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Abstract:
Empirical measurements of spatial separations before and after transportation innovations can be
considered to be changes in geometry and, as such, evaluated using Gauss's first fundamental form.
These numerical quantities should be of practical benefit in evaluating transportation systems. Graphical
examples using empirical road distances are given.

It is often asserted that the world is "shrinking." Clearly the overall effect of changes in
transportation technology has been to reduce separations, measured in units of time or effort, and is thus a
shrinking. But these effects are very unevenly distributed. A non-uniform shrinking inevitably modifies
the geometrical relations within our environment, sometimes drastically so, and this has substantial
impacts on geographical interactions. It is the purpose of a current research effort to study these
environmental modifications and their impacts. This report is a synopsis of a portion of this research.
Additional material can be found on my web site (http://www.geog.ucsb.edu/~tobler).

Changed spatial relations can be interpreted as a change of geometry. In the present context this
statement is taken literally and transportation is studied as it might be done by a differential geometer.
From this point of view, a transportation system is a "mapping" which converts one geometry into
another. More specifically, we can trace the consequences of a transportation induced transformation on
geometrical entities such as distances, areas, and angles. There are, of course, also topological
changes of equal, or greater, import; in this case the mappings are no longer one-to-one and
continuous. These cases are excluded in the present discussion.

As is well known, Gauss showed, in circa 1827, that the fundamental metric of a
surface can be written as dS2 = gαβduαdvβ, where I have used Einstein's summation
convention to simplify the notation. After a transformation this metric tensor takes the
same form, but with altered coefficients (the g's, which depend on the partial derivatives of
the transformation), and the change in the coefficients allows us to describe the
modification of the geometry rather completely. One author (O'Neill, 1966) refers to the
gαβcoefficient matrix as the shape operator. An illuminating discussion is also available in
Misner, et al, 1973, pp 305-309.

There are some rather obvious points of contact between classical differential
geometry, and classical transportation geography. One of these is the identity between the
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geographical minimum time paths introduced by Francis Galton in the 1880's and their
orthogonal trajectories (as used on isochronic maps), and the polar geodesic coordinates of
Gauss (for which the first fundamental form is particularly simple). Apparently no one has
exploited this identity in a systematic manner. There is also an observable similarity
between the problems of finding a geodesic over a surface of variable curvature and the
minimal path algorithm through a network (Nicholson, 1966; Schilling, 1928). But one
approach is infinitesimal, the other finite. Some practical advantages might be obtained by
exploiting this theoretical similarity.

In the context of transportation, our approach must be based on observation and
measurement and not, as seems to be the usual case in mathematics, on assumed simple
surfaces and transformations given by a priori equations. Thus we need an empirical
differential geometry. The main difficulty lies in extrapolating the finite measurements,
obtained at irregularly arranged positions on the earth, to form (or at least to make a
reasonable approximation to) a differentiable continuum. For this purpose a non-parametric
interpolation algorithm designed for the production of smooth (of class C2) contour maps,
devised by myself, is used. This procedure resembles two dimensional least squares
splining. Finite difference equations are then be used to calculate the distortion tensor. The
details of this interpolation procedure have been published (Tobler, 1994) and need not be
repeated.

The techniques described here are explored using real transportation data,
assembled over the last two decades by myself from published sources and covering
several continents. The data are, for example, road kilometers versus spherical distances,
or travel times by air, rail, and ship, or comparable travel costs, taken from official guides
and travel brochures. In addition, travel times measured by students in cars along street
segments are available. The purpose is to have data to enable studies to be made at varying
levels of spatial resolution. Not all of these examples are discussed in the present report;
only one is illustrated.

The techniques should be of value in practical problems of facility location, in
environmental impact studies, and in yielding substantive knowledge of the role of
transportation in society. More specific objectives of the research are to attempt to calculate
the curvature of the geometry induced by transportation systems in a large region. I also
wish to be able to compute isochrone maps centered at any point, without having to collect
data from every point. Another way of stating this is to point out that the formula given
earlier allows us to compute the distance in kilometers between two locations on the surface of the
earth if we know their latitudes and longitudes, and the particular set of coefficients which apply to
the earth. Why should one not be able to do the same for travel times, or travel costs? Such a
computation could easily be done on a scientific pocket calculator, vitiating the need for rate books.
The question is not whether this can be done, but how well it can be done with a simple model and a
modest number of parameters. For example, there is evidence that automobile travel speeds are
reduced in central cities, roughly in inverse proportion to the population density (c.f. Angell &
Hyman, 1976). There are some models of the population density distribution within cities that,
certainly at a national scale, would allow general statements in this regard, using only population data
and without additional specific transportation measurements.

