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  It is a pleasure to be here, and I wish to 

thank you for inviting me. 
I regret that I cannot stay for the football 

game. 
My talk today relates to transportation, or 

more generally, to movement. This is a 
large topic and no single talk can hardly 

do it justice.  
 



Geographers know a lot about transportation 

The Von Thünen model is familiar to most 



Agricultural patterns in the Von Thünen model 
with a modification due to river transportation 



Some effects of a boundary on a trade area 

Modified from A. Lösch, The Economics of Location 

 + 



El Paso bank customers  

A. Lösch, The Economics of Location  



What I hope to do in this talk is to 
give you some other ways of looking 

at the world. 
    

   My interest in movement modeling is because 
most geographical change comes about 

because of movement.  

   What is important is the movement of ideas, of 
people, money, disease, energy, or material.  



   The often used phrase “The World is Shrinking” 
really refers to measurement in cost or time. 100 
years ago the transportation cost for me to get 
here would have been prohibitive, and the travel 
time probably measured in weeks.  

  The 80 days to travel around the world have been 
reduced to about 24 hours. So we all know that 

the world is shrinking. 
   I hope to show you that this shrinking is very 
uneven and that the world is shriveling as well as 

shrinking. 
 
 



To this end, and for my own understanding, I use a
simple topological definition of transportation systems.

There are two parts to this classification scheme.

One concerns the domain in which the transportation
takes place.

The other part is the boundary, the place where one can
change from one mode to another.



As domains I consider two types:

The first type is a domain in which movement is
everywhere possible.

The other type is one in which movement can only take
place on a network.

In terms of boundaries, there are again two types.

One type of boundary allows exit from the domain
anywhere along the boundary.

In the second boundary type exit from the domain can
only occur at nodes.



Transportation Systems 



Consider the first case. Walking can generally take place
everywhere and anywhere on land. And one can move to
a rowboat at any place along the edge of the land.

Similarly one can row in any direction in a lake and can
leave a rowboat at virtually any place along the shore.
To this first transportation type, movement anywhere,
and exit anywhere, one might also add tanks and ICBMs.

We can add radio, TV, cell phones to the second class.

Bicycles travel on networks but one can get off
anywhere.

Look quickly at the other cases and you will get an idea
of what I have in mind. If you can think of modes that
do not fit the scheme, let me know. Obviously my
classification is somewhat of a simplification, but I
believe it is still a useful set of categories.



Going through the classes one has to
recognize that the ways of moving things or

people is extremely large.

In this century we have added automobiles,
airplanes, and radio.

Within my lifetime rockets, television, and the
internet have been added.

But also hovercraft, dune buggies,
snowboards, skateboards, snowmobiles, inline

skates, jet skis, and many more.

It is really quite amazing.



Looking in more detail at the first category, we
recognize that walking speed is quite variable.

It is less easy to walk in hilly country.

To take this into account I constructed a “hiking
function”, which gives the speed of walking at every

slope steepness.



An Estimated Hiking Function 



The graph shows walking speed, with slope on the
horizontal axis, up hill on the right and downhill on the left
(it is not centered on zero).

The vertical axis gives the speed in kilometers per hour.
It is over simplified – the weather affects walking speed, as
does vegetation and altitude.

Still this function should be useful as a first
approximation to archeologists relating ancient sites, and
possibly to hikers.



A simple topographic surface 



Least time paths on the surface 
 from the center 



Isochrones - constant time contours 
about the center 



Gradients added to produce polar coordinates 
about the center 



Or consider mechanized transportation. During the second
world war the Germans had Gelaendebefahrbarkeitskarten
or terrain trafficability maps. Here, in the next diagram, is an
approximate equivalent for automobile travel in a city, from
Bunge’s book “Theoretical Geography”.

It is a speed, or velocity, map of Seattle, showing how fast
one can travel, by automobile, in any part of the city. As
expected the CBD is the slowest part of the city. It is a fiction
of course in that it pretends that one can travel through
buildings, that travel effort across any piece of territory is the
same in all directions, and so on. It should really show only
the road network. But from this map one can draw lines of
equal time distance - technically known as isochrones, from
any point in the city.



