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ABSTRACT

Goodchild, M.F. and Lam, N.S., 1980. Areal interpolation: a wvariant of the
traditional spatial problem. Geo-Processing, 1:297-312.

A variant of conventional spatial interpolation is the problem of estimating
aggregate statistics for one set of regions from comparable statistics for another
set which do not necessarily respect the boundaries of the first. The paper dis~
cusses the properties of a technique of areal interpolation based on the use of
areas of intersection as weights. The results are compared to those of several
other methods, and illustrated with a case study.

INTRODUCTION

The term spatial interpolation generally refers to the problem of estimating
the value of a variable z at some point (x, y) given known values of z at a number
of data points, usually arranged randomly. As such it is inherent in contouring,
and important in all spatially-oriented fields. A large number of approaches exist
in the literature (see reviews by Crain, 1970; Lancaster and Salkaulkas, 1977; and
Schut, 1976). The Kriging literature (see for example David, 1977) recognizes a
variant of the problem, that of using point data to estimate integrals of the z
function over arbitrary areas. A parallel example might be the use of deteymina-
tions of population density at irregularly located points to estimate the total
population within an arbitrary area. Another variant, the reverse of this, is
Tobler's (1979a) pycnophylactic problem of estimating a population density function
z at the nodes of a fine lattice from aggregate statistics on population for arbi-
trarily shaped regiomns; the pycnophylactic condition, which is imposed on the
interpolated estimates, is that the integral of the density function within each
data region be equal to the region's observed population.

In this paper we consider a further variation, which might be regarded as the
logical extension of the previous two. Suppose population, or some other aggregate

statistic, is known for a number of arbitrary divisions of an area, such as the
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census tracts of a metropplitan region. A common problem is to obtain comparable
estimates for a different set of regions which do not in general respect the
boundaries of the first set. We will refer to this as the areal interpolation
problem, and following Ford (1976) identify the two sets of regions as the source
and target sets respectively. Let there be n source zones and m target zones, m
generally not equal to n. Then the areal interpolation problem is to cbtain V, a
column vector of length m whose elements are the target zone estimates, from the
source zdne statistics U, a column vector of length n.

The areal interpolation problem occurs in a wide range of applications, in both
analysis and planning, and particularly in urban areas. The districts used by
census agencies, school boards, city govermment or voting systems rarely coincide,
and so it is generally impossible to compare directly data collected or aggregated
by different agencies. It is sometimes possible to avoid the problem by a re-
aggregation from the individual level: for census data, it may be possible to
recount or reaggregate the census to the target zones (see for example Statistics
Canada, 1972). But in general this option, if available, is time éonsuming and
expensive and oftgn raises problems of confidentiality.

Two types of aggregate statistics must be identified. A statistic which is
expected to take half the region's value in each half of a region is said to be
spatially extensive; examples are population and gross income. A spatially inten-
sive statistic is one which is expected to have the same value in each part of a
region as in the whole; examples are average income or per cent male. To every
spatially extensive statistic there corresponds a density function, which is
obtained by dividing by area. Thus population density is obtained by dividing

population by area, and yields population when integrated over area.

APPROACHES

A common approach to the problem is to reduce it to one of conventional spatial
interpolation. A representative point is chosen for each source region, usually
the centroid although this may not in fact lie inside the region. Each point is
then assigned a representative value for the region, to be treated as é point
estimate of a continuous function z. For spatially extensive data this value
would be the region's value usdivided by the region's area; for spatially intensive
data u itself.

It is now possible to use conventional point interpolation procedures, in one
of two ways. Values can be assigned directly from source centroids to target
centroids using some weighting procedure based on the distances between them.
Alternatively a fine lattice can be laid over the study area and the function z
interpolated to each lattice node. The interpolated lattice values lying within

each target zone are then summed in the case of extensive data to obtain an
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approximation to the integration of the continuous function z, or averaged for
intensive data. The fineness of the lattice is clearly critical, particularly if
there are small target zones, and there is very little understanding of how lattice
size affects the accuracy of the estimates (Goodchild, 1980; Goodchild and Moy,
< 1977) . It might be useful to distoxt the grid, to obtain a greater density of
nodes in areas of small target zones, but this possibility does not seem to have
been explored except in the literature on the numerical solution of partial dif-
ferential equations, where it is a common practice. In both the direct and grid
methods the spatial interpolation procedure should reflect prior expectations
ﬂi about the spatial variation of z; Tobler's (1979a) procedure for example maximizes
‘; smoothness on the interpolated surface consistent with the imposed boundary

conditions and the pycnophylactic constraints.

