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We conducted 3 experiments to examine the category adjustment model (Huttenlocher, Hedges, &
Duncan, 1991) in circumstances in which the category boundaries were irregular schematized polygons
made from outlines of maps. For the first time, accuracy was tested when only perceptual and/or existing
long-term memory information about identical locations was cued. Participants from Alberta, Canada and
California received 1 of 3 conditions: dots-only, in which a dot appeared within the polygon, and after
a 4-s dynamic mask the empty polygon appeared and the participant indicated where the dot had been;
dots-and-names, in which participants were told that the first polygon represented Alberta/California and
that each dot was in the correct location for the city whose name appeared outside the polygon; and
names-only, in which there was no first polygon, and participants clicked on the city locations from
extant memory alone. Location recall in the dots-only and dots-and-names conditions did not differ from
each other and had small but significant directional errors that pointed away from the centroids of the
polygons. In contrast, the names-only condition had large and significant directional errors that pointed
toward the centroids. Experiments 2 and 3 eliminated the distribution of stimuli and overall screen
position as causal factors. The data suggest that in the “classic” category adjustment paradigm, it is
difficult to determine a priori when Bayesian cue combination is applicable, making Bayesian analysis
less useful as a theoretical approach to location estimation.
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Memory for spatial locations (where food and home are; where
we are) is crucial in many contexts for all mobile organisms.
Location memory has been characterized as multileveled and thus
hierarchical in nature (e.g., Friedman, 2009; Huttenlocher, Hedges,
& Duncan, 1991; McNamara, 1986; Newcombe & Huttenlocher,
2000; Stevens & Coupe, 1978). As with many kinds of categories,
properties believed to be true of one level of the hierarchy are
believed to be true of the levels below it. Thus, for example,
Stevens and Coupe (1978) famously demonstrated that most peo-
ple incorrectly believe that San Diego, California, is west of Reno,
Nevada, presumably because they believe that most or indeed all
of California is west of all of Nevada. In this case the categories
are states, and the items are cities within them; the incorrect
inference at the item level is constrained by incorrect beliefs held

at the category level. In the present study we examined estimation
accuracy for the locations of dots in polygons that represented map
outlines of the state or province in which the participants lived.
The dots represented actual city locations. Some participants
knew this (as well as what the particular location was), and
others did not. To our knowledge, this is the first time that
perceptual and extant long-term conceptual knowledge about
the identical locations within the same perceptual frame have
been directly compared.

Comparing perceptual and long-term conceptual knowledge
about locations is theoretically important because at least one
prominent theory of location memory (i.e., the category adjust-
ment model, Huttenlocher et al., 1991) has relied on empirical
paradigms that do not clarify this distinction. For example, there
are occasions when the model seems to apply to principally per-
ceptual (recent) memory (e.g., the original Huttenlocher et al.,
1991, article and many others) and other occasions when, at least
in discussion, the model should apply to location memory more
generally, including that which is derived from extant knowledge
(e.g., Holden, Curby, Newcombe, & Shipley, 2010).

It is also valuable to distinguish location memory based on
short-term perceptual memory stores derived from a single pre-
sentation to location memories in long-term memory stores that are
derived from a variety of sources, including perception in various
modalities, language, school, maps, schematic expectations, etc. It
may be, for example, that the two different conditions require two
theories because different retrieval and other mechanisms are
involved. To our knowledge, and including the data from Holden
et al. (2010), this issue has never been directly tested. Thus, this
study is an attempt to compare memory for dot locations that had
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no semantic reference and were recently learned visually to mem-
ory for dot locations that had deep semantic reference and were
learned over long time periods from a variety of sources.

Finally, to test some of the Bayesian cue combination predic-
tions of the category adjustment model, we included a condition in
which the two types of cues—recent visual short-term memory
(STM) and extant long-term memory (LTM)—were combined.
This is of relevance to any theory of location memory because it
speaks to the major explanatory concepts of such models (e.g.,
centroid prototype locations, cognitive regions, cue combination,
movement toward or away from a prototype) and evaluates the
generality of these concepts. Thus, the “combined” condition in
the present study allowed us to potentially disentangle the contrib-
uting effect of the semantic content of the stimuli and the imme-
diate perceptual conditions under which they were learned.

Huttenlocher et al. (1991) first proposed a theory about how
spatial information from two different sources—a category level
and an item level—is combined adaptively to form a location
estimate (see also Huttenlocher, Hedges, Corrigan, & Crawford,
2004; Huttenlocher, Hedges, & Vevea, 2000; Newcombe & Hut-
tenlocher, 2000). Their category adjustment (CA) model takes a
Bayesian approach to combining information from multiple
sources. The main idea is that errors in judgments occur not
because the information being combined is itself biased but be-
cause when correct but uncertain information from different levels
is combined, less reliable information is given less weight than
more reliable information. To the extent that there is uncertainty at
the item level, for instance, this type of Bayesian combination
implies that judgments on a given dimension will shift away from
the value that belongs to the item and toward some value that is
determined from the item’s category. For location estimates, that
value is usually determined by the category’s borders and its
locational prototype (assumed to be the mean item location or the
center of mass of the category’s borders). The borders and proto-
type are thus paramount in determining the direction of the bias.

Huttenlocher et al. (1991) wrote that “When the uncertainty of
the memory is very large (compared with that of the prototype) so
that memory provides essentially no information, we assume that
participants give essentially total weight to the prototype and
essentially no weight to the memory” (p. 373). In this model, then,
judgments are typically biased toward the prototype. Bayesian
combination thus creates optimal judgments overall in the sense
that the average error across judgments is less than it would be if
the prototype was not used. This type of optimality is the main
justification for proposing that Bayesian combination is the psy-
chological process used in combining cues to make location judg-
ments (Cheng, Shettleworth, Huttenlocher, & Rieser, 2007). No-
tably, in the psychological literature, there are many other ways to
combine information from multiple cues and dimensions to make
an estimate (e.g., stimulus generalization [Shepard, 1987], view-
point interpolation [Edelman, 1999; Friedman & Waller, 2008;
Thrash, Waller, & Friedman, 2011], metrics and mapping [Brown
& Siegler, 1993; Friedman & Brown, 2000a]), but these are often
overlooked or downplayed by Bayesian theorists. In the present
article we take a neutral stance with respect to these other theories,
because we suspect strongly that each (as well as Bayesian theo-
ries) will have strengths and weaknesses depending on the domain
of application.

Huttenlocher et al. (1991) tested their model by presenting a
single dot randomly located within in a circular frame on each trial,
removing the stimulus, and then having participants reproduce the
location of the dot from memory in a blank paper circle after a 2-s
interval. The seminal finding was that the remembered locations of
the randomly distributed dots were clustered toward the oblique
diagonals of the circle as well as toward the center of these radii.
The categories were thus assumed to be quarter sections bounded
by imagined horizontal and vertical lines, with the diagonals as the
prototypes. Evidence that estimates shift toward the category’s
prototype has been found many times in many perceptual domains
(e.g., fatness of fish-like stimuli [Duffy, Huttenlocher, & Craw-
ford, 2006], shades of gray [Huttenlocher et al., 2000], location to
the left or right of the body midline [Spencer & Hund, 2002], and
other regular polygons [Wedell, Fitting, & Allen, 2007]). In large-
scale geographic domains, however, the bulk of the evidence
shows that estimates shift away from the actual subregional pro-
totype (e.g., the southern United States, or southern Europe) but
toward the prototype/centroid of the region in which a given
subcategory is believed to be located (in the two cases mentioned,
too far to the south; Friedman & Brown, 2000a, 2000b; Friedman
& Kohler, 2003; Friedman & Montello, 2006).