Travel Speed in Seattle 
In Miles per 5 minutes 

   Measured by 
automobile driving 
time. 

   This shows a scalar 
function, one value 
at each location. In 
reality it should be a 
tensor function, a 
different value in 
each direction at 
every location. 



The next map shows concentric isochrones, lines of equal
travel time, from the University of Washington. This is
followed by a map that shows travel times from the CBD.

Both maps were made from the same travel velocity (speed)
map. Such maps are easily created from the rate maps by
summation over paths. This type of map can be used, in a
computer, to count the number of people within travel time
or travel cost rings, and this is perhaps useful for business
geographics. Again the travel times should not really be
shown as isochrones but rather as road segments, best
rendered in different colors.

And, as we all know, travel times vary rapidly in a 24-hour
time period. So we need to update the velocity map in real
time, and this is now becoming possible. For example, when
riding in a vehicle equipped with a GPS and a radio, a voice
synthesizer could present optimal driving directions taking
into account current traffic conditions.



Peak Hour Travel Time from UW 
In Five Minute Intervals 

   Draw orthogonal trajectories 
to the isolines. Think of 
these as the gradients to 
the contours. The two sets 
of curves form a system of 
curvilinear coordinates, 
known as polar geodesic 
coordinates. This coordinate 
system not only identifies 
locations but can be used 
analytically for metrical 
operations.  



Five Minute Isochrones from CBD 
    Travel time from 

Seattle’s central 
business district, in five 
minute intervals.  

   Draw in the orthogonal 
trajectories, to turn the 
isolines into a system of 
polar coordinates. 

 
 

W. Bunge, 1966, Theoretical Geography, 
2nd ed., Gleerup, Lund University 



One can go one step further, cartographically.

The concentric travel time isochrones can be converted to
equally spaced “normal” circles by warping the geographic
background, to give “realistic” time or cost distance maps,

as in the next diagram.

Again this might be done in real time.



Time Distance from CBD 
Background Warped 

  The travel times are now 
concentric circles. The 
geographic background 
has been warped to fit 
this. 

   The orthogonals are now 
equally spaced straight lines 
(not drawn) radiating from 
the center to give the usual 
polar coordinates.  

 
    W. Bunge, op. cit. 



Next is another example: Travel time, in days from Berlin,
1909.

Look at Africa.

The gradients represent the minimum time travel routes –
construct them mentally.

How can the isochrones be converted to “normal” circles?

To render this cartographically Africa would have to be
turned inside out!



Travel Time from Berlin in Days 
Eckert, 1909 



Another familiar example is the airline time distance from
London map.

Parts of the United Kingdom are farther away than
locations in Europe, even North America.

The assumption is here made that all of the land areas can
be reached by flying, but of course only the airports can be
so reached.

Schedules must also be taken into account.

Still it is a useful graphic. Consider a service interested in a
maximum number of clients reachable within one day.



Travel Time from London 
In Hours 
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Parcel Post View From Seattle



  Check an airline rate book and you will find 
that Santa Barbara is closer in cost space to 
New York City than it is to Arcata in Northern 
California. 

 
   Even worse, to fly from Santa Barbara to 

Columbus, Ohio, or to Milwaukee, Wisconsin, 
costs more than to fly to from Santa Barbara 
to New York City. 

 
   In cost-space Columbus and Milwaukee are 

further from Santa Barbara than is New York 
City.  



Thus the United States must again be turned inside out, in a 
very complicated way. 
  
Spend an hour or two with a rate table and you will find many 
such examples.  
 
Try to construct an air travel cost map centered on College 
Station, placing US and foreign cities at their scaled proper cost 
distance. It will be most instructive.  
 
There is not a monotonic relation between geographic distance 
in kilometers and geographic distance in monetary units.  
 
