Acknowledgments:

Landform and surficial geologic map of the Sedgwick Natural Reserve (south of
AVAILABLE FROM THE FIRST AUTHOR OR FROM THE MAP AND IMAGERY LIBRARY OF THE UNIVERSITY OF CALIFORNIA, SANTA BARBARA.

Department of Geological Sciences, The University of California, Santa Barbara.

Antonio F. García* and Oliver A. Chadwick**

Dibblee, T. W. Jr., 1993. Geologic map of the Los Olivos quadrangle, Santa Barbara County, California: Dibblee Geological Foundation,

- Inferred contact

LEGEND

- Quaternary landslide. Includes the following: shallow-soil-slide scars and deposits; earthflow scars, and locally forms prominent outcrops. Otherwise is "...friable, massive to vaguely bedded, locally fossiliferous, tan or grayish sandstone" (Dibblee, 1993).
- Tertiary Careaga sand. Shallow marine clastic sedimentary deposits (Dibblee, 1993). Locally moderately indurated and white, well bedded, matrix supported. QTp is distinguished from Qt3 along the Figueroa Creek channel by its greater degree of induration and its relatively high content is typically much greater for Qp surfaces than for Qc surfaces.

As observed along the Figueroa Creek reach where Qp is best exposed, it is soil development in Qp deposits is relatively weak, and Qp is typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The height of the Qt3s tread above the Figueroa Creek channel is typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The bases of Qt3 terraces are typically 1 - 2 m thick and overlies a smooth strath terrace. The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth,

- The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth,

- Quaternary terrace (Qa) formed in landslide or debris flow deposits. Qt3 deposits are typically massive, poorly sorted clast supported gravel, stratified sand, and massive, bioturbated silt and clay. They also include massive, and point bars. The deposits are typically composed of interlayered and interfingered, stratified and imbricated,

- Terraces, longitudinal bars, and point bars that are adjacent to active stream channels and that are inset into all other types of Qt3 terraces. These terraces are commonly physically continuous with gravel bars, and in

- Active alluvial channels. Includes valley bottoms that have channels that are as small as 10 cm deep

- Active channel alluvium is dominantly Franciscan-Formation-clast gravel,

- A back-fill deposit originating from Figueroa Creek and its tributaries. It is topographically higher than

- Earthflow and debris-flow deposits composed of Franciscan Formation rock, and headwall scarps formed in

Areas mapped as Qt3 locally includes Qt3a terraces (see Qt3a description below.) The bases of Qt3 terraces are to one meter. All Qt3-type deposits are commonly capped by sandy silt beds that are tens of centimeters thick.

Formation and Monterey Shale (sourced from QTp) rocks. The thickness of the beds is typically a few tens of cm

clast supported gravel, stratified sand, and massive, bioturbated silt and clay. They also include massive,

- External deposits derived from marine sediments. Includes channel fills, point bars, and beds that are more than 1 m above channel level. They typically consist of very poorly sorted massive, bioturbated silt and clay. These deposits are often found in channels where Terraces, longitudinal bars, and point bars. The deposits are typically composed of interlayered and interfingered, stratified and imbricated,

- Point bar deposits (Qat). Includes deposits that are less than 1 m wide. Active channel alluvium is dominantly Franciscan-Formation-clast gravel,

- Quaternary terrace deposits (Qt3f). Includes deposits that are more than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Unconformity; it is a strath terrace. The bases of Qt3s terraces are commonly exposed along the Figueroa Creek channel, and they

- Qls deposits overlie Qc, Qf, Qt3, Qbf, and typically partially

- Formation and Monterey Shale (sourced from QTp) rocks. The thickness of the beds is typically a few tens of cm

- Strath terrace deposits (Qt3). Includes beds that are less than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Point bar deposits (Qat) are typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The height of the Qt3s tread above the Figueroa Creek channel is typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth

- The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth,

- Quaternary terrace deposits (Qt3f). Includes deposits that are more than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Unconformity; it is a strath terrace. The bases of Qt3s terraces are commonly exposed along the Figueroa Creek channel, and they

- Qls deposits overlie Qc, Qf, Qt3, Qbf, and typically partially

- Formation and Monterey Shale (sourced from QTp) rocks. The thickness of the beds is typically a few tens of cm

- Strath terrace deposits (Qt3). Includes beds that are less than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Point bar deposits (Qat) are typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The height of the Qt3s tread above the Figueroa Creek channel is typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth

- The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth,

- Quaternary terrace deposits (Qt3f). Includes deposits that are more than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Unconformity; it is a strath terrace. The bases of Qt3s terraces are commonly exposed along the Figueroa Creek channel, and they

- Qls deposits overlie Qc, Qf, Qt3, Qbf, and typically partially

- Formation and Monterey Shale (sourced from QTp) rocks. The thickness of the beds is typically a few tens of cm

- Strath terrace deposits (Qt3). Includes beds that are less than 1 m wide. They are typically composed of massive, bioturbated silt and clay. These deposits are often found in channels where

- Point bar deposits (Qat) are typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The height of the Qt3s tread above the Figueroa Creek channel is typically 0.75 - 2.0 m, and as much as 3.0 m above the channel. The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth

- The Qt3s tread is physically continuous with the Qt3f tread, but Qt3s is typically 1 - 2 m thick and it overlies a smooth,