclassification of the map or as misinterpretation of the reference data may not be possible.

Next, we sequentially excluded these categories of problematic samples from the reference data set to assess the impact of each on the accuracy assessment of the map. Version 4 removed reference samples with mixed land cover from the reference data set (i.e., samples with more than one land-cover class on the videography). Version 5 removed reference samples that corresponded to edge pixels on the map (i.e., pixels on the border between two classes on the map). Version 6 excluded both mixed reference samples and edge pixels on the map. Version 7 excluded all three categories of problematic samples: mixed samples, edge map pixels, and pixels that had changed between dates. Error matrices for all versions are presented in Table 4, and a summary of the “corrections” applied to the reference data and the resulting overall agreements is presented in Table 5. Geocorrection and removing change pixels led to a substantial increase in overall percent accuracy (from 75% to 85%), as well as notable increases in the producer’s and user’s accuracies for all classes (Table 4). Removing mixed reference samples and map edge pixels from the accuracy assessment analysis resulted in a similar jump of overall percent accuracy (from 85% to 93%). However, this increase in percent accuracy leads to both practical problems and theoretical shortcomings. Excluding edge pixels and mixed reference samples significantly reduces the number of samples in several classes, and eliminates all samples from the urban/soil class. A significant portion of second-growth samples is also eliminated, resulting in a decrease in user’s and producer’s accuracies for that class.

The theoretical problem presented by excluding edge and mixed pixels from analysis is related to the fact that the landscape we have mapped is quite heterogeneous in areas dominated by human activity. Such areas account for three of the five classes included in the accuracy assessment, and we assume that a large portion of pixels in such areas will be mixed pixels located on class boundaries or in transitional zones. Smith et al. (2002) have noted that as landscape heterogeneity (i.e., the number of classes within a defined area) increases, thematic map accuracy decreases;

```
<table>
<thead>
<tr>
<th>Version</th>
<th>Corrections to reference data set</th>
<th>Number of samples</th>
<th>% Overall agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>790</td>
<td>75.4</td>
</tr>
<tr>
<td>2</td>
<td>Geocorrection</td>
<td>790</td>
<td>83.2</td>
</tr>
<tr>
<td>3</td>
<td>Geocorrection; remove change pixels</td>
<td>771</td>
<td>85.3</td>
</tr>
<tr>
<td>4</td>
<td>Geocorrection; remove mixed reference samples</td>
<td>684</td>
<td>85.4</td>
</tr>
<tr>
<td>5</td>
<td>Geocorrection; remove map edge pixels</td>
<td>605</td>
<td>88.1</td>
</tr>
<tr>
<td>6</td>
<td>Geocorrection; remove mixed reference and map edge pixels</td>
<td>532</td>
<td>91.0</td>
</tr>
<tr>
<td>7</td>
<td>Geocorrection; remove mixed, edge, and change pixels</td>
<td>523</td>
<td>92.5</td>
</tr>
</tbody>
</table>
```
Similarly, as average patch size (i.e., the number of contiguous pixels belonging to the same class) decreases, accuracy also decreases. Although we have not directly measured landscape heterogeneity or fragmentation, it is clear that there is a negative relationship between these variables and map accuracy. However, any fair representation of map accuracy must include all pixels in the sample population for accuracy assessment, and failure to do so will result in accuracy measures that can only be applied to larger regions of homogeneous land cover within the scene (Foody, 2002; Stehman & Czaplewski, 1998). We therefore purport that version 3 of our accuracy assessment, which includes geocorrection of the two data sets and removal of pixels that have changed between the two collection dates, is the most representative estimate of map accuracy.

Error matrices for each version of the accuracy assessment are presented in Table 4 to highlight the importance of reporting pixel counts rather than a normalized matrix (Foody, 2002; Stehman, 1997a). Pixels counts can provide the map user with additional information about the degree of confidence and robustness of accuracy measures by class—information that is not sufficiently captured in percentages. Such information allows the map user to evaluate the accuracy of the map product with a specific application in mind (Stehman, 1997a). In particular, the map user would be aware of classes that are underrepresented in the sampling scheme and, in turn, which accuracy measures may be less certain. In this example, the water and urban/soil classes (and in version 7, second-growth forest) are underrepresented, and their accuracy cannot be stated with the same degree of confidence as that of other classes. In addition, including pixel counts can make it easier to identify nonsensical errors that may reflect the quality of the reference data, rather than misclassification error of the map.

Investigating the sources of error in our most representative assessment of accuracy (version 3) can inform further refinement of the classification process, as the majority of classification errors do not appear random. Approximately 95% of the total error involves disagreement between second-growth forest and other classes; 48% of the total error is disagreement between primary forest and second-growth forest, and 47% is disagreement between second-growth forest and pasture (Table 6). The former represents a systematic error; sunlit slopes of primary forest were consistently classified as second-growth forest. The brightness of the vegetation due to illumination effects causes those pixels to have spectral properties similar to second growth (Roberts et al., 2002; also note this error). Such an error could be easily corrected with a digital elevation model (DEM) of sufficient spatial resolution. We are currently in the process of correcting the error using recently released Shuttle Radar Topography Mission (SRTM) data (Rabus et al., 2003).

