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Lattice Tuning1 

 

A method of spatial interpolation from an arbitrary arrangement of numerical observations is 

derived, with examples shown as contour maps. The fit to the original data and the smoothness 

of the resulting lattice values are optimized simultaneously by an iterative numerical technique. 

The algorithm does not require specification of distance dependent influence functions. 

 

 

Given a scatter of numerical values at irregularly arranged locations on a plane (Xk, Yk, Zk, 

k=1,…,n), it is common practice to interpolate to values at a regular lattice. These lattice 

estimates are then used in subsequent processing to, for example, draw contour maps. There are 

many ways of performing the interpolation to the lattice points {6, 11, 18, 19, 22, 28, 31]. In 

many of these methods a form of inverse distance weighting is used to assign estimated values 

to the mesh intersections from the nearby observational data points. Alternate definitions of 

nearby, and variations in the weighting functions, result in different estimates at the lattice 

points. One method of comparing these alternate algorithms is to interpolate back to the original 

observations by using the estimated lattice point values. In general some discrepancy is found if 

one performs this reinterpolation. A natural measure by which to compare alternate 

interpolations is then by the use of the root-mean-squared error of such a backward 

interpolation. But it is fairly obvious that this method can also be used to improve the estimates 

at the lattice points, i.e., to minimize the discrepancy of the reverse interpolation. If the back-

estimate is too low (high), for example, it is only necessary to raise (lower) the values at the 

controlling lattice points. I refer to this as a tuning of the lattice. The method is iterative and 

works by adding adjustments to lattice points that surround the observations. The method can 

also be used to do the complete interpolation by assigning arbitrary initial estimates to the lattice 

and by then systematically improving these estimates. As an interpolation method per se, the 

tuning has the additional advantage that one does not have to perform the expensive inter-point 

distance computation that is required for many of the weighted-neighbor interpolation methods. 



One, instead, sorts the observations into the cells of the lattice, an n ln process. 

 

NOTATION AND AN EXAMPLE 

 

It is simplest to begin by assuming that the lattice geometry has already been established and 

cannot be changed, and that linear interpolation is used within the lattice. Denote the four 

vertices of the lattice by the subscripts (0,0), (0,1), (1,0), (1, 1), and define a right-handed 

system of Cartesian coordinates for the location of the observations. The lattice cell is assumed 

to be rectangular and an observation with value Z is positioned at the location x, y within this 

cell. The interpolated value, denoted by Z*, is obtained by estimation from the four corners of 

the lattice. The bilinear interpolation equation is 

where Wpq = P(x) Q(y), with 
 

 

and Zpq is the value at the (p, q) lattice point. The lower left corner of the lattice cell has 

coordinates xo, yo. The cell is ∆x by ∆y in size; ∆x = x1 - x0, ∆Y = yi - yo. This notation may 

seem excessive for the simple bilinear weighting required for interpolation within a square, but 

it has later advantages, and it generalizes in a simple manner to higher dimensions. 

As a numerical example, suppose that the values at the four lattice points are as follows: 

Zoo=12, Z01=10, Z10=15, Z11=20, 

 



and that xo = 1, yo =1, ∆x = 4, ∆y = 4, and that there is an observation Z = 15.0 at the location x 

= 3, y = 2. Then one finds that Z* = 13.875 and the discrepancy is 15.0 - 13.875 = 1.125. This 

difference can be eliminated by changing the values at the four corners, in this case pulling them 

up, since the estimate is too low. To obtain an exact fit it is necessary to change each corner 

value by the amount δpq to satisfy 

 

The simplest solution is to take δpq ≡ ∆, an equal increment for all four corners. The new 

estimate would then in fact yield the required value. But this is not entirely satisfactory. One 

would expect that lattice points close to the observation should receive a greater correction than 

distant ones. Also, if there is more than one observation in a cell, and one were overestimated, 

the other underestimated, a simultaneous adjustment could never be effected. The increment to 

the corners should take into account the position of the observation within the cell. The corner-

point values will, of course, also be affected by observations in adjacent rectangles. 

The one constraint that must be satisfied is 

 

but there are four unknowns. Aside from an intuition that the corrections should be similar to 

the weights, the appropriate choices for δpq are not obvious, and there are, in fact, several 

possibilities. If one assumes that the initial lattice values are reasonable, then one might wish to 

modify these values by as little as possible. Thus, writing the foregoing equation in vector 

notation as 

 



 

and the least-squares solution is then obtained using the pseudo-inverse [20, p. 39) as 

 

where k is the product ∆x∆y. Using the previous example, new values for the lattice points are 

obtained: 

Zoo = 13.35, Z10  = 16.35, Z01 = 10.45, Z11 = 20.45, 

and the linear interpolation within the lattice now gives Z* = Z = 15, as desired. 

