Ocean Waves and Surf Forecasting

Stuart H. Sweeney
Department of Geography
University of California, Santa Barbara

Winter 2006

Announcements (1/11/06)

• Geog 20 BBS:
 Register for Geography Forum first (choose username and pw). Next access GEOG 20 with password: makaha.
 http://bbs.geog.ucsb.edu
 pw: makaha

• ERes: Geog 20 readings
 http://eres.library.ucsb.edu/
 pw: chord

Overview

• Ocean regions
• Global Circulation Patterns
• Characterizing and describing ocean waves
• Wave theory, propagation, and dispersion
• Refraction, shadowing, and bathymetry
• Wind and wave measurement
• Forecasting

Ocean Regions

• Oceans
 • 71% of earth surface
 • 400,000 km (250,000 miles) exposed coastline (?)
• Coastline allocation:
 ❖ 20% poor exposure, cold water
 ❖ 20% inconsistent
 ❖ 40% mediocre, frequency [monthly, weekly]
 ❖ 20% score!! frequency=daily (southern hemi)
• Regions: Atlantic, Indian, Pacific
Ocean Regions

Atlantic (22% sea area)
- North
 - upper lat: extreme winds, winter westerly 55+ kmh (35 mph)
 - seas > 15 ft (Nova Scotia to UK)
 - 30°N, NE trade winds
 - equatorial zone: doldrums
- South
 - small, no tropical storms
 - Andes disrupt flow

Indian (20% sea area)
- (low westerlies→ ← polar easterlies): roaring 40s.
- average wave height: 15’+
- little seasonal variation

Pacific (45% sea area)
- North
 - upper lat: winter westerly 55+ kmh (35 mph)
 - seas > 15 ft (Bering Sea, Aleutian Islands)
 - Western N. Pac. Asian Monsoon, E trade winds
 - Eastern equatorial zone: calm
- South
 - Strong westerlies 35° to 60° (NZ to Cape Horn)
Overview

What are waves?

Global Circulation Patterns

Landless, stationary earth
- Equator (warm), Poles (cold)
 - Increasing air temp. → lower density
 - Decreasing air temp. → higher density
 - Convection
- Hemispheric flow
 - surface air → equator
 - upper atmos → poles

Landless, rotating earth
- Coriolis force
 - Air diverted from N-S path
 - Six spiraling wind-bands
- …with seasons
 - 23.5 degree obliquity of ecliptic
 - effect on polar temp. differential
- … and land
 - specific heat capacity – water >> land
 - hemispheric differences (land mass, consistency, etc.)

Coriolis force
- N-S movement
 - Velocity= f(latitude)
 - Relative velocity
- W-E movement
 - Rotational speed
 - Centrifugal force

Global Circulation Patterns

Coriolis force
- N-S movement
 - Velocity $= f(\text{latitude})$
 - Relative velocity
- W-E movement
 - Rotational speed
 - Centrifugal force

Source: Butt et al. (2004) Surf Science, Univ. of Hawai'i Press