Scattered attempts have appeared in the transportation literature in which partial models along
the lines suggested here. Some of these are listed in the bibliography. (Love & Morris, 1972, 1979;
Trunin & Serbenyuk, 1968; Vaughn, 1987). The articles, while individually competent, interesting
and useful, are very diverse and scattered, in part because transportation studies tend to be media
specific, local in nature, address immediate problems, and usually consider networks rather than
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continua; exceptions include Angel & Hyman, 1976; Beckmann, 1952; Mayhew, 1986; Puu, 1979;
Iri, 1980, pp; 263-278; Taguchi & Iri, 1982, and a few others. The present point of view is also a
continuum one and is seen to have considerable merit.

Given an N by N table of travel disutilities (time, cost, road distance, etc.) between N
locations one can construct several graphics to show the departures from a planar (Euclidean)
geometry1. A common technique is to use a trilateration or a multidimensional scaling to
estimate best fitting plane coordinates for the places (e.g., Mueller, 1978, 1984, Gatrell
1983). When the travel disutilities are not symmetric (Dij <> Dji ), the normal empirical
case, then this technique breaks down and more advanced models are needed, as outlined by
Tobler, 1978 (also see Zaustinsky, 1959).

Within this symmetric framework, a simple graphic is to display the places in their
correct spatial location but to then "enhance" the view of the links between them by putting
in resistor-like symbols to display the travel difficulties. Another graphic device is to
imagine a transportation "surface", conceptualized as a topographic-like surface over which
the transportation takes place. The distance along the surface between nodes is then longer
than the distance between the orthogonal projection of these nodes onto the base level. The
ratio of this spatial (three dimensional) distance to the (two dimensional) base distance
gives the Gaussian coefficients for this particular piece of the geometry. The entire
collection of Gaussian coefficients describes the geometry of the transportation space, here
assumed two dimensional. A previous report (Tobler, 1993) goes into additional detail.

These ideas are illustrated using twenty two towns in the western (west of the 105th
meridian) portion of the state of Colorado, with road distances taken from the official
highway map, and geographic coordinates from the Atlas of the United States. This is a
rather mountainous piece of territory.

Gauss (1827) showed that the fundamental metric of a surface, specifying the geometry, can
be written as

dS2 = gαβduαdvβ= E du2 + 2 F du dv + G dv2 .

The g coefficients depend on the partial derivatives of the surface. For a Monge surface (that we
now have) of the form

X=x, Y=y, Z=z (x, y),

the Gaussian coefficients are:
g11 = Gauss' E = 1 + (∂z/∂x)2

g12 = g21 = F = (∂z/∂x) (∂z /∂y )
g22 = G = 1 + (∂z/∂y)2

g11g22 – g12g21 = EG - F2 = 1 + (∂z/∂x)2 + (∂z/∂y)2

K = [ (∂2z/∂x2 ) (∂2z/∂y2 ) - ∂2z/∂x∂y] / [g11g22 – g12g21]

where K is the Gaussian curvature (Rektorys 1969:343+) These components of the Gaussian metric
can be estimated from the partial derivatives of the ‘transportation surface’. These interpolated
coefficients are shown in the accompanying figures.

A related consideration is to contemplate the set of all places on the surface of the earth that
you could reach within one hour of where you are now. The outer edge of this set forms a
geographical ‘circle’ of one hour radius. What a curious circle it is! Its circumference is hardly 2πr;
its area, in square hours, is not π r2. The circle most probably has holes in it, and probably consists
of disjoint pieces when shown on an ordinary geographical map. The shape of this circle depends
on the place and time of day at which you start your journey. A resident of Paris will have a
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geographical circle of one hour radius with a different circumference, shape, orientation, and area
from that of a person in Los Angeles. This is a bit like the geometry on the surface of a cucumber;
here a circle at the narrow end will differ from one near the middle. Or try drawing concentric
circles on the surface of a potato from some starting point. The differential geometry introduced by
Gauss in the early 1800's can handle many of these situations. Some examples are available at the
URL cited earlier. These maps in effect show the system known as polar geodesic coordinates, first
defined by Gauss (1827). Isochronic maps, used by Francis Galton in the 1880's, use curves
depicting lines of equal time from a center. These are a special case of polar geodesic circles in
which the radial lines have been omitted. Polar geodesic coordinates are a curvilinear equivalent to
polar coordinates, In this coordinate system the first fundamental form

ds2 = g11du2 + 2g12dudv + g22dv2

reduces to the simpler form
ds2 = dr2 + g22dθ2,

where r is the radial geodesic and θis the circumferential coordinate. The area contained within one
"circle" is now given by the extended formula