Thus I contend that the world is shriveling, with many places 
becoming relatively more isolated, and only a few becoming 
more connected. 
 
 
 



Next is another, carefully done, example. 
 
It shows the one-hour vicinity of Liege, in Belgium. 
  
I say it is carefully done because the author recognizes 
several modes of transportation. 
  
It is only a single time slice, although travel schedules 
and frequencies were taken into account. 
  
An obvious question is “Can this type of diagram be 
made dynamic, in real time?”  

 



A One Hour Geographical Circle 
Liege 1958 



The next illustration is the six hour isochrone around
Leipzig, circa 1911.

Looked at in another way, one can refer to this as a
geographic circle, namely the set of all places on
the surface of the earth that can be reached in
six hours from Leipzig. The circle’s radius is six
hours.

Circles belong to the domain of geometry, but this is a
strange type of circle. It is clearly different from the
types of circles we are familiar with. It has holes and
disjoint pieces. The length of the circumference is not
2 π r, the area not π r2.

This implies a geometry much, much more
complicated than that of Einstein, which is relatively
smooth and static by comparison.



Leipzig: The Six Hour Isochrone 
1911 



Now imagine what a one-hour circle around
your home would look like on a map.

The person sitting next to you has one that
is quite different.

Clearly the one-hour travel circle around the
center of Paris will look different from the

one-hour circle around the conference
center here at Texas A & M.  Include the
two hour and three hour circles and then

the orthogonal trajectories to get the polar
geodesic coordinates.

All will fluctuate throughout the day.



Have you ever tried to draw a coordinate system on a potato,
tomato, or cucumber taken from your kitchen?

Try it! Using polar coordinates is easiest.

You will find that a circle of a given radius will have a
circumference that depends on where you center the circle.

Just like the travel time circles just considered!

Mathematicians, particularly Gauss, worked out how to
handle these types of geometry about 1820, when he

invented the subject of differential geometry.



Now a little aside on geometry 

Distances determine geometry 
 

To calculate distances we use coordinates 
 

So here’s an example 



1      2       3        4        5        6        7      8 

x1=1  y1=1                          x2=7  y2=6   



Distance from (1, 1) to (7, 6) 

D = [(1 - 7)2 + (1 - 6)2]1/2 

= [62 + 52]1/2 
= [36 + 25]1/2 

= 611/2 

≅ 7.8 



1      2       3        4        5        6        7      8 

x1=1  y1=1                          x2=7  y2=6   



 
But the rule whereby we calculate the distances does 

change. 

Changing the name (coordinates) of a point does not 
alter the distance between them. 

 

The next slide shows the same line in a new, different 
naming scheme (coordinate system). 



1               2                  3                 4       

x1=1  y1=1                            x2=4  y2=6 



Distance from (1, 1) to (4,6) 
D = [(1 - 4)2 + (1 - 6)2]1/2 

= [32 + 52]1/2 = 341/2 ≅ 5.8 
     which is wrong! But it can be fixed 

D = [4(1-4)2 + (1-6)2]1/2 

= [4(32) + 52]1/2 

= [36 + 25]1/2 

≅ 7.8 
D2=Wxdx2 + dy2 



1      2       3        4        5        6        7      8

X1=1  y1=1       x2=5 y2=6 



In these oblique coordinates 

The name name of one point has again changed. 

 
 

What is the new rule to compute the distance? 



Try the following 

 
D2 = Wxdx2 + Wxydxdy + Wyxdydx + Wydy2 

 

= Wxdx2 + 2Wxydxdy  + Wydy2 
 

here Wxy = Wyx is related to the cosine of the 
angle between the axes. 

 
Wx and Wy  are constants. 

 
Work out the details for yourself. 



 1           2           3                 4           5 

A more complicated example 
 

Curvilinear coordinates 

4 

3 

2 

1 1 



With this new coordinate system the rule for the 

calculation of distances must again change. 
 

Needed now is a rule to be applied to a curvilinear 
coordinate system. 

 
Gauss invented such a rule in the early 1800’s. 