Holden et al. (2010) found that the bias toward the center of
mass of a category predicted by the category adjustment model
generalized to natural scenes (e.g., landscapes) in which the cate-
gory boundaries were very irregular (e.g., parts of sand dunes that
were a uniform color). In a second experiment, they examined
what kind of information was used to segment the scenes into
categories by using inverted scenes and colored negatives; inver-
sion interferes with the extraction of meaning but leaves low-level
visual information intact (Brockmole & Henderson, 2006). Nega-
tives do not contain all the low-level information that exists in the
corresponding canonical image (Vuong, Peissig, Harrison, & Tarr,
2005) and may also alter the ability to extract semantic information
(Goffaux et al., 2005). In both cases, the errors were still biased
toward the prototype locations, but they differed significantly
between the canonical upright images and the two types of non-
canonical images. Thus, Holden et al. (2010) concluded that both
conceptual and perceptual information were used in the categori-
zation of the scenes. However, because the scenes were novel,
“conceptual” must be at the level of object/scene recognition, as
might be required in a naming task, for example. In this sense,
recognition required long-term memory information but at the
type, rather than the token, level (i.e., categorizing an exemplar).
Thus, one can recognize that an “object” in a scene is part of a sand
dune without ever having seen that particular instance of a sand
dune. In addition, the placement of the dots within the category
boundaries did not signify anything about the identity of the
category and more important, the category boundary did not sig-
nify anything per se about where a dot should be placed. Thus, the
locations of the dots were arbitrary and deliberately bore no
relation to each other or to the category boundary.

Cheng et al. (2007) pointed out circumstances in which the
Bayesian combination of cues for navigation does not make sense
(e.g., cue competition). When two cues indicate conflicting infor-
mation, it makes little sense to combine them. However, they
concluded their review by noting that
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the notion of subjective discrepancy is crucial. Discrepancy is found
when two cues point to different values on some metric parameter
(e.g., direction). Subjective discrepancy is measured not in physical
terms but in psychological terms: in units of standard deviation in the
subjective measure of a parameter, a measure of subjective uncer-
tainty about the measure . . . small discrepancies led to integration,
whereas large discrepancies lead to using one cue or the other, not an
averaging of cues. Both sides of this principal may be compatible with
Bayesian principles.” (p. 633; emphasis added)

What is difficult to understand from this analysis of Bayesian
cue combination is how, in a given circumstance, one can predict
what is a large versus small discrepancy. Without this capability,
a Bayesian model can be made compatible with almost any pattern
of behavior. For example, Cheng et al. (2007) go on to state that
“. . . rats rely on a beacon displaced by 45o over path integration
. . . This pattern may not be contrary to Bayesian principles. The
landmark cue might be that much better and receive a strong
weighting” (p. 633; emphasis added). Thus, by definition or de-
fault, if optimal combination of cues is not found, then it must be
because one cue was not weighted highly (or at all). Cheng et al.
assumed that the alternative hypothesis to Bayesian combination
of cues for navigation—path integration—is used as a backup
system when a landmark cannot be viewed as the same landmark
that was learned previously, but they did not indicate what cir-
cumstances would cause that to happen. This situation is untenable
because it is virtually unfalsifiable.

There is growing evidence that the CA model does not gener-
alize to estimates of locations of known or remembered places
(e.g., Friedman, 2009) because, as noted above, even under situ-
ations of uncertainty, such estimates are often biased away from
category prototypes and the data indicate that both category- and
item-level information are inaccurate. That is, although there are
certainly spatial categories in large-scale geography (cognitive
geographic regions; see Montello, 2003), the estimated locations
of both the category boundaries and the cities within some of the
regions are often quite biased (Friedman, Kerkman, Brown, Stea,
& Cappello, 2005; Friedman & Montello, 2006) and often direc-
tionally away from the actual categories’ prototypes. This implies
that judgments about locations of cities may involve a different set
of processes (e.g., metrics and mapping; Brown & Siegler, 1993)
than Bayesian combination. We do not wish to go into these
alternative model(s) in depth because they have been well de-
scribed elsewhere (e.g., Brown & Siegler, 1993; Friedman &
Brown, 2000a, 2000b) and because the present experiments were
set up simply to test performance for the same locations when
participants knew they represented an actual place versus when
they did not. However, we will point out that metrics and mapping,
for instance, can predict that there are occasions when estimates
will move away from a prototype, does not require information at
category and item levels to be independent and allows extant
long-term memory information to be inaccurate (not only uncer-
tain). However, it is a model of retrieval from only LTM.

Although location estimates of cities are often biased in an
absolute sense, location memories about known domains can be
quite accurate in a relative sense. For example, if one looks at the
estimates within familiar regions, the north-south positioning of
the cities relative to each other is often quite accurate (Friedman
& Montello, 2006); so (sometimes) is configurational information
estimated on a grid (Friedman, 2009). Thus, on an absolute level,

the item locations can be quite biased, whereas in a relative or
configurational sense, they might not be. This final point makes it
unlikely that the representations are unbiased (or even indepen-
dent), which are important assumptions of the CA model. Thus,
Bayesian combination may not always be used in location esti-
mates of this sort. Rather, geographic category-level knowledge
may be biased because of other beliefs about the world that are
used in plausible reasoning processes (Collins & Michaelski,
1989), which combine those beliefs with whatever metric infor-
mation is available (see Brown & Siegler, 1993). The overall bias
within a given geographic region (however ill-placed absolutely)
may still be toward its centroid, however.

Experiment 1

A priori, it is likely that remembering dot locations relies more
on some type of visiospatial short-term memory, whereas remem-
bering city locations relies more on what is stored in long-term
memory. In Experiment 1, we compared three conditions to try to
disentangle the respective roles of visual short-term versus longer-
term memories about locations. We used participants from two
universities—the University of Alberta, in Edmonton, Canada and
the University of California in Santa Barbara. The outline of both
the province of Alberta and the state of California can be made into
schematized polygons by drawing their borders as straight lines
(see Figures 1 and 2).

Albertan and Californian participants were presented with the
Albertan and Californian polygons, respectively, in one of three
conditions, which we named according to the stimuli that were
given to be reproduced; a tentative task analysis using Bayesian
principles follows. In Experiment 1, the dots’ locations in all three
conditions were identical and corresponded to the real locations of
cities in each place. In the dots-only condition, we used a paradigm
similar to that used by Huttenlocher et al. (1991): The polygon
appeared on a computer screen with an unidentified dot, then a
dynamic masking stimulus appeared (which Huttenlocher et al.,
1991, did not use), then a blank polygon appeared. The task was to
click a mouse cursor on the location where participants remem-
bered the dot to be located. No mention was made of the “identity”
of the polygon or the dots. The mask was added to the paradigm
to prevent responding on the basis of iconic memory (Phillips,
1974). On the other hand, the overall time frame between stimulus
offset and presentation of the response frame was well within the
limits of visual short-term memory (Matsukura & Hollingworth,
2011).

In the remaining two conditions, participants were told the
identities of the polygons (either Alberta or California) at the
outset of the experiment. In the dots-and-names condition, when
the first polygon appeared with its dot, the name of the city whose
location the dot represented appeared at the top of the polygon;
participants were truthfully told that this was the correct location
of the city. Then the mask appeared and then the blank polygon
appeared. Participants responded by clicking the mouse at the
location within the polygon where they thought the dot had been;
except for the instructions and city names, the dots-only and
dots-and-names procedures were identical. In the names-only con-
dition there was no “first polygon” or mask. That is, all trials
consisted of blank polygons with a city name at the top; the
participants’ task was to click the mouse on the location within

1338 FRIEDMAN, MONTELLO, AND BURTE



the polygon where they thought each city belonged. Participants in
the names-only condition were never shown the dot locations
during the experiment but estimated their locations from any
extant knowledge of the cities they had.