          A =  π r2 (1 - cos(r√K)) ≈ π r2 - π K r4/12 + ...
and the circumference is given by

              C = 2 π r sin(r √K) ≈ 2 π r - π K r3/3 + ...,
where K is the Gaussian curvature, K = (-1∂√g22) / (√g22 ∂r2).

The relation to the better known Euclidean formulae (K=0) for area and circumference should be
obvious; they constitute the special case of zero curvature. The example at the right, below, shows
isochrones from the center of Detroit.

Let us now take the formula for area and see if it is possible to compute the curvature from
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this. Given that A = π r2 – π K r4/12 we can solve for K = 12(A-π r2)/(π r4), or

K = 12A/(π r4) – 12/r2.

Now we need some data and this is given in the following three tables

A) Travel times (hours) from Leipzig, 1911

B) Surface area (km2) as measured from maps given in Riedel (1911)

C) Computed curvature

A B C

1 166 -12

2 571 -3

3 2064 -1.33

6 23,930 -.33

9 814306 -.15

A) Travel times from downtown Washington D.C., 5:15 p.m.

B) Surface area (miles2) as measured from maps given in Wingo (1961)

C) Computed curvature

A B C

5 1.14 -.48

10 4.4 -.12

15 11 -.005

20 27 -.03

25 62 -.02

A) Travel times from downtown Washington D.C..,6:15 p.m.

B) Surface area (miles2) as measured from maps given in Wingo (1961)

C) Computed curvature

A B C

5 4.16 -.48

10 26 -.12

15 83 -.005

20 181 -.03

These results are astounding. The computed curvatures are all negative and, with the
exception of the first two for Leipzig, very small and close to zero. And the values computed for
the two different times in Washington D.C. are identical. This in spite of the fact that the covered
area becomes much larger after the rush hour. If we plot graphs of the relation of the area versus
the travel times, the curves clearly resemble a quadratic function: For Leipzig km2 area =
111.8*travel hours2.9 gives a fit of 96% (r-squared), for Washington D.C. at 5:15 p.m. the equation
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is square mile area = 0.19*travel minutes2.43 (92%) and at 6:15 p.m., square mile area =
0.05*travel minutes2.73 (99%). Of course the sample sizes are very small.

The values of curvature computed in this small experiment strongly, and quite
unexpectedly, suggest a value of zero, implying a flat Euclidean geometry, Yet the irregular shape
of the isochronic lines, thought of as concentric geodesic circles, but strongly direction dependant
(based on the location of major highways) hardly fit this image. It seems that further examples
must be assembled.
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TWENTY TWO TOWNS IN WESTERN COLORADO
Location, and converted to plane coordinates in kilometers.

Latitude Longitude X Y Elev(m) Name
1 37.46833 -105.8700 90.25032 -158.1648 2299 Alamosa
2 39.19000 -106.8183 6.341792 32.86065 2405 Aspen
3 38.44500 -105.2350 144.3592 -48.71337 1706 Canon City
4 39.80000 -105.5133 117.8317 101.6162 2594 Central City
5 37.34833 -108.5833 -149.6310 -170.6520 1888 Cortez
6 40.51667 -107.5433 -55.11283 180.6381 1889 Craig
7 37.27500 -107.8783 -87.35231 -179.7049 1992 Durango
8 40.37667 -105.5200 116.2979 165.7561 2298 Estes Park
9 40.58000 -105.0833 152.8661 189.0340 1525 Fort Collins

10 39.70500 -105.6967 102.3003 90.82483 2596 Georgetown
11 39.54333 -107.3217 -36.86908 72.25089 1758 Glenwood Springs
12 39.06833 -108.5500 -143.2056 20.62821 1400 Grand Junction
13 38.54667 -106.9283 -3.170864 -38.70581 2348 Gunnison
14 39.24833 -106.2917 51.70794 39.51811 3097 Leadville
15 40.04000 -107.9167 -87.29237 127.9107 1902 Meeker
16 38.48000 -107.8750 -85.61292 -45.66383 1770 Montrose
17 38.02333 -107.6717 -68.34016 -96.63337 2378 Ouray
18 37.26333 -107.0167 -11.05129 -181.4572 2168 Pagosa Springs
19 38.53000 -106.0000 77.61503 -40.18304 2155 Salida
20 37.81167 -107.6667 -68.10146 -120.1828 2837 Silverton
21 40.48667 -106.8317 5.097425 177.1015 2053 Steamboat Springs
22 37.93500 -107.8100 -80.56223 -106.3481 2680 Telluride