The disagreement between pasture and second growth is not so straightforward and could have several explanations. First, the classifier was designed based on spectral properties of known land-cover patches, not on the physical structural criteria presented in Table 2. It is possible that the classifier is consistent throughout the scene, but responds to different criteria than those used by the videography interpreters. A second possibility is that the reference data are consistently wrong (i.e., that it was not possible to visually distinguish between degraded pasture and young second growth on the videography based on the arbitrary structural division between the two classes formulated in the response design). A third possibility is that geolocation remains a major issue. The geospatial accuracy of the Landsat TM scenes was untested and the videography was roughly accurate to 5–10 m in the center pixel of our sampling clusters. The spatial mismatch between these data sources translates into classification error, particularly in transition zones, because class assignment (for the videography interpretation and/or for the image classification) is heavily dependent on the percent cover within a given sample unit. A final possibility is that, in some cases, the two classes are spectrally indistinguishable, an artifact of using arbitrary boundaries to partition continuous land cover (pasture to second growth). In any case, without extensive collection of precisely defined training sites to refine the rules of the decision tree classifier, the confusion between pasture and second growth seems to mark the limits of our classification scheme.

5. Conclusion

Throughout this project, we have built a case that it is essential to explicitly define thematic map classes in terms of biophysical parameters, both to promote consistency within a single reference data set and to provide a basis for comparing classification techniques or maps from different regions. However, explicit definitions of thematic classes are necessary, but not sufficient, criteria to insure objective interpretation of land-cover types. Labels of land-cover types along a continuum are more subjective and variable than commonly assumed, especially for transitional classes. In the case presented, five independent interpreters agreed less than 50% of the time in assigning second-growth
forest labels to reference samples. Disagreement of this magnitude has serious implications for the scientific application of a thematic map that includes such a transitional class. In the case of the Amazon Basin, maps of second-growth vegetation are important for assessing the contribution of regrowth to the regional carbon budget (Fearnside, 2000), but the apparent subjectivity in labeling reference data as second-growth forest lowers confidence in the overall estimate of carbon flux. Additionally, disagreement between interpreters for classes along a landscape gradient suggests the importance of employing multiple interpreters to produce the reference data used for accuracy assessment.

We have demonstrated that reference data produced by a group of interpreters boost reference accuracy over a data set produced by a single interpreter.

Our analysis demonstrates that validation data sets that include only nonmixed, nonedge samples are likely to result in overly optimistic accuracy estimates that are not representative of the map as a whole. Although we did not directly quantify landscape heterogeneity or fragmentation, it is clear that accuracy decreases with increasing heterogeneity and/or with increasing fragmentation, following the conclusions of Smith et al. (2002). Extensive portions of the thematic map in our case study include a heterogeneous and fragmented landscape, and therefore the exclusion of such pixels from the accuracy assessment analysis cannot be justified. On the other hand, error that results from including mixed reference samples and map edge pixels cannot easily be assigned to either incorrect interpretation of reference samples or incorrect classification of image data, and such error may well be an intrinsic problem of dividing a continuous landscape into discrete classes. How to effectively account for such pixels in accuracy assessment is an important direction of future research (Foody, 2002).

Finally, the analysis of accuracy assessment in this case study demonstrates the importance of providing accuracy statistics for any thematic map product. Rigorous accuracy assessment allows the map producer to identify systematic errors in the classification scheme and to refine class definitions, and thus the accuracy assessment process can serve as an important learning tool to iteratively identify the most important sources of error in the image processing chain. However, as both the reference data and the map can have errors, care should be taken to shift the two data sources to the same spatial and/or temporal frame, so that the accuracy data reported can capture map classification error to the maximum degree possible. We have also illustrated that it is equally important to provide an explanation of how accuracy assessment was conducted, including the details of the evaluation and labeling protocols, so that a potential map user can interpret results, weigh the relative importance of errors, and assess the appropriateness of the thematic map for a particular application. Simply presenting percentages, or even an entire error matrix, is not sufficient for a thorough evaluation.

Acknowledgements

This research was funded primarily by NASA grant NCCS-282 as part of LBA-Ecology, and support was also provided by a NASA Earth System Science Graduate Student Fellowship. Digital videography was acquired as part of LBA-Ecology investigation LC-07. The Landsat TM images used were acquired from the Tropical Rain Forest Information Center (TRFIC). Digital PRODES used as a base map was supplied by Brazil’s Instituto Nacional de Pesquisas Espaciais (INPE).

References