 
On surfaces that are not flat it is necessary to use such 

curvilinear coordinates and the Gaussian rule. 



In the Gaussian metric formula 
d12 = [(x1 - x2)2 + (y1 - y2)2]1/2 

becomes   dij
2 = Edx2 + 2Fdxdy +Gdy2 

in modern notation   ds2 = gαβ dxα dyβ 

 

Written out in full this is, in two dimensions, 
ds2 = g11dx2 + g12dxdy + g21dydx+ g22dy2 

 
The coefficients are no longer constants. They are different in each 

curvilinear quadrangle.  
If distances are symmetric g12 =  g21 

In polar coordinates: 

d12 =[r1
2 + r2

2 - 2r1r2 cos(θ1 - θ2)]1/2 

ds2 = dr2 + g22dθ2 
 
 



Some consequences  
applying to non-flat surfaces 

Circumference = 2 π sin(r/√k) = 2 π r - (π kr3/3) + … 
 
Area = 2 π (1 - cos(r/√k)) = π r2 - (π kr4/12) + … 
                            (√ = square root) 
The Gaussian curvature k is given, in polar geodesic 

coordinates,  by 
 

k = -1/∂(g22)½/ (g22)½dr2 



The relation between distance and curvature 
can be explained in more detail. 

 

As an example use distances on the 
earth. 



Construct a table of distances between all 
places on the earth. 
Assume 2*107 places. 

The distance table contains n(n-1)/2 distances = 2*1014 distances. 
Assume 200 distances per page for 1012 pages. 

At 6 grams/page this is 6*106 tons. 
Assume 6 tons per truck for 106 truckloads. 

Assume one truck every 5 seconds for 5*106 seconds, 
which is 2 months of day and night traffic. 

 
C. Misner, K. Thorne, J. Wheeler, 1973, Gravitation, Freeman, 306-309. 



Lots of trucks 

But the quantity of information can be reduced. 



Use only the distance to nearby locations 

For each point record the distance to the nearest 100 points. 
 

Now there are only 2*109 distances. 
 

Or 107 pages of data, or 60 tons of paper. 
 

Needing only 10 truckloads, passing by in less than a minute. 
 



Next assume that the surface is smooth and that the 
distance to  points near another point can be 
approximated by the Euclidean distance formula. 

 

A triangulation can thus be established and 
distances to points further away can be 

calculated using the triangles. 
 
 

The approximation can be improved by taking 
more, and smaller, triangles. 

 

 





A sample triangulation 



 
 
 
 

Compute the angles in a triangle 
on the Euclidean assumption, using “small” triangles 

 



Consider all triangles surrounding a vertex 
and lay them flat 



In this way the curvature can be approximated 
at all locations. 

The curvature can also be calculated from the Gaussian 
coefficients gαβ 

So, instead of using a large number of distances 
use the Gaussian formula  

ds2 = gαβ duα duβ 
 



To use the Gaussian formula we need the three 
metrical coefficients, gij  (i, j = 1, 2) at each of 

many geographical locations. 
 
 

 
 

But we might give these as functions of latitude and longitude, in 
terms of a power series or an expansion in spherical harmonics, 
with a modest number say 100, of adjustable coefficients. Then 
the information about the geometry is caught up in these three 
hundred coefficients, a single page printout. Goodbye to any 
truck! 

 
 

 
Considering the earth as a sphere the coefficients would all be 

constant, and therefore we need only one constant. 



Now try using travel times, or costs, instead of spherical 
kilometers to calculate the curvature. The result could 

be quite interesting. 
 

 
Some people have tried to fit mathematical functions to 

the geographic travel time or cost spaces. 

They generally use either Minkowski or Manhattan 
metrics. Riemannian or Finsler geometry seems to 

me to offer more promise. 



Geographers have long used travel time or cost maps. 

Most travel time/cost maps are centered on one 
location.  

We can go beyond this to consider all possible distances
between places.



One technique is to adjust the map to correctly, in the least
squares sense, represent distances.