Conversion from latitude and longitude to kilometers on a local map projection
(Tobler, 1974), using a radius of 6373.592 km based on the mean radius of the
Clarke ellipsoid of 1866 at 38.89N, 106.89W.

1 In the present instance the Colorado data were converted from latitude and longitude
coordinates using a local map projection (Tobler, 1974) for which the spherical distances
did not differ from the map distance by more than 1/3 kilometer.
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Part Two

Abstract
Empirical measurements of spatial separations before and after transportation innovations can be
considered to be spatial transformations and, as such, evaluated using Tissot’s strain tensor. These
graphical quantities should be of practical benefit in evaluating transportation systems. Examples using
empirical road distances are given.

We all know that modern transportation systems change spatial relations between
places. One approach is to consider that the transportation induces a distortion, warping, or
transformation of the two dimensional (spherical, or locally Euclidean) space. Felix Klein, a
famous German mathematician defined geometry as the study of properties preserved by a
particular group of transformations. Thus one has projective transformations and projective
geometry, affine transformations and affine geometry, Euclidean transformations and
Euclidean geometry, continuous transformations and topology, etc., The method of
transformations has proven highly fruitful in many fields. Poincaré, for example, mapped
non-Euclidean geometry onto a plane, thereby proving the consistency of this non-
Euclidean geometry. Straight line in this geometry, incidentally, were to be drawn on paper
using a compass, i.e., they are arcs of circles. In biology D’Arcy Thompson has applied
continuous transformation to illustrate relations among species. Dűrer used transformations
in a number of sketches. In aerodynamics transformations are employed to study the flow of
wind past a wing by mapping the wing shape into the shape of a cylinder, solving the flow
problem, and then transforming the resulting solution into one that applies to the more
complicated wing shape. Transformations are familiar to geographers from the subject of
map projections, which represent a special case. Areal cartograms are an example of a
transformation that can be used to even-out and unequal distribution of resources.

Given a travel symmetric disutility matrix Dij between places, it is possible to look at
how it warps the region, and then to calculate how much distortion has taken place. The
measure of distortion which I use is known in the cartographic literature as Tissot's
indicatrix, and in mechanics as the strain tensor – a matrix made up of the four partial
derivatives of the two dimensional mapping.

The figures illustrate these concepts. Figure XX shows the base space (assumed
Euclidean'), with the displacement vectors of the towns when road distance is used in
place of the spherical great circle distance between these same objects. The next figure
(Figure XX) illustrates how the regular grid from the previous figure is warped by the
road distances. Tissot's indicatrix is shown next (Figure XX) as the distortion of
infinitesimal circles on the base, and this gives an idea of the effect of the Rocky
Mountains on roads in this part of the world. In particular, the indicatrix shows the
amount of stretching of distances in every direction at each location for which it is
calculated. The axes of the ellipses (not shown here, but easily estimated) show the
maximal and minimal stretching; they are related to the eigenvalues of the strain tensor
and are based on the estimated partial derivatives of the transformation. The contour map
in the next diagram (Figure XX) shows the areal distortion introduced by the mountainous
terrain on the road system. Figure XX shows the maximum angular distortion (Tissot's ω).
The final contour map (Figure XX) is a scalar measure of the total distortion, computed as
the sum of the squares of the four partial derivatives of the transformation.

Measuring the effect of mountainous terrain on a road system is mostly of interest
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because the data are easily obtainable. Before and after studies of transportation
innovation are likely to be more interesting but the data are more difficult to obtain.
However, the techniques used to illustrate these could be the same. It is hoped that a
future report will extend the present work.

Notes:
2 The base of the arrows is at the correct planar location (see note 1) and the head

of the arrow is where it would be displaced to assuming the road distances are true
distances. A similarity transformation has been applied to bring the two data sets into
maximal correspondence, with the center at the mean location of the data. This is an
arbitrary transformation which leaves the strain tensor invariant. The results are thus
independent of the coordinates used.
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