The main focus of this paper is on an alternative approach which avoids the
point interpolation step. Suppose the source and target regions are superimposed,
the technical problem identified in the deographical data processing literature
as polygon overlay (see for example White, 1978; Goodchild, 1978), and a matrix

A defined whose elements atS are the areas of intersection or overlap between

elements of A. For extensive data the matrix is standardized by column:

m
v W =a, /X a
‘ t t
s S =1

E
f
|
E each target and each source. We now define a new matrix W by standardizing the
l

ts (1)

so that wts gives the proportion of the area of source zone s located in target
zone t. Then the target zone statistics V can be estimated by using W as a matrix
of weights:
V=W (2)
For intensive data it is appropriate to standardize by row:
n

w, = ats/ r a

(3)
ts s=1

ts

to give the proportion of each target zone located in each source zone.

; An example is shown in Figure 1. The light lines, the source zones, delimit
51 census tracts for the city of London, Ontario, as defined for the 1971 Census.
The heavy lines are the boundaries of the 21 planning districts used by the city
for population projection, planning of services, etc. Although the boundaries are
sometimes c¢oincident, there are major differences in the criteria used to design
the two sets of zones. And though census data should play a major part in urban

planning, it is impossible to use tract level data in any analysis of the planning

districts.

As the method is intuitively simple and relies solely on the assumption of
homogeneity within each source zone it is not surprising to find that it has been

described in a number of disciplines in a widely scattered literature. Linsley,
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LONDON, ONTARIO

A)

Census tracts

Figure 1. Overlay of census tracts (A) on planning districts (8).
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Kohler and Paulhus (1958, p. 35) describe the use of area weighting to estimate
the precipitation over a drainage basin from point records, a method derived
ultimately from Thiessen (1911). Robinson, Lindberg and Brinkman (1961) used areal

weights to convert county-based statistics to regular hexagons (see also Haggett,

1977, p. 288) . The application of areal weights to density estimation in cartography

is discussed by Robinson and Sale (1969, p. 106) based on Wright (1936). Markoff
and Shapiro (1973) distinguish between extensive and intensive data (absolute
figures and proportions in their terminology) and present equations similar to
those above for estimating historical statistics for target zones from overlapping
source zones. Crackel (1975) considered the problems which arise when either the
source zones or the target zones, or both, do not completely partition the study
area. In this paper we will assume that any part of the area not allocated to a
source zone forms part of an additional dummy zone, and similarly for the target
zones. One should note that this is necessary in the case of the example.

The next section of the paper is concerned with a discussion of the W matrix
and its properties, and other aspects of this approach to areal interpolation.

This is followed by a comparison of this and other techniques and an evaluation.
PROPERTIES OF THE W MATRIX

W is usually non-square and sparse. The number of nonzero entries reflects the
degree of coincidence of boundaries of the source and target zones, and is minimum
(the greater of m and n) when no source zone boundary ever crosses a target zone
boundary. The maximum is mn since it is always possible to construct a set of
target zones each of which overlaps each of a given set of source zones. In fact
nonnegativity is the only general restriction on the elements of A. For the
example in Figure 1 133 of the 1071 entries are nonzero. It is possible, however,
that many of the small nonzero entries in any W matrix are spurious. Stretches
of boundary which are effectively- coincident in reality, or identical with respect
to the populations they contain, may diverge because of differences in legal
definitidn, digitizing errors or cartographic generalization. This 'spurious
polygon' or 'coastline weave' problem (Goodchild, 1978) will be reflected in
trivial entries in the W matrix.