That is, push the places apart until the scaled map distances
are proportional to the given distances.

Here is an example computed by a student with distance data
from a Rand McNally highway atlas.

The towns are located at coordinate positions such that road
distances are preserved as nearly as possible.

This is done using a trilateration or multidimensional algorithm.

Latitude and longitude lines and state boundaries are then
interpolated to fit these locations, and the map drawn.



US Road Distances Map 
Student drawing 



 
 

The road distance map is distorted relative to the normal map.  

 

From the theory of cartography we know that map distortion can 
be measured using Tissot’s strain tensor, and this can serve as 
a measure of the change introduced into the United States by 
the road system. In addition to distance changes there are also 
angular and area changes, and these can be computed. Perhaps 
these can be related to economic impacts. 

 
The distorting effects of topography - think of the push to the West 

across the Rocky Mountains in the United States - can also be 
measured using Tissot’s theorem.  
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World Ocean Distances Map
Based on Shipping Distances Between 42 Ports



The next example uses a 13 by 13 symmetric table of measures
between thirteen places as input. Such a table might have come from
a road atlas.

But road distances, or travel times or costs, are usually not the same
as "as the crow flies" distances.

There are several ways of representing the time or cost metrics. For
example, Insert resistor like symbols between the places, keeping
their locations fixed.

This should be done after parsing the table to get rid of the
redundancies, using the triangular inequality.

Then the road distance, or travel time or cost, is represented by the
total length of the line connecting the places.

One needs to measure along all of the wiggles between the places.

Such measurement is not really easy, but the graphic is effective.



Measure Distances Along the “Road” 



Alternately, raise the places into the air so that the Euclidean distance 
in three space gives the correct distance, in road distance space, in 
time distance space, or in cost distance space.  
That is, use least squares to go from a representation in X, Y space 
go to a representation in X, Y, Z space.  
Then, from the point representation in 3-D, interpolate to get a 
"transportation surface". 

 



Measure distances through the air 



Interpolated Transportation Surface 
Measure distances as arc length on the surface 



The next example, by Klaus Spiekermann and Michael
Wegener, uses a similar technique to examine the effect
of the European high speed rail connection, existing and
contemplated.

The first diagram shows a conventional European map.



Europe Now 



The next figure shows the warping that will be introduced by 
the high speed network, as measured in travel time 
space. The scale is given in hours, rather than kilometers 
and shows what Europe will look like when the high 
speed network is completed. Observe that France is 
furthest along, and therefore the most shrunken. 

 
   The assumption has been made that one can interpolate 

from the rail network to the entire continent.  
 
    Again, from cartographic theory, we know that not only 

are conventional distances distorted on this map but that 
areas and angles are also distorted, and we can compute 
by how much. Thus we can measure the distorting effect 
of transportation, using Tissot’s theorem. 



Europe After The Proposed TGV System 
Spiekerman & Wegener 



The map is in perspective, but shows three transportation systems 
simultaneously, using travel time as the metric.  
 
First, on top and with the shortest connections, is the high speed rail system 
(TGV). 
  
Then below this is the freeway system, in blue. Distances are to be measured 
along the blue lines, over hill and dale. 
  
Below these two is the ordinary road network. Measure along the lighter lines. 
  
                     This is a 3D version of the resistor diagram shown earlier. 

   A profoundly more realistic example, by Alain L’Hostis, is from 
France. 

 Best viewed in color at http://www.inrets.fr/traces/equipe/lhostis/

lhostis.htm  
  This is where I got the term shriveling. Maybe it should be 

wrinkling. 
 



The TGV Warps Space 
By A. L’Hostis 



One can get to any place in France using a combination of 
the three modes of transport. 
  
From this diagram one can see how a new disease might 
diffuse from a rural location and quickly get transmitted to 
Paris, or how an idea could spread from Paris to other parts 
of the country before getting to remote “backwaters”.  
 
Slightly unrealistic is the assumption that going from the TGV 
train to the freeway takes no time, air travel has been 
omitted, and that travel time is the same in both directions.  
 