 

SMOOTH INTERPOLATION 

 

The foregoing solution is very dependent on a satisfactory set of initial estimates, and the 

adjustments are chosen so as to avoid radical departures from these estimates. But this does not 

offer any suggestions for interpolation ab initio. The initial assignment might consist of zeros, 

of the mean value of the scalar, of the value at the nearest observation, of a trend surface fit, of a 

weighted moving average, or of a covariance or varigram estimate, etc. Some of these initial 

estimates for the lattice values are clearly better than others. Thus, the requirement that the 

adjustment is to yield values that are near to the previous values can hardly be defended. 

Instead of placing such heavy reliance on these initial estimates, let it be required that the 

interpolation result in values at lattice points that match the observations, but that are also 

“smooth.” This has particular merit if one later wishes to use derivatives of the lattice estimates. 

A completely smooth surface would be obtained if the value at each lattice point were equal to 

the average of the values from the neighboring lattice points. The adjustments can be chosen to 

minimize the departure from this target value. It is arguable that some other side condition 

might be better, for example matching some covariance or varigram structure, but this 

possibility is not explored here; for developments along these lines see [7, 13, 17,23,24]. The 

smooth interpolation proceeds by making estimates at each lattice point, computed as a 



weighted average of the values at the neighboring lattice points, and the least-squares 

adjustment is then applied using these estimates as the target. This, incidentally, also 

demonstrates that smoothing adjustments can take place even when there are no discrepancies 

between values at the observational locations and their interpolations from the lattice. Each 

application of the least-squares adjustment changes all of the lattice values surrounding an 

observation, and new averages can now be computed for the neighbors. The entire operation is 

then repeated in an iterative fashion. The direct averaging of neighboring lattice values can be 

shown to be the equivalent of a finite representation using Laplace’s equation. Averaging of the 

derivatives approximated on the lattice yields even smoother transitions and leads to a 

representation using the biharmonic equation [15]. Further justification for the use of the 

biharmonic equation is given in [3]. Iterative solutions of both the Laplace equation and the 

biharmonic equation are known to be uniquely convergent when the boundary conditions are 

specified [5, vol. 2, chap. 4]. 

The discussion has thus far focused on a single lattice cell. But a lattice point, unless it is at 

the edge of the region, will be associated with four cells, each of which may demand a change 

in the value at that lattice point. Changing the value of one corner of a cell will also propagate 

effects to the other corners of that cell. These consequences are covered by using an iterative 

procedure. That is, small changes are made to lattice points on one computer pass through the 

entire array. These estimates are then improved on subsequent passes. The neighbor-averaging 

and least-squares tuning process is a stable and converging one that improves the estimates and 

the smoothness on every pass. Convergence can, in fact, be hastened by taking overlapping 

neighborhoods in setting the desired lattice target values. 

Some lattice points will be associated with mesh cells that do not contain any observations. 

Estimates can be made at these locations, since the connectivity of all of the lattice points to 

each other is known. It is this lack of knowledge of adjacencies that makes interpolation from 

randomly scattered observations difficult. Lattice points that are not affected by the tuning are 

relaxed with the tuned values as constraints. The process may most easily be visualized as 

follows. After an initial assignment has been made for each mesh point, replace this number by 

the value that it would receive by interpolation from its immediate neighbors. Do this in some 



regular sequence so that, after an interpolation is made at one point, this interpolated value is 

used in the interpolation of the value at the neighboring point. In this manner every point affects 

its neighbors and is affected by them. This bootstrap operation pulls along all of the values to 

which it is applied. After passing over the array in this manner several times a stable situation 

will have been reached in which the interpolated value at a point is sensibly the same as the 

value obtained on the previous pass. Neighboring points will then have values that are similar, 

and it is time to stop. The actual observations in this process are fixed points that affect their 

neighbors, but that are not affected by them. Fortunately the initial guess is not critical; the 

target function is. Either linear or curvilinear interpolation can be used to tune the lattice, but 

any method of interpolation must be recognized as a hypothesis about nature, which may or 

may not be true. The present implementation uses linear interpolation. 

The method described requires that an estimate be made at each lattice point by averaging 

from the neighboring lattice points. Edge points have only a restricted number of lattice 

neighbors and a different strategy must be adopted in their vicinity. In fact, the smoothness 

criterion chosen yields a finite difference approximation to either Laplace’s equation or the 

biharmonic equation where the observations play the role of “sources.” These two equations are 

known in the technical literature as elliptical partial differential equations, and the iterative 

procedure reported here coincides with methods for solving such equations; see [2, 9, 15, 32]. 