An interesting case arises when a subset of target zones and a subset of source
zones overlap only with each other. The problem is said to be partitioned if a
subset of target zones T and a subset of source zones S exist, such that ats =0
for all t €T, s £ S and for all t Z T, s € S. It is assumed that the subsets
are the smallest ones possible.

One property of this interpolation procedure with potential ramifications is
the relative ease with which it can be reversed. Consider a spatial interpolation

problem in which the values at one set of points, the target points, have been
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interpolated from another set, the source set. It is possible to reverse the
problem by applying the same interpolation procedure to the target estimates to
‘obtain revised values at the source points. Tobler (1979b) has argued that the
difference between the original and revised source data values is a measure of
the performance of the interpolation procedure, and has devised optimization methods
based on such criteria. For most conventional methods the difference is unpredict-
able: distance-weighted averaging for example pays no attention to reversal
properties. If trend surface analysis is used for interpolation, on the other hand,
the differences are simply the residuals at the source data points.

Let U* denote the revised source zone vector, estimated from the target zone
vector V by reverse interpolation:
ur=BY @
If the reverse is a straightforward application of the areal interpolation method,
B will be an n by m matrix related to the transpose of W. For extensive data

n

bst = ats/ z ats (5)
s=1

Since the standardization is over a different set of elements, B will only be
n m

exactly the transpose of W when I ats = I ats for all s and t, which implies
s=1 t=1

that all source and target zones are of equal size, and therefore also that m = n.

Substituting for V we can now write
U*=BWU (6)

The product B W is a square non-symmetric matrix. In the extensive form the
columns of B, W and B W all sum to 1, and in the intensive form the same is true
of the rows instead.

Although B W determines the similarity between U* and U, it does so only in
the context of some set of target zones, and not generally. For perfect revers-
ibility of the interpolation, we require U* = U, or
(BW-1]U =0 (7
so that in general interpolation reverses perfectly only for certain sets of data.
It occurs for all U if and only if B W = I, which in turn requires exactly cne
nonzero entry in each row of A, or spatially that each target zone be wholly
within a single source zone.

Spatially we would expect that the condition U* = U also occurs for any B W
when U represents a constant density surface, or a censtant spatially intensive

statistic. Extensively, this implies that u =AZ a, s ora statistic proportional
t
to source zone area, A being the constant density. Writing OS =1 a g for the
t

for the area of each target zone, the

area of each source zone and T, = I a
t g ts

elements of B and W are
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bot T 2%’y Vs T 2’ 8
and the elements of B W are consequently
bwij = ]Zg a akj/TkOj (9)
where bwij denotes an element of the product B W. Setting uj = Agj it follows
by manipulation that
u* = T bw,, u, = Ao, (10)

i R ij 3 i

]
The condition U* = U therefore holds when W is defined for extensive data. For

intensive data the appropriate condition is that all elements of U be equal to A.
When the problem can be partitioned, the source zones can always be permuted
to give a pseudodiagonal B W matrix: bwij = 0 wherever i and j are in different
subsets. Any U now reverses perfectly when uj = Aloj for extensive data, or
uj = Al for intensive data, where source zone j is a member of subset 1 and Al is
the density or intensive statistic for that subset. Spatially, this requires a
constant density or constant intensive statistic within each partition of the
problem.

In most cases, however, reversal is not perfect and U* # U. For intensive data,

the rows of B W sum to 1, and thus u; =1 bwij u,, I bwi. =1l. It follows, since
J J
all bw,, are nonnegative, that Max(u*) £ Max(u.,) and Min{(u*) > Min(u,). In other
i3 i 1 it it it

words B W can be regarded as a spatial averaging or smoothing operator. In the
extensive case it is easy to show that B W averages the densities ui/Oi.
Suppose now that B W is applied repeatedly, to obtain U**, U*** and in the

limit @. For intensive data Gi =X ujOj/Z ag the area-weighted average of the

L
3 j 3
original statistics, and for extensive, Si =0, I uj/Z G.. In the latter case
j 3

the total population, for example, has been redistributed with uniform density
over all regions. However if the problem is partitioned, averaging occurs
independently within each partition. These limits are consistent with the previous
discussion, since we have already seen that any vector of the form U = AQ
satisfies U =B W U.