A task analysis of the three conditions using the CA model
would be something like the following: For all three conditions in
both countries, the category boundary information provided by the
schematic polygon outline was perceptually available (and correct)
during both the initial presentation (for the dots-only and dots-and-
names groups) and test (for all three groups); thus, participants
should give a high weight to the category boundary information. In
addition, whatever the centroid is should be computable “online”
at test; we assume participants err toward the centroid of the given
category boundaries because the boundaries form irregular poly-
gons (cf. Holden et al., 2010; Simmering & Spencer, 2007).

In the dots-only condition, the mask should make the item-level
information unavailable to iconic memory and relatively uncertain
(compared with when it is directly present or there is no mask).
However, the information should be available in visual short-term
memory (VSTM); we remain uncommitted to any particular model
of visual/spatial short-term store but do assume we are well within
its time frame, particularly with only one item to remember (Mat-
sukura & Hollingworth, 2011). Thus, a Bayesian analysis of the
dots-only condition predicts that the item-level information should

be weighted somewhat less than the category-level information,
and we should see some movement toward the prototype.

From prior research, city location information in the names-only
condition should be less biased than when participants respond on
a grid and must infer the category boundaries (e.g., Friedman,
2009, Experiments 1 and 2; Friedman, Mohr, & Brugger, 2011).
This is because the category-level information given at test may be
assumed to be the correct border information. Thus, in the names-
only condition, the category-level information may have a much
higher weighting than the item-level information compared with
the dots-only condition. This prediction derives from the assump-
tions that participants know the border is correct and that the
item-level information will activate the city names. At this point,
they may then become aware of their uncertainty about this item-
level information, relative to the certainty of the category. Thus,
there should be larger errors toward the prototype, compared with
the dots-only condition. However, there may be subregions that are
not seen in the dots-only condition, as there often are with retrieval
from long-term memory of items in large-scale geographic spaces,
even within map boundaries (e.g., Friedman, 2009, Experiment 3).

In the dots-and-names condition, there is the possibility that
participants can use the category-level perceptual frame available
at test (with a high weighting), the correctly given item location
information at learning (with a lower weighting due to some

Figure 1. Albertan actual and estimated locations in Euclidean space, superimposed on the actual (equirect-
angular) map polygon that was used in Experiment 1. In the experiment, there were no city names shown on the
polygon in any condition; in the dots-and-names and names-only conditions the city names appeared above the
polygon on each trial.
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uncertainty, as in the dots-only condition) and possibly whatever
location information is activated in LTM by the cities’ names.
Thus, this condition should plausibly be midway in accuracy
between dots-only and names-only, because there is potentially a
third source of information to use (i.e., the presented locations,
now associated with real places). Thus, although there might be
some movement toward the centroid in the dots-and-names con-
dition, it should be less than in the names-only condition and
possibly more than in the dots-only condition because of activation
of the items in long-term memory. Of course, the Bayesian pre-
diction can be modified to say that information in LTM is given a
weight of zero, in which case the dots-only and dots-and-names
conditions will appear to be the same as each other. However, to
be fair, this should only happen if the names-only condition
produces such error-prone data that it amounts to nearly random
performance. Otherwise, as noted above, the Bayesian model can
predict any outcome.

The Bayesian predictions above should be true when we average
the data across all 26 cities. However, a priori it is likely that
participants know more about the locations (and other things) of
some cities than others. Thus, we took knowledge ratings of all the
cities after the estimate task and also analyzed the data for the “top
five” most familiar cities for each participant. We chose five
because more than that resulted in cities that were too idiosyncratic
across participants. In this case, the Bayesian approach should
predict that the item-level information should have a relatively
higher weighting than it did across all 26 cities for both the
names-only and dots-and names conditions. Movement toward the
centroid should thus be lessened, particularly in the names-only
condition.

In contrast to the Bayesian predictions, if the present names-
only condition is at all similar in its demands to the many other
geographical scales we have data for (e.g. Friedman & Brown,
2000a, 2000b; Friedman & Montello, 2006; Uttal, Friedman, Liu,
& Warren, 2010) then we should see evidence for subregions (e.g.,

for Alberta, the Rocky Mountains) in addition to a bias to make
errors toward the prototype. Furthermore, any bias in any condi-
tion that is in a direction away from the prototype goes against any
plausible reading of a Bayesian combination of information.

To summarize the Bayesian predications, all three conditions
should show responses that are biased toward the center of mass of
the polygons. In addition, the names-only condition should be less
accurate than the dots-only condition because, presumably, infor-
mation retrieved from long-term memory should be less certain
than information retrieved from visual short-term memory. How-
ever, the long-term memory information is not negligible, as has
been shown in our previous research (e.g., Friedman, 2009; Fried-
man & Montello, 2006). Consequently, the dots-and-names con-
dition should show accuracy somewhere in between the other two
conditions.

On a metrics-and-mapping account, which is described fully
elsewhere (Brown & Siegler, 1993; Friedman & Brown, 2000a,
2000b), the names-only condition should show further regional-
ization of the estimates. This subregionalization might be such that
for some of the subregions, estimates move toward the map poly-
gon’s centroid and for others it does not. Because this is a model
of retrieval from long-term memory (and of numeric information;
but see Friedman, 2009), it does not directly address the dots-only
condition but may address the dots-and-names condition. Whether
it does is an empirical question.

Method

Participants and design. The Albertans were 96 volunteers
(36 men, 60 women) from the University of Alberta’s Psychology
Department participant pool, who received partial credit toward
their grade for participating. They were randomly assigned to one
of the three experimental conditions. The data from six volunteers
(three men, three women) were not analyzed because they had not
been raised in Alberta. This left 30 participants in each of the

Figure 2. Californian actual and estimated locations in Euclidean space, superimposed on the actual (equirect-
angular) map polygon that was used in Experiment 1. In the experiment, there were no city names shown on the
polygon in any condition; in the dots-and-names and names-only conditions, the city names appeared above the
polygon on each trial.
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experimental groups. The Californians were 68 volunteers (25
men, 43 women) from the participant pool in the Department of
Geography at the University of California at Santa Barbara who
received extra credit for participating. Twelve of these individuals
(three men and nine women) were either from a different state than
California or a different country than the United States and had not
lived in California for 10 years or more; the data from these
participants were eliminated from further consideration. This left
18, 19, and 19 participants, respectively, in the dots-only, dots-
and-names, and names-only conditions. The order in which the
stimuli appeared was randomized separately for each participant.

Stimuli, apparatus, and procedure. The same computer
program was used to collect the data in both places, differing only
in the bitmap that was used for the background polygon and, of
course, the cities. There were 26 stimulus cities in Alberta and 26
in California (see Figures 1 and 2). City names in the dots-and-
names and names-only conditions appeared outside the boundaries
of the province or state, in the margin above the polygon image.

The trials were presented on a PC computer in each place, and
participants were run individually. After signing a consent form,
the participants were seated comfortably in front of the computer
screen, which in Alberta was a 19-in. (48.26-cm) Samsung LCD
monitor with a .294 dot pitch and in California was a 17-in.
(43.18-cm) NEC LCD Monitor with a .263 dot pitch. The pixel
bitmaps used for the stimuli were the same pixel height in each
location (652 pixels); the Alberta bitmap was 345 pixels wide, and
the California bitmap was 663 pixels wide.

Participants next read a screen of instructions. In the dots-only
condition they were told that their task was to remember the
location of dots that would appear in a “polygon shape.” In the
dots-and-names condition, they were told the same thing and in
addition, that the polygon was an abstract representation of either
Alberta or California and that each dot would correspond to the
actual location of the city that was named at the top of the screen.
In the names-only condition, participants were told the same
information as in the dots-and-names condition, except they were
told their job was to click the mouse cursor on the place within the
Alberta or California polygon that corresponded to each city’s
location, as best as they could remember. All participants were told
there was no time constraint on their responses and to try to be as
accurate as possible.