These works also treat the boundary problem in extensio. Briefly, one must use some a priori 

method of either assigning a value to lattice points along the edge of the domain, or one must 

assign a value to the normal derivative at these edges. I have used the latter procedure by fitting 

a least-squares plane to the entire set of data, and then setting the derivative at the edges of the 

domain equal to the slopes of this plane. The other obvious alternative is to use an inverse 

distance estimate involving points near the edge. This is the strategy derived by Brigg [3] and 

programmed by Swain [30] using equations very similar to those used here. A theoretically 

elegant, but computationally tedious, method of assigning values along the edges is described in 

[14, pp. 163-64]. 

The foregoing steps can all be extended to three-dimensional interpolation, to the 

interpolation of vector or tensor field components, to observations on a sphere, or to alternate 



lattice geometries. Occasionally, for example, a triangular lattice, rather than a rectangular one, 

is used. In this case the optimal criterion would seem to be to choose the adjustments at the 

three vertices so that the normal to the surface patch is, as nearly as possible, parallel to a 

weighted linear combination of the surface normals of the three neighboring triangular facets, 

while retaining the objective that reinterpolation within each triangle yields the observed value. 

The triangular lattice is not to be confused with a triangulation in which observations are 

located at the vertices of the triangles, as for example in [1, 10]. 

 

THE LATTICE SIZE 

 

A disadvantage of the proposed method for interpolation is that it is necessary to choose a 

lattice size. The literature reviewed is embarrassingly quiescent on this point. But the sampling 

theorem [26] suggests that the spacing must be smaller than one-half the size of the smallest 

feature to be detected. An estimate of this smallest feature is obtainable by considering the 

highest degree of trigonometric polynomial that could be calibrated from the data. This degree 

cannot exceed n, the number of observations. In k dimensions the effective number of 

observations is the kth root of n. Thus an upper bound on the size of the lattice interval should 

be the kth root of the volume of space occupied by each observation. This corresponds to the 

resolution of the data. In two dimensions it becomes ∆y = ∆x ≤ (area/n)½, which has units of 

length per effective observation. The values used in the examples to be shown conform to this. 

The number of lattice points is then also approximately equal to the number of actual 

observations. It is not efficient to stray too far from this value, but the spatial arrangement of 

the observations may exhibit clustering so that the exact limit is too lax. A lattice spacing that is 

two-thirds of the foregoing limit has been found effective when the observations lie within a 

square region.  

In the current computer implementation of tuning, a perfect fit to the data cannot be obtained 

when there are several observations inside of one mesh cell. As the mesh becomes smaller these 

discrepancies of course disappear, but the computational cost increases. It is always possible to 

fit the data to an orthogonal, irregularly spaced n by n mesh with observations at n nodes, 



leaving n2 - n nodes to be assigned by relaxation. A working computer program demonstrates 

this to be very effective, but it is practical only for small n, small being defined by the size of 

one’s computer. A description of this alternate method is being prepared for publication. 

 

Examples 

 

My experimentation has included variation in the initial estimates, changes in the boundary 

conditions and in the target function, and in application to a variety of actual data, usually of 

small size - less than 500 observations. In one experiment the initial values at lattice points 

consisted of (1) the mean of all observations, (2) random numbers, (3) marginal sums, or (4) 

values assigned by a conventional inverse distance weighting. The four configurations were 

virtually identical after only a few iterations in spite of these disparate initial estimates. A more 

realistic practical evaluation is provided by the 100-observation example discussed in [4] and in 

[21] where the data are given. Twenty iterations of the algorithm on an 11 by 11 lattice yielded 

the map shown in Figure 1. In this instance, reinterpolation from the lattice to the original 

observations can be interpreted as a model that accounts for 95 percent of the original variance. 

A slight improvement is obtained using the biharmonic equation as the target. I also present an 

example using data listed by Akima [1]. The contour map (Fig. 2) is drawn using linear 

interpolation within the 143 (= 11 x 13) point lattice tuned from the fifty original observations. 

The mean of the row and column marginals were used as the initial estimates and twenty 

iterations were performed with the biharmonic as the target. The model accounts for 

approximately 99.9 percent of the variance. This small lattice could be expanded to a larger 

lattice by splining for cosmetic effects, which of course has nothing to do with the tuning 

process. But the tuning can also be considered an implicit form of splining directly from 

irregularly arranged observations; the present work may thus be compared with [8, 16, 20]. A 

final map shows a result using a smaller grid interval. Here the lattice is 39 by 49 and only one 

mesh point is directly influenced by more than one observation. In other words no cell contains 

more than one observation and 97 percent contain no observations. Most of the computational 

effort in this excessively fine grid is devoted to the filling of vacancies between the 



observations. The resulting contours are quite smooth, and all of the variance (to two decimal 

points) is explained by the values assigned to the mesh; the fit to the data is essentially perfect. 
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