In summary, then, reversability of the interpolation depends both on U and B W,
and hence on the configuration of target zones. A measure such as the sum of

. 2 . AP
squared differences E(u;f_ - ui) can be predicted only from the specific parameters
i

of the problem, and is zero only for special configurations of the source and
target zones, or for statistics with special spatial distributions. It is tempting
to consider modifying the original A matrix, and thus B and W, in order to minimize

Z(u;f_ - ui)2 but there are no obvious candidate parameters other than the specific

terms of A, and we know already that an A matrix can be found such that U* = U.
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EXAMPLE APPLICATION

In this section the area-weighted method described above is applied to the
London Census Tract/Planning District problem, and its results compared to those
of several other methods.
Census Tract source zone vector U, and exact tabulations for the target zones
were obtained from Statistics Canada.

Table 1 shows the estimates of target zone populations obtained, and the actual
values for comparison, and summary statistics are shown in Table 2.
source zone populations are given in Table 3, together with the results of a
single reversal, the largest errors in target zone populations occur where the
assumptions of the method are least valid, where the population is least homo-
geneously distributed within the source zones.
largest errors are both large, suburban areas of comparatively low population

where the corresponding source zones show rapid spatial variation in population

density.

The same problem was subjected to a version of Tobler's (197%a) pycnophylactic
interpolation. A 100 by 100 grid was laid over the area (using smaller grid cells

gave no improvement in the results), and each grid cell allocated an initial

TABLE 1

Planning district population estimates

The 1971 total population statistics were used as the

The target districts with the two

Planning Actual Overlay as per cent Pycnophylactic as per cent
district population estimate estimate
1 5407 4721.4 14.5 3167.7 70.7
2 11240 11869.8 - 5.3 12038.7 - 6.6
3 2745 5535.2 -50.4 6976.2 -60.7
4 9742 10355.6 - 5.9 10738.9 - 9.3
5 12764 13358.8 4.5 13299.8 - 4.0
6 6625 6655.8 - 0.5 5903.4 12.2
7 15527 15611.3 0.5 16531.8 -6.1
8 17333 17362.0 0.2 19391.0 ~10.6
9 17129 16185.8 5.8 15997.9 7.1
10 11190 9812.8 14.0 9843.3 13.7
11 5881 5675.8 3.6 5640.8 4.3
12 749 764.2 - 2.0 175.5 26.8
13 10554 10172.3 3.8 10225.8 3.2
14 17746 16956 .6 4.7 16277.5 9.0
15 87 261.8 6.8 125.3
16 1906 2814.9 -32.3 3046.5
17 6443 6371.8 1.1 5816.2
18 19352 16729.6 15.7 16054 .4
19 15454 16264.9 - 5.0 15218.9
20 14317 12683.7 12.9 11530.8
21 18388 23070.9 -20.3 17446.9

The original
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! TABLE 2

Summary statistics

Mean absolute per cent error

R2 (unweighted)
a
Overlay 0.94 12.9
Tobler's Pycnophylactic 0.93 32.1
. Distance-weighted average
(B = -0.15) 0.26 61.1
; Approximation I 0.84 18.4
[ Approximation II 0.88 19.5
}’ i
E“ ] TABLE 3

Original source zone population and reversal estimates

Tract U u*

1 795.0 1144.3

2 4785.0 4575.5

3 1205.0 1437.6

4 2165.0 2250.0

; 5 6470.0 6359.6
' 6 1900.0 1996.5
7 5010.0 4975.8

8 3865.0 3780.8

9 7830.0 7797.2

10 6925.0 6825.7

11 4190.0 4253.9

12 5370.0 5378.7

13 5580.0 5306.6

14 4780.0 4782.2

15 2140.0 2237.7

16 2860.0 2816.3

17 4905.0 4698.0

18 7360.0 7072.7

19 1520.0 1749.5

20 3420.0 3533.6

: 21 5980.0 5845.1
22 4540.0 4939.5

23 4750.0 4630.0

. 24 4990.0 4967.0
25 6505 .0 6398.5

26 6405.0 6346 .4

27 8235.0 8245.2

28 3565.0 3637.1

29 4565.0 4441.5

30 5870.0 5648.1

31 2630.0 3141.8

32 6010.0 5145.2

33 5170.0 5103.9

(cont'd)
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TABLE 3 (cont’d)