For each trial in the dots-only and dots-and-names conditions,
the first stimulus appeared after a 1-s warning beep and stayed on
the screen for 3 s. When it disappeared, it was replaced with an
animated mask of random black line segments for 4 s, and then the
blank polygon appeared and stayed on the screen until the partic-
ipant responded. There was a 1-s intertrial interval. For each trial
in the names-only condition, a blank polygon appeared with a city
name and stayed on the screen until the participant responded.
There was also a 1-s intertrial interval in this condition.

When the estimation task was finished, participants in all three
conditions were asked to rate their familiarity with each of the
cities on a 0–9 scale, where 0 was to be used if they had “no
knowledge of a city” and 9 was to be used if they knew “a great
deal about a city,” e.g., they had visited it. They were to rate their
knowledge with respect to their knowledge of other Albertan/
Californian cities. Each city name appeared centered on the screen
one at a time with an abbreviated scale beneath it (0 � none, 9 �
a lot). Participants responded by using the numeric keypad on the

keyboard and then pressing the enter key. There were again no
time constraints, and the cities were randomized separately for
each participant.

Results

Scoring. A mean and standard deviation across error angles
was obtained (as described below) and any response that was more
than three standard deviations from the mean (calculated sepa-
rately within each condition) was eliminated. This procedure elim-
inated 9.7% of the Alberta data and 7.6% of the California data;
the outliers were spread roughly equally across the three groups in
each country.

Data analyses. We analyzed the Alberta and California data
separately, as we regard them as replications. However, we report
the analyses together, in part because the outcomes were so sim-
ilar. We used p � .05 as the alpha level and �p

2 as the measure of
effect size, where appropriate. For data reported as vectors, we
report the 95% confidence limits and use d as the measure of effect
size. We did not assume that participants used horizontal and
vertical lines as category boundaries (as Holden et al., 2010, did
not) because Spencer and Hund (2002) showed that it is quite
difficult to impose categories on irregular spaces.

There are several issues to take account of when dealing with
angular data; these are elegantly described by Holden et al. (2010),
so we do so only briefly here. The main goal was to assess whether
individuals tend to recall locations as being closer to the category
prototype than the locations actually were. Following Holden et al.
(2010), rather than examining all the responses with respect to a
fixed point across all locations (e.g., the centroid, or center of
mass, of the polygons), we examined the magnitude and direction
of the error vectors from the correct locations themselves. That is,
we converted each participant’s response for each dot/city to a
vector originating at the associated correct location and ending at
the estimated location. This is analogous to putting all the locations
in the same “space” by computing vectors from the actual location
to the centroid, from the actual location to the estimated location,
and then computing the angle of the directional error between
them. This method thus directly assesses both the magnitude and
direction of errors simultaneously and allows one to examine error
distributions across irregularly shaped categories, as we used here.
Each error vector for each participant and location was thus
associated with its own angular “difference error.”

To assess differences between experimental groups, each par-
ticipant’s error vectors were averaged across all 26 locations (all of
the vectors were added and then the summed vector length was
divided by the number of responses); this automatically takes into
account the issue of error magnitude in that if all the errors are
toward the same direction, the average length of the resultant
vector will be longer. Further, the resultant vector represents the
mean difference angle for a single participant (see Holden et al.,
2010, for further details). Because each participant’s data represent
a mean error angle across cities, it was appropriate to analyze them
using Hotelling’s one-sample second-order analysis of angles (Zar,
1996; second-order refers to the averaging across the items). This
analysis indicates whether the participants within a group erred in
a significantly directional fashion. We analyzed differences be-
tween groups using Hotelling’s two-sample analysis of angles. We
also first transformed the data so that the direction of a vector was
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0o when it pointed directly to the centroid, 180o when it pointed
directly away from the centroid, and between 0o and 360o when it
pointed elsewhere.

Visual analyses. We first examine the data visually, because
the results are so striking. Figure 1 shows the data for Alberta and
Figure 2 for California, plotted in Euclidean pixel coordinates; the
0,0 point is at the upper left because that is where it was on the
computer screen. It is clear that the estimates from the dots-only
and dots-and-names conditions were nearly identical and very
accurate, whereas estimates from the names-only conditions were
inaccurate but not random. Furthermore, in the dots-only and
dots-and-names conditions, the estimates moved away from the
center of mass of the polygons, whereas in the names-only con-
dition, they moved toward the centroids. Finally, in the names-only
conditions, it is possible to discern within-province/state subre-
gions from the clustered pattern of distorted locations, whereas
these are not observed in the other two conditions. In Alberta there
appeared to be four regions: northern, middle, southern, and the
Rocky Mountains (in the lower left). In California, there appeared

to be at least two regions: coastal and central and perhaps northern
and southern.

Figures 3 and 4 corroborate the conclusions about the direction-
ality of the errors; they are the average second-order error vectors
of each individual participant in the three conditions and then the
mean vector across all participants. Only the names-only condition
has second-order error vectors that point on average toward the
centroid. Together, these findings imply that different mechanisms
were being used to remember locations across the two types of
conditions, one type including the two conditions potentially based
on only short-term visual memory of the dots and the second type
including the condition based only on extant beliefs in long-term
memory. These conclusions are supported by the analyses below.

Directional errors in estimating locations. All three Alberta
groups had directional errors that were significant (see Table 1 and
Figure 3). However, it is clear from Figure 3 that only the names-
only group had estimates whose direction was approximately
toward the centroid and that the errors in the other two groups,
although significant, were generally small. Importantly, Hotell-

Figure 3. Vector graphs of the Alberta data in Experiment 1. Each vector is the average for one participant;
the direction of the vector is that participant’s average direction of error across the 26 dots/cities; the magnitude
(length) of the vector is a measure of the consistency of angular error toward the centroid of the polygon (0°).
More participants in the names-only condition erred consistently toward the centroid than in the other two
groups.
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ing’s two-sample second-order analysis of angles showed that
there was no directional difference between the dots-only and
dots-and-names groups (F � 1.0), but there were significant dif-
ferences between both the dots-only group and the names-only
group, F(3, 57) � 75.32, M � 181.92o, confidence interval (CI)

[177.86o, 185.93o], d � 28.47, and between the dots-and-names
and names-only groups, F(3, 57) � 92.22, M � 186.50o, CI
[182.17o, 190.91o], d � 34.85. Because both mean differences
were close to 180o, the interpretation is that, whereas the names-
only group erred in the direction of the centroid, the dots-only and

Figure 4. Vector graphs of the California data in Experiment 1. Each vector is the average for one participant;
the direction of the vector is that participant’s average direction of error across the 26 dots/cities; the magnitude
(length) of the vector is a measure of the consistency of angular error toward the centroid of the polygon (0°).
More participants in the names-only condition erred consistently toward the centroid than in the other two
groups.

Table 1
Means, 95% Confidence Limits, F-ratios, and Effect Sizes for All 26 Stimuli in Experiment 1

Groups M � CI M M � CI F d

Alberta
Dots-Only 115.3o 156.0o 182.5o F(2, 28) � 11.3 4.26
Dots-and-Names 136.4o 170.0o 211.5o F(2, 28) � 7.86 2.97
Names-Only 3.30o 10.15o 17.40o F(2, 28) � 121.32 45.86

California
Dots-Only 13.5o 69.9o 134.19o F(2, 16) � 8.71 4.11
Dots-and-Names 218.29o 140.5o 175.8o F(2, 17) � 2.30, p � .13 1.05
Names-Only 342.7o 356.3o 7.8o F(2, 17) � 87.47 40.13

Note. CI � confidence interval.
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dots-and-names groups tended to err in approximately the direc-
tion opposite to that of the centroid.