Admittedly measuring on this map would be difficult but this 
diagram is nevertheless a most marvelous invention, 
conceptually and graphically! 
  
With GIS technology one might drape the conventional map 
of France on top of this transportation surface.  
A dynamic version would pulsate. 

 



Bunge suggested constrained balloons. Fix strings to well- 
connected places (NYC, LAX, etc) then inflate the balloon. 

The less well connected places will bulge out.  
(Bunge, personal communication, ca, 1960) 



We are not finished 

An important property of 
geographic distance measures has 

been overlooked 



But first consider another aspect of the geometry of
geography, as is represented by a cartoon from Gary
Larson's "Far Side."

In this diagram a traveler in a vehicle is sitting at location
B questions a farmer. Location A can be seen in the
distance. In response to the query "How to get from B to
A" the farmer at B opines that he is not sure, since most
people want to go in the opposite direction. Does the
farmer know that from B to A is not the same as from A to
B?

Travel times, routes, or travel costs are usually not
symmetric, and this is a complication.
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An example of an asymmetric geographical table.

Polynesian Communication Charges ($)

R.G. Ward, 1995, “The Shape of the Tele-Cost Worlds”,  A. Cliff, et al, eds., Diffusing
Geography, p. 228.



   Here is another very small example of a 
geographic table. It shows mail delivery times, in 
days, between a few cities in the United States.  

  The cities are New York, Chicago, Los Angeles, 
Washington D.C., St. Louis, and Houston. 

  There are many examples of such asymmetric 
tables, especially when considering costs. Any 
such table can be decomposed into symmetric 
and skew symmetric parts, each of which 
contributes to the total variance. 
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Table of Mail Delivery Times

        Transit time for US mail, in days (1973)

        To:
From: \     NYC   CHI   LAX   WDC   STL   HOU
         --------------------------------------
     NYC |  0.9   1.8   2.5   2.0   2.3   2.3 |
         |                                    |
     CHI |  2.6   0.8   3.1   2.2   1.9   2.3 |
         |                                    |
     LAX |  2.5   2.2   1.1   2.2   2.3   2.6 |
         |                                    |
     WDC |  1.8   2.3   2.6   1.3   2.4   2.5 |
         |                                    |
     STL |  2.4   2.1   3.1   2.4   0.9   2.5 |
         |                                    |
     HOU |  2.3   1.9   2.8   2.2   2.2   1.1 |
         --------------------------------------



The asymmetry can be exploited, as can be seen in the
next diagram.

Having produced a vector diagram, this can often also
be converted into a potential field, by inverting the

gradient operation.

That is, given the vector field, find the "topography".

My main application has been to asymmetric migration
tables.



A Map of Wind Computed from Mail Delivery Times 



From Wind to Pressure Field 
An interesting property of vector fields, as on the 

foregoing map, is that they may be inverted. 
   If you think of a vector field as having been derived 

from the topography of some surface this assertion is 
that the topography can be calculated when only the 
slope is known. 

   At least up to a constant of integration (the absolute 
elevation) and if the data are curl free. 

   In the particular instance here, this says that the 
barometric pressure could be estimated from the mail 
delivery times. 



What I am asserting is 

that one approach to the asymmetry problem is to add a 
vector field to the distances. 

This makes movement in particular directions easier or 
more difficult. 

Such a vector field might be applied to simulations of the 
spread of ideas, and so on. 

There are several possible mathematical 
implementations to this idea. 

 
See: W. Tobler, “Spatial Interaction Patterns”. Journal of Environmental Systems, 6, 4 (1976-77): 271-301. 

 



Finally, in contemplating relations between 
places on the earth I hope that I have convinced 
you that it is often not the geodetic distance that 

is most important but rather the time or cost 
which must be overcome. Some places are now 

closer but others are relatively further away. 
  

This is why I assert that 
 

The earth is shriveling as it shrinks.  
 

 



Thank You For Your Attention 
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