Tract o} u*
34 5075.0 4934.5
35 155.0 985.2
36 5415.0 5424.8
37 2815.0 2906.6
38 5505.0 5506.0
39 4715.0 4651.0
40 3825.0 ) 3513.0
41 4185.0 4324.2
42 5035.0 5052.0
43 5480.0 5496.6
44 6770.0 6739.9
45 2555.0 2583.6
46 4515.0 4424 .2
47 2505.0 2312.5
48 3880.0 3819.4
49 5170.0 5007.4
50 1820.0 1953.2
51 1525.0 1510.1

z value equal to the population density of the tract in which it fell. The
smoothness condition was then imposed by replacing each cell's value by the mean
of the values of the four neighbouring cells (the 4-neighbours or Rook's case
neighbours), proceeding row by row from the top left corner. Cells outside the
city limits were set to zero, and smoothing applied across the city limits to
provide a suitable boundary condition.

After each smoothing step the pycnophylactic condition was reimposed in each
polygon by adjusting each cell value by a correction factor. The process was
continued until no further change occurred between two successive cycles. The
results of applying pycnophylactic interpolation to the 51 census tracts to obtain
planning district estimates are shown in Tables 1 and 2 for comparison with the
overlay estimates. The errors show a somewhat similar pattern for both estimateé
(r = .30), but tend to be larger for the pycnophylactic.

Additional estimates were generated using a distance-weighted average. Each
census tract was represented by a single population density value at the centroid
(the centroid of one tract is actually outside its boundary) and the density inter-
polated at the centre of each cell of a 100 by 100 grid using the function

I z(y,) 21X - x;l/8

Z(x) = = (11)
-  2lX- YL1/8

1
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where X is the location of the centre of a cell
Z(X) is the density at X
is the location of the centroid of the ith tract

U)JF

is a parameter.
The function of B is to control the degree of smoothness through the relative

ﬁ‘ weights given to nearby and distant tracts: B is the distance over which the
assigned weight halves. The opportunity therefore exists to choose that B which
minimizes the differences between planning district estimates and the known
populations.

A value of B = -0.15 was found to both maximize R2 and minimize mean absolute

per cent error, and the results are shown in Table 2. This value of B is
expressed in the length units of the coordinate system, and corresponds to roughly

E .2% of the E-W width of the city; in these units the smallest tract has an area of

-

0.174, which would give it a radius of 0.24 if it were circular.

The estimates from distance weighting are much poofer than the others. In part
this is due to the absence of a suitable boundary condition: in any averaging
process all interpolated values must lie in the range

Min[Z(¥)]1 € 2(X) § Max[z(¥)] (12)
i i

It might be more appropriate to impose continuity of both Z and its first deriva-

tives at the city limit, as the pycnophylactic method does, and this might give

improved estimates. The quality of the estimates also depends on the grid cell
size, but at this resolution the smallest tract was allocated 23 cells, suggesting
that smaller cells would not improve the estimates substantially.

Of course these results give no indication of the general suitability of the

three methods, but only an assessment for this particular problem. In general
both overlay and Tobler's method have the advantage that they impose the
pycnophylactic constraint. Tobler's approach imposes smoothness on the inter-
polated values, whereas overlay inAeffect allows discontinuities to exist in the
density surface, by assuming homogeneity within each source zone. The former
will therefore out perform the latter when smoothness is a real property of the

! data, and do worse when reality is closer to the discontinuous model. But they
can both be expected to do substantially better than any distance-weighted

averaging process.