For the California data, the dots-only group and the names-only
groups had significant directional errors, but the dots-and-names
group did not (see Table 1 and Figure 4). Once again, Hotelling’s
two-sample second-order analysis of angles showed that there was
no directional difference between the dots-only and dots-and-
names groups, F(3, 37) � 1.55, p � .25, but there were significant
directional differences between the dots-only group and the
names-only group—he mean difference was 163.13o, F(3, 37) �
27.82, CI [154.99o, 170.67o], d � 9.15—and between the dots-
and-names and names-only groups—the mean difference was
171.40o, F(3, 38) � 41.12, CI [163.89o, 178.12o.], d � 13.33.
Once again it is clear that the names-only group was the only
group that erred in the direction of the centroid of the polygon; the
other two groups erred in directions that were closer to 180o.

Errors in estimating locations of best known cities. The
three groups from Alberta did not differ from each other in their
self-rated knowledge of all 26 cities, F(2, 87) � 1.00. The means
for the dots-only, dots-and-names, and names-only groups were
4.0, 4.0, and 3.7, respectively. For the Californians the means were
3.1, 4.0, and 3.3, respectively, F(2, 53) � 3.22, �p

2 � .108, and in
this case post hoc analyses showed that the mean rated knowledge
for the dots-only and names-only groups were less than for the
dots-and-names group. However, for both Albertans and Califor-
nians, the mean ratings in all groups were roughly at the midpoint
of the scale. Because the knowledge ratings were taken after the
estimates, they could not have influenced them directly. Neverthe-
less, we correlated the post hoc knowledge ratings and the Euclid-
ean distance error between actual and estimated locations sepa-
rately for each participant and then averaged across participants
within each group (we used the distance errors because the vectors
are already averaged over cities). Not surprisingly, for both coun-
tries, there was virtually no correlation for the dots-only and
dots-and-names groups (for Alberta, the correlations were .03 and
.06, respectively, and for California they were –.12 and –.13,
respectively). This is not surprising because there was hardly any
error variance in these groups. In contrast, the correlations for the
names-only groups were –.36 for Alberta (p � .10) and –.49 for
California (p � .05). The direction of the correlations for the
names-only groups, who could only use their extant knowledge in
both tasks, is what one would expect: Those cities for which it was
claimed to have high knowledge had distance errors between

actual and estimated locations that were smaller than those cities
for which the knowledge claimed was low.

Nevertheless, because the overall mean self-rated knowledge
across cities was at the midpoint of the scale, we redid the vector
analyses reported above using the five cities that both Albertans
and Californians self-rated as the most well-known on the grounds
that these cities would have much less uncertainty associated with
them. As noted, we used five cities because these happened to be
the same cities for many of the participants; more than five
“well-known” cities became more idiosyncratic across partici-
pants. This analysis thus equalizes across groups any effects that
familiarity per se might have implicitly had on the estimates.

We first sorted the data on knowledge ratings, and then com-
puted the average error vectors, as above, for the five most well-
known cities for each participant in each group. We did not
eliminate outliers because the data were now relatively sparse (i.e.,
five observations per participant). The mean knowledge ratings for
the Albertans in the dots-only, dots-and-names, and names-only
groups were now 7.9, 7.9, and 7.6, respectively. Each of these
means were significantly above the midpoint of the scale, t(29) �
31.31, 40.57, and 26.77, respectively. The differences between
groups were not significant (F � 1.0). For the Californians, the
means for the dots-only, dots-and-names, and names-only groups
were 7.3, 8.3, and 7.7, respectively, and these three means were
also significantly above the scale’s midpoint, t(17) � 22.46,
t(18) � 51.07, and t(18) � 29.82, respectively. Here, the differ-
ences between groups were significant, F(2, 53) � 3.70, �p

2 � .12,
showing the same pattern as the overall knowledge ratings.

With respect to the estimated locations, for the Albertans, the
mean directional error for the names-only group for the five most
well-known cities was still tending toward the centroid, and the
mean directional error for the other two groups was not (see Table
2). The dots-and-names group did not have a significant directional
error, indicating that when the cities were well known, that group
was quite accurate but still erring in a direction away from the
centroid in many cases. This makes sense because most of the
well-known cities in Alberta are located south of its centroid.
Hotelling’s second-order difference between samples showed that
the dots-only group now differed from the dots-and-names group;
the mean vector difference was 106.13o, F(2, 28) � 3.72, CI
[67.70o, 151.72o], d � 1.19; the names-only group differed from
both the dots-only group and the dots-and-names group. For the
dots-only group the mean difference was 172.16o, CI [ 163.37o,

Table 2
Means, 95% Confidence Limits, F-ratios, and Effect Sizes for the Five Self-Rated Most Familiar
Cities in Experiment 1

Groups M � CI M M � CI F d

Alberta
Dots-Only 60.2o 110.5o 172.2o F(2, 28) � 8.74 3.31
Dots-and-Names 224.6o 173.9o 150.6o F � 1.00 0.01
Names-Only 356.6o 7.8o 18.36o F(2, 28) � 97.23 36.75

California
Dots-Only 350.0o 37.0o 37.2o F � 1.00 0.05
Dots-and-Names 230.2o 200.0o 157.2o F � 1.00 0.03
Names-Only 336.6o 2.4o 23.0o F(2, 17) � 20.18 9.26

Note. CI � confidence interval.
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179.89o], F(2, 28) � 41.90, d � 15.84; and for the dots-and-names
group the mean difference was 187.44o, CI [178.83o, 195.52o],
F(2, 28) � 26.10, d � 9.86. Notably, the mean vector difference
between the names-only group and the other two groups was again
approximately180o.

For the Californians, neither the dots-only nor the dots-and-
names group had significant directional errors, but the names-only
group did (see Table 2); their mean error again pointed toward the
centroid. In addition, whereas the dots-only and dots-and-names
groups did not differ from each other (F � 1.00), the average
vector difference between the names-only group and the dots-only
group was significant; the mean was 178.89o, F(2, 28) � 6.46, CI
[159.74o, 192.71o], d � 2.12. The names-only group also differed
from the dots-and-names group; the mean difference was 183.63o,
F(2, 28) � 10.60, CI [167.50o, 196.81o], d � 3.44. In sum, and
surprisingly, using the most well-known cities in each state/
province did not change the pattern of the data.

Configural knowledge. We conducted bidimensional regres-
sions on the xy estimates for each participant using the actual
values as the independent variable and the estimated values as the
dependent variable (Friedman & Kohler, 2003). When computed
in this manner, the bidimensional regression (BDR) coefficient is
interpreted as the amount of variance in the estimated locations
that can be accounted for by the Euclidean configuration of actual
locations. Thus, even if, for example, the names-only groups had
relatively inaccurate estimates on an individual city or dot level,
they might show some accuracy in terms of the overall configu-
ration of the cities.

We analyzed the Fisher-transformed regression coefficients in a
one-way analysis of variance. For both Alberta and California, the
effect of group was significant, F(2, 87) � 540.504, �p

2 � .926,
and F(2, 53) � 289.47, �p

2 � .916, respectively. The back-
transformed means (i.e., “undoing” the Fisher transformation and
yielding the means of the original correlation coefficients) for
Alberta for the dots-only, dots-and-names, and names-only condi-
tions were .993, .994, and .657, respectively, and for California
they were .997, .996, and .529, respectively. Clearly, the actual
configuration of locations that were presented in the dots-only and
dots-and-names group accounted for nearly all of the variance in the
responses; whereas in the names-only group, the configuration ac-
counted for between 28.0% and 43.2% of the variance. The estimates
in the names-only group were clearly reflecting a sizable influence of
the prototype location. However, responses were also clearly not
random and at some level, claiming that they were given a weighting
of zero in the dots-and-names group seems to be an heroic effort to
save a Bayesian account of the data. Further, the fact that the dots-
only and dots-and-names groups erred in a direction opposite to that
of the prototype argues against the Bayesian expectation, and for the
dots-only group is the first time, to our knowledge, that this has
occurred for purely perceptually based stimuli.