-

APPROXIMATIONS TO THE OVERLAY METHOD

In this section we consider various approximations to the intersection approach.
Overlay and the evaluation of the terms of A is computationally difficult and

expensive, and so it is common practice to resort to approximation using a sub-

. . 1
stitute matrix A”. Two common methods for extensive data are
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1
= i >
I} a s 1 if a g a . ¥V k # t, else O (13)

1
=1 i >
II) a ts 1 if a 0, else O (14)
th

For intensive data one simply considers the t row instead of the sth column.
For extensive data option I consists of assigning each source zone's population
to the target zone with which it has the greatest intersection: for II, the
source zone population is shared equally among all target zones with non-zero
intersection.

These methods have considerable operational advantages; since the longest
intersections, and the non-zero intersections can both be identified visually one
avoids the need to compute overlays and measure areas, and multiply large numbers
of terms. The quality of the approximation depends on the relative magnitudes of
the non-zero ats terms in each column (or row, as appropriate). I gives good
approximations if one term is dominant, while II is good if the variance is small.
If the number of target zones is much greater than the number of source zones both
perform very poorly.

Both methods were applied to the census tract/planning district problem. The
application of I was strightforward and gave estimates (Table 2) which were
comparable with, but not as good as the Tobler and overlay values (both I and II
impose the pycnophylactic condition) . Application of II is not as simple because
of the trivial entries in the A matrix, which would have a serious effect on the
estimates. The distribution of magnitudes of the non-zero entries in the A
matrix suggested that .05 would be a suitable critical value: a total of 61
entries less than .05 were therefore rejected as trivial. The estimates found
by applying II to the remaining non-zero entries are shown in Table 2. Although
they are substantially better than those of distance-weighted averaging, they

remain crude approximations to estimates based on A.
THE HOMOGENEITY ASSUMPTION

The overlay method's accuracy depends solely on the degree of homogeneity of
densities or intensive statistics within the source zones. The Census Tracts
used in the case study are clearly not perfectly homogeneous with respect to
population density, since the target zone estimates obtained from them are not
perfect, but thus far no attempt has been made to evaluate homogeneity directly.
Census Tracts are defined as aggregations of smaller units known as Enumeration
Areas, with a population of approximately 500 each; there were 460 populated EA's
within the city of London in 1971. 1In this section we consider reaggregating
EA's under various alternative criteria, and the resulting effects on target

zone estimates.




2 309

According to Statistics Canada (1972) Census Tracts are delineated according
1 to the following criteria:

i} a population between 2,500 and 8,000 except for tracts in the central
business district or institutional tracts which may have a lower population

ii) an area that is as homogeneous as possible in terms of economic status and
social lizing conditions

iii) boundaries that follow permanent and easily recognized lines on the ground

iv) as much as possible a compact shape.

: Homogeneity of population density is only weakly implied by (ii).

Let Ak dehote the area of EAk, and Pk its population. The aggregation of EA's

-

into larger units is defined by the matrix with elements Eks such that € s = 1

if EAk is in aggregate s, else 0. The population density in aggregate s is thus

N N
u = I ¢ P/ L g A (15)

-

k=1 ks k=1 ks 'k

where N is the number of EA's. Now assume that the target zones, the Planning

kt
estimate of the PD's population based on overlay with the aggregates is

Districts, are also aggregates of EA's; § =1 if k is in PDt' else 0. The

n N

N N
v =L 8§ A[ZI € (Z e P/Z e Al (1e)
t p=1 pt p s=1 P8 o1 ks k k=1 ks 'k

T T I R P AR T TR AR

In essence the aggregates constitute replacement census tracts, and if they can

E be designed with precisely homogeneous ‘density the estimates vt should correspond

N
exactly to the true populations of the target zones, I Spt P . The assignment
. p=1

matrix with elements eks should be constrained by contiguity so as not to produce
spatially fragmented aggregates.