Discussion

To the extent that Bayesian combination implies that directional
errors should be in the direction of the center of mass of a
polygonal shape, the data from Experiment 1 showed that this
occurred only in the names-only condition. The dots-only and
dots-and-names conditions were both very accurate in terms of the
actual magnitude of error per dot and in terms of configurational

error. Further, to the extent that directional errors did occur, they
were in a direction away from the centroid. Thus, these two
conditions do not appear to have behaved in a Bayesian manner.
Further, the dot-and-names condition did not appear to have been
influenced by information from extant long-term memory, because
its errors were not in between those of the dots-only and names-
only groups. We consider the theoretical implications of this
finding further in the General Discussion.

Experiment 2

In Experiment 1, because we used real-world stimuli, the
actual locations were not uniformly distributed around the map
polygons, as they were in Huttenlocher et al. (1991) and,
roughly, in Holden et al. (2010). Huttenlocher et al. (1991)
originally suggested that erring toward the prototype might
depend on the distribution of exemplars; Huttenlocher et al.
(2004) suggested that it did not matter; but more recent studies
have shown that the distribution of dots can matter for accuracy
(e.g., Hund & Spencer, 2003; Spencer & Hund, 2002; Spetch,
Friedman, Bialowas, & Verbeek, 2010).

As it happens, most Albertan cities are in the southern half of
Alberta; most Californian cities are in the western half of Califor-
nia. To address the possible confound(s) that might be caused by
uneven distributions of dots in irregular polygons, we conducted
an experiment in Alberta in which we added 26 more dots and
distributed them quasirandomly in the “empty” spaces on the map
polygon. We reran the dots-only group with all 52 dots and a
second group of participants in which the 26 dots that were cities
were labeled with their names, as in the previous dots-and-names
group; indeed, they were the same cities. The remaining 26 dots
were not cities and had no label. We refer to this condition as the
mixed condition to distinguish it from the former dots-and-names
condition. We did not run a names-only condition because half the
locations tested had no actual city to name.

Method

Participants and design. The participants were 64 new
volunteers (29 men, 34 women) from the University of Alberta
Department of Psychology participant pool; all were from Al-
berta. They were randomly assigned to either the dots-only
condition or the mixed condition. The data from three women
and one man were replaced due to experimenter or computer
error, leaving 30 participants per group. Half the dots in each
condition were located where actual cities were located, and the
other half were distributed quasirandomly within spaces that
were otherwise empty.

Stimuli and procedure. The dots-only condition was run
with the identical procedure as in Experiment 1, but with 26
additional dots added to the stimuli. In the mixed condition,
participants saw the same 52 dots. Participants in this condition
were told, truthfully, that when a dot appeared with a city’s name,
then that was the location of the city and that when the dots did not
have a name that appeared, there was no city there. They were
further asked to pay equal attention to dots with and without city
names; that they were equally important. Otherwise the procedures
were identical to those of Experiment 1, including the mask and
the timing.
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Results

Directional errors in estimating locations. We first tested for
outlier responses in the same way as in Experiment 1, separately for
dots representing cities and those representing noncities; these ac-
counted for 1.96% of the possible responses. We next converted each
participant’s remaining responses to error vectors, as before, and
summed these separately for locations that corresponded to cities
versus those that corresponded to noncities. Note that for the group
instructed that they would be trying to remember dot locations, the
within-participant factor was maintained to keep the analyses parallel;
it does not represent a meaningful manipulation to the participants, in
that all dots simply appeared to be dots.

We analyzed the vectors for the dots that represented cities
separately from those that did not for each of the between-
participants groups (dots only and mixed; see Figure 5). For the 26
dots that represented cities, there were significant directional errors
for both groups: For the dots-only group, the mean was 175.12o,
F(2, 28) � 5.78, CI [125.10o, 212.43o], d � 2.19, and for the
mixed group, the mean was 156.01o, F(2, 28) � 5.40, CI [76.62o,
188.68o], d � 2.04. However, Hotelling’s two-sample second-

order analysis of angles showed that there was no directional
difference between the groups (F � 1.0). This pattern of means
and significance is similar to that found for the same cities in
Experiment 1 and shows that the means tended to point away from
the centroid.

For the 26 dots that did not represent cities there was a similar
pattern of means and significance (see Figure 5): For the dots-only
group, the mean directional error was 216.41o, F(2, 28) � 3.86, CI
[161.05o, 301.390o], d � 1.46, and for the mixed group the mean
was 205.82o, F(2, 28) � 10.92, CI [170.94o, 249.73o], d � 4.13.
In addition, there was no difference between the two groups in
Hotelling’s two-sample analysis. These data again replicate the
data for the dots only and dots-and-names groups of Experiment 1
rather well.

Knowledge ratings. The groups did not differ from each
other in their mean rated knowledge about the 26 cities, F(1, 58 �
2.51), p � .12. The mean rating for the STM group was 4.0 for the
dots-only group and for the mixed group it was 3.4.

Configurational knowledge. Each participant’s data were
submitted to two BDR analyses, separately for the dots that rep-

Figure 5. Vector graphs of the Alberta data for Experiment 2. Each vector is the average for one participant;
the direction of the vector is that participant’s average direction of error across the 26 dots that were either cities
or not cities; the magnitude (length) of the vector is a measure of the consistency of angular error toward the
centroid (0°).
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resented cities and those that did not. The back-transformed mean
regression coefficients for dots that were cities versus those that
were not were functionally identical (.994 and .996) and similar to
those obtained in Experiment 1. The coefficients indicate that
virtually all the variance in the estimated locations was due to the
actual locations.

Discussion

It does not appear that the distribution of dots was responsible
for the absence of a difference between the dots-only and dots-
and-names groups of Experiment 1. Nor does it seem that the
distribution prevented generally accurate performance and errors
directed away from the centroid of the polygon. Thus, this exper-
iment serves as a replication, both within and between-
participants, of the data from the dots-only and dots-and-names
groups of Experiment 1.

Experiment 3

Although both Experiments 1 and 2 had 4 s of dynamic masking
stimuli between the stimulus and response polygons, the polygons
remained in the same place on the screen. To eliminate the pos-
sibility that participants could perform the task by simply focusing
on each stimulus location, Experiment 3 was a replication of
Experiment 2, in which the second (response) polygon was moved
around the screen. If we replicate the results of Experiment 2 for
the dots-only and mixed groups, then we will have eliminated this
potential explanation of the results.

Method

Participants. We tested 60 new volunteers (32 men, 28
women) from the University of Alberta participant pool; all were
from Alberta. They were randomly assigned to either the dots-only
or the mixed condition (30 per condition).

Design, stimuli, and procedure. The design and procedure
were identical to those used in Experiment 2. The only differ-
ence between experiments was that the first (stimulus) polygon
appeared in the center of the screen, as before, but the second
(blank) polygon could now appear at random in one of six
places on the computer screen. None of the six was in the center
of the screen so participants could not rely on screen position to
facilitate responding.

Results

Neither of the groups had significant directional errors, whether
we tested just the dots that represented cities or just the dots that
did not represent cities, as can be seen in Figure 6. For all 52 dots,
the mean for the dots-only group was 181.16o, F(2, 28) � 2.41,
p � .11, and for the mixed group it was 143.17o (F � 1.00).

There were generally no differences between groups in the BDR
analysis either, F(1, 58) � 1.91, p � .17); the back-transformed
means for the dots-only group for city and noncity dots (again, a
distinction of no meaning to participants) were .981 for each, and
for the mixed group they were were .985 each. Thus, participants
were very accurate at remembering the configurations of these dots
(presented one at a time), and their accuracy could not be based on
a specific position on the screen. Moreover, even though mean

directional errors were not significantly consistent, there was no
indication that they tended either toward or away from the centroid
of the polygon. That is, there is no indication of bias in any
direction.

Discussion

Moving the polygon around the screen at test for the dots-only
and mixed groups did not affect overall accuracy; actual locations
were still accounting for approximately 96% of the variance in the
estimated locations, but there was no consistency to the directional
errors. This result is also inconsistent with expectations of both the
CA model and Bayesian combination.

General Discussion

In three experiments participants made location estimates of
dots inside irregular schematized polygonal frames. For eight
independent groups, performance in the dots-only and dots-and-
names conditions was extremely similar in kind. This finding was
true both between-participants (Experiment 1) and within-
participant (Experiments 2 and 3). Performance in these two con-
ditions was very accurate at a high level of precision, and the
directional errors that existed were generally away from the cen-
troid if they were significant. It was only in the two names-only
conditions that participants consistently made consistent errors in
the direction of the centroid of the polygons. Furthermore, Exper-
iment 2 ruled out the uneven distribution of the dots (cities) as a
possible explanation for the similarity between the dots-only and
dots-and-names conditions, and Experiment 3 ruled out absolute
screen position as a possible explanation.

We already have evidence that estimates can be biased away
from a category’s prototype when location information is retrieved
from long-term memory (Friedman, 2009; Friedman & Montello,
2006) and, in the present case, when the information is retrieved
from visual short-term memory (in dots-only and perhaps also
in dots-and-names). The results obtained from the dots-only and
dots-and-names conditions in Experiment 1 are not expected on
a Bayesian analysis and Experiments 2 and 3 rule out two
obvious possible confounds. The names-only conditions fit a
metrics-and-mapping analysis as well as a Bayesian model, but
metrics and mapping does not deal with estimates from short-
term memory. We are unaware of any particular model that can
explain the data from all three conditions in Experiment 1
without further assumptions.

One very important aspect of the data is that in none of the
dots-only or dots-and-names conditions did the direction of error
point toward the centroid of the polygon, even when we “evened-
out” the distribution of dots in Experiments 2 and 3. In addition,
the data from both these conditions were quite accurate. It was
only in the two names-only conditions in Experiment 1 that the
errors pointed toward the centroid. Thus, we think that Bayesian
combination occurred only in the latter condition, if “moving
toward the centroid” is a hallmark of such combination.

It would thus seem that only the data from only the names-only
condition support the prediction of the category adjustment model
and the use of Bayesian combination for location estimates, even
when we examined just the five most familiar places in each
region. The overall directional errors for the names-only groups in
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Experiment 1 were definitely biased toward the center of mass of
both the Albertan and Californian polygons. Presumably, the a
priori knowledge about city locations was relatively vague, com-
pared with the accurate outline of the polygon participants were to
respond in. Given the outline, the centroid could be computed
either “online” or also known a priori, and estimates therefore
tended to move toward it. The names-only conditions in Experi-
ment 1 thus produced estimates that were, indeed, in error in the
direction of the centroid of the regularized map outlines. This type
of “erring toward the prototype” (or learning it more quickly than
other instances) is found in many perceptual and semantic domains
in which the instances can be presumed to exist in long-term
memory (cf. Rosch, 1973; Rosch & Mervis, 1975), even when the
prototype is not central (cf. Rosch, 1973).

In previous research on location estimates of cities in which
an accurate category boundary was not given (e.g., Friedman &
Brown, 2000a, 2000b; Friedman & Montello, 2006), the
category-adjustment model also did not do so well at predicting
performance. In these studies, it could be inferred from the
participants’ responses that the category/regional boundaries

were quite incorrect, rendering estimates of the cities equally
incorrect. The existence in long-term memory of incorrect
category boundary information is itself contrary to the assump-
tions of the category adjustment model; however, the “inheri-
tance” of the incorrect absolute locations by the items within
each category is what one would normally expect to happen in
a category-item hierarchical relationship (cf. Rosch & Mervis,
1975; Stevens & Coupe, 1978).

Thus, it would appear that one factor that plays a role in
whether long-term memory information about items is used
and whether errors tend toward the direction of the prototype is
whether the category boundaries are given and are accurate. In the
present context, since both attributes were true, errors tended
toward the prototype. When the boundaries must be inferred (for
real-world categories), the errors tend toward regional prototypes
(as they have in our previous study; Friedman, 2009, Experiment
3). There is a hint that this tendency even occurred in the present
case, but as we do not know for sure what the regional boundaries
are (see Montello & Friedman, 2012), we cannot pursue this
question with the current data.

Figure 6. Vector graphs of the Alberta data for Experiment 3. Each vector is the average for one participant;
the direction of the vector is that participant’s average direction of error across the 26 dots that were either cities
or not cities; the magnitude (length) of the vector is a measure of the consistency of angular error toward the
centroid (0°).
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In contrast to the names-only conditions, responses in the dots-
only and dots-and-names conditions were extremely similar to
each other and quite accurate, despite the presence of a relatively
long and distracting masking stimulus and/or movement of the
response frame around the screen. These results imply that prior
knowledge about city locations was not being used to make the
estimates in the dots-and-names conditions of the present experi-
ments, despite the availability of this knowledge (as shown in the
names-only condition).

If prior long-term memory knowledge was being used in the
dots-and-names condition, the estimates for this group should have
been less accurate than they were, because the names-only groups’
estimates were inaccurate and directed toward the prototype. So
we did not obtain what would appear to be a Bayesian combination
of category-level and long-term item-level knowledge in the dots-
and-names condition; rather, it appears that category-level infor-
mation, if it was used at all, was combined with information in
short term-visual memory traces from the dots themselves in these
conditions. Thus, in this sense the CA model does not do well with
the present data: First, there is no evidence of a Bayesian combi-
nation of knowledge from long-term memory in the dots-and-
names condition, even though the data from the names-only con-
dition was clearly not random; on a Bayesian account this outcome
would indicate that the long-term memory knowledge had a weight
of zero, which at least seems odd (cf. Figures 1 and 2). It seems
odd because the information available in LTM is rich and learned
over the lifespan from a variety of sources. It is also odd in the
sense that, as noted in the introduction, it is not readily predictable
when a cue will be weighted high and when it will not. Further,
this study was designed to be as close to a “perfect” cue combi-
nation situation as possible, insofar as we had two single-cue
conditions (dots-only and names-only) and a combined condition
(dots-and-names), and there was no ambiguity in the latter condi-
tion regarding the fact that the cues were in fact from the same
source. In addition, it is clear that there was relatively decent
knowledge in the names-only condition, so this condition does not
meet the criteria for giving it a weight of zero. Thus, information
from the dots-only and names-only conditions should have shown
evidence of having been combined. It would appear that these
facts, taken together, make Bayesian analysis as a theoretical
approach to location estimation not particularly useful. Perhaps
even more important, in both the dots-only and dots-and-names
conditions, there was no indication at all that participants erred in
the direction of the centroid, which goes against the prediction of
the CA model. And that finding was replicated three times with
eight independent groups of participants.