One way of examining the effects of reaggregation would be to find a matrix of

N
the ¢ such that the residuals |[v, - I § P [ are minimized. This is a
ks t p=1 pt

mathematical programming problem but does not seem amenable to straightforward
solution. 1Instead the effects were examined by grouping EA's using an adaptation
of Ward's (1963) hierarchical grouping procedure. The problem is best seen as

one of collapsing 460 regions into 51, one step at a time. In each step that pair

-

of contiguous regions is merged which gives the minimum value of

D2 = (2 /A - p /a1° 17
where a and b denote two groups of EA's and P and A their populations and areas

respectively. The effect is to create 51 regions with a high degree of internal
: homogeneity with respect to population density.

The 51 regions or aggregates created by this process are markedly different

from the 51 Census Tracts. EA's containing isolated apartment buildings or other

multi-family structures remain as small regions, while the majority of the area of
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the city, being occupied by fairly uniform density single family housing, becomes
a single large aggregaﬁe. Target zone estimates based on these new aggregates are
very poor. Table 4 shows the agreement between the new estimates and the actual

target zone populations.

1
TABLE 4 )
Estimates based on 51 new aggregates &
2 Mean absolute per cent error
Criterion R (unweighted) ®
Homogeneity 0.17 177.3
Homoceneity (% = 105 0.70 100.4 .
genetY (= = 104 0.94 ‘ 19.8
compactness (e = l09 0.95 14.5
P (= = 10 0.96 14.3
Homogeneity (A = 6.0 0.97 13.6
. : max
with size (
constraint (A = 5.1 0.90 19.3
max
The estimates can be improved enormously by adding additional constraints on
the aggregation process. A compactness criterion was added by extending the
2
definiti £
efinition o Dab
2 2 2 2
= [P - + - + o -
Dab L a/Aa Pb/Ab] [Xa Xb] [Ya Yb] (18)
where (Xa Ya) are the coordinates of the centroid of region a, and « is a parameter.
The higher the value of *, the greater the importance of the distance between the
centroids of a and b in determining the sequence of grouping. The results for
various values of « are shown in Table 4.
The results were also improved by the introduction of a size constraint; regions
were joined only if the area of the resulting aggregate lay below a prescribed
value. Again the results are shown in Table 4. »
In summary, it appears that since homogeneity of population density is not an ‘
explicit design criterion for Census Tracts, reaggregation from the Enumeration .

Area level using homogeneity and compactness as criteria gives better target zone
estimates, as shown by an increase in correlation from 0.94 to 0.97, although the
mean absolute per cent error actually deteriorates slightly. It is clear, however,
that since perfect homogeneity cannot be achieved, using it as the sole criterion

results in very poor estimates because of the importance of source zone geometry.
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CONCLUSTIONS

Four of the methods discussed in this paper -- the Tobler approach and the
three variants of overlay ~- have a considerable advantage in that they impose a

pycnophylactic or volume-preserving condition. Within this group one finds two

Vi extremes: overlay methods assume homogeneity of ‘density within source regions
3 and discontinuities between, while Tobler's imposes maximum smoothness of the
» interpolated surface.

There are of course arguments in favour of both. If one source zone is con-
~ sidered in isolation then homogeneity represents the most likely condition, but
: if the densities in neighbouring zones are known it seems reasonable to modify
v the estimates accordingly, by imposing some degree of continuity across the

] boundaries. On the other hand it is not clear that this degree of continuity

should be maximal, and homogeneity is a common design criterion of source zones,
particularly Census Tracts. Although the evidence in the case study seems to
favour homogeneity and therefore overlay, the optimum method lies some where
between the two extremes. Rather than maximal smoothness or maximal homogeneity,
there is a need for an approach which imposes a degree of smoothness through some

form of autocovariance function, perhaps estimated from the data (David, 1977).

. Meanwhile the choice between the two methods should be determined by the expected
’ characteristics of the density surface at the scale of the source and target
zones; the estimates will be as good as the implicit assumptions of the method
chosen.

The results show that areal interpolation is capable of yielding good estimates

of population at the Census Tract scale. Although both methods involve substantial

computation, they should become increasingly attractive given the current levels

of interest in geographical data processing problems.
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