So can the category adjustment model predict this outcome a
priori? Well, it might be conjectured that the participants knew
(subconsciously or otherwise) that the representations of the re-
sponse frame and the location of the presented dots/cities were
more accurate than what they had stored in long-term memory (for
the dots-and-names group), so the long-term memory information
was given a small or zero weighting in the dots-and-names group
(even though the information per se was not random), and it was
only the presented information (frame as category and dot as item)
that was combined. Indeed, the response frame certainly was
optimal (as a guide to dot location). And perhaps the reason the
errors did not point toward the centroid had something to do with
the “irregularity” of the polygonal shapes and the fact that all the

edges were straight (unlike Holden et al., 2010); this might have
allowed for better memory of the relation between a given dot and
one or more edges. But this post hoc explanation has the flavor of
allowing a Bayesian model to predict almost anything; we prefer to
conjecture that Bayesian combination was simply not used in the
dots-only and dots-and-names conditions. Instead, for reasons we
do not yet understand, the memory for locations per se was very
accurate. The frames might have been used as a cue to location, but
we do not think they were combined with locations because we did
not see movement toward the prototype. However, compared with
a circle or a very irregular polygon, these particular irregular but
relatively simple and straight-lined polygons may have been help-
ful in this way.

Because of our observed data, we believe that Holden et al.’s
(2010) conclusion that both conceptual and perceptual knowledge
was being used to categorize their upright scenes is true at a very
different level than our data are. Theirs was a categorization task;
this is a different “level” of conceptual information than what we
are talking about when we discuss knowledge about locations and
other aspects of cities extant in long-term memory in the present
case.

Another finding in our study indicating that the names-only
condition was qualitatively different than the other two conditions
was that in that condition there were apparently four regions in the
Alberta data and at least two (or more) in the California data. This
is theoretically interesting because these are the “real” regions
(categories) that participants think of when they make their esti-
mates from long-term memory, and it is prior beliefs about the
location of the regions that contribute to bias in the estimates made
from long-term memory. No regions of this sort were observed in
the dots-only or dots-and-names groups. Indeed, for a different
purpose than the present study, we conducted another experiment
(Montello & Friedman, 2012) in both California and Alberta, in
which participants were given actual maps of each state/province
and asked to draw regions on the map (the instructions defined
regions as being “pieces of the earth’s surface that enclose fairly
similar or homogenous areas. The similarity may be based on
natural or cultural variables, or any combination.”). Fifty out of 67
(74.6%) of the Albertans drew three to four regions labeled, for
example, “north, central, south, and Rocky Mountains” (see Figure
1). The Californian data were more complex: Out of 141 partici-
pants 59 divided the state from north to south with between two
and four regions, and 39 divided the state from east to west with
between two and four coastal/inland regions, for a total of 63.8%
using one of these schemes. The remaining participants identified
particular cities as regions. The north-south versus east-west divi-
sions can be seen to a certain extent in Figure 2. Some participants
in both countries added further details (e.g., they put a small square
around the location of Edmonton or labeled the Bay area in
California), but by and large these obtained representations were
similar in kind to the regions obtained (by eye) in the names-only
conditions of Experiment 1 (see Figures 1 and 2). We could not
precisely analyze the subregions in the present data or determine
their centroid because we do not know their precise borders and,
indeed, have evidence that the borders are likely to be imprecise
(Montello & Friedman, 2012).

It is also interesting that we found at the state and provincial
scale in the names-only groups the same kind of gaps between
regions that we and others have previously observed at the level of
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the continent (e.g., Friedman, 2009; Friedman & Montello, 2006),
the city (Hirtle & Jonides, 1985), and the college campus (Uttal et
al., 2010). Thus, for real places the data from several geographic
scales suggest that participants form regions in their long-term
memory representations and once formed, those representations
may be biased in some way; the bias is inherited by the items
believed to belong within the regions (cf. Stevens & Coupe, 1978).
Clearly, in the present case, although participants claimed to be
quite familiar with some of these cities, information from long-
term memory appeared not to have been given any weight in
making location estimates in the dots-and-names conditions.

Studies, such as the original work by Huttenlocher et al. (1991)
and Wedell et al. (2007), found biases in location estimates in a
direction toward the spatial centroid (or centroids). However,
currently the category adjustment model lacks an a priori theoret-
ical basis for identifying the spatial centroid as the prototype, as
opposed to other possible measures of spatial central tendency,
such as the center of the maximum enclosed circle, the centroid of
the convex hull, and so on (Fotheringham, Brunsdon, & Charlton,
2000). It is unclear what recall patterns would occur with ex-
tremely concave polygons, the center of mass of which can even be
outside the boundaries. Furthermore, in both the Alberta and the
California data, we found that a single prototype point attracted
biased LTM recall. This contrasts with previous research with
regular, convex polygons that finds multiple points, often four,
serving as prototype attractors for biased recall (e.g., Wedell et al.,
2007). Considerations such as these suggest that the CA model
would benefit from the development of a stronger theoretical basis
for identifying a priori how many points will serve as prototype
locations in a given region of a given shape, where they are likely
to be located, and why. It does not seem obvious why the center of
mass would be the attractor for some polygons but not others.

We do not know why circles, regular polygons, and irregular
regions in natural scenes produced such markedly different pat-
terns of bias than that observed in the irregular but schematic
polygons used here. However, it is clear that the data from the
dots-only condition are easily replicated and are very similar to the
data from the dots-and names condition (also easily replicated), in
which participants could have used long-term item information in
their responses if they so chose. We believe, therefore, that the
replication across two sites, two polygons, and two participant
populations is a strong indicator that the data seriously constrain
the CA model.

As noted, with respect to the present data, this study is not the
first time that estimates have tended away from the centroid of a
region (e.g., Friedman & Brown, 2000a, 2000b; Friedman &
Montello, 2006). However, prior studies have used only extant
LTM knowledge for making location estimates. To our knowl-
edge, the present data represent the first time that estimates from
perception alone (i.e., dots-only) have exhibited this behavior. This
is a very serious constraint on the CA model and, indeed, is
contrary to the model’s predictions.

We do not wish, at this point, to construe a model to explain the
data from the dots-only and dots-and-names conditions; it would
clearly be ad hoc. Nor do we wish to claim that one of the models
we mentioned previously (e.g., viewpoint interpolation; general-
ization) would necessarily do better. We do not know enough
about how prototype locations are chosen in irregular polygons for
a short-term visual memory task. It is plausible that participants in

the dots-only and dots-and-names conditions used asymmetries in
the boundaries of the polygons, rather than their centroids, as
locations from which to recall dot locations. One obvious approach
to the issue of when to expect movement toward a centroid and
when to expect movement away from it for perceptually based
estimates would be to test location memory systematically using a
continuum of irregular polygonal frames with specific features
(e.g., concavity; amount of asymmetry). Further, as noted above,
any theory of spatial location estimates needs a basis for predict-
ing, given a certain shape, when a spatial centroid is likely to be
the center of its mass versus when it is likely to be defined in some
other manner, particularly for concave polygons.

It is also obvious that more research is needed using geographic
categories in which there are different strengths of long-term
memory location knowledge (cf. Uttal et al., 2010) to sort out some
of these theoretical issues. It is also plausible that reliance on
long-term knowledge will vary as a function of the relative ease of
the task, such as reproducing or merely recognizing the presented
location (e.g., Sampaio & Wang, 2009), and other contextual
aspects of the task, such as whether characteristics of places
besides location (e.g., linguistic traditions) need to be considered.
For example, Uttal et al.’s (2010) participants took approximately
a year of navigation (in addition to being exposed to maps, verbal
directions, etc.) to learn the (linguistically based) categories of a
campus and have those categories affect location judgments of the
buildings within them. Further, the point that Bayesian models
may be too flexible should not be lost: It is too facile to say, post
hoc, that a given dimension was weighted or not. That is, we could
claim that in the dots-only and dots-and-names conditions the
long-term memory location information was simply not given any
weight after the data were available, but it would presumably be
better to be able to do that a priori. Equally, we could claim that in
the names-only condition, long-term memory information had to
be given weight (and the regression coefficients reflecting config-
ural knowledge were certainly not zero), but again, it would
presumably be better to be able to do this a priori. Thus, why
extant knowledge was weighted zero in the dots-and-names con-
dition is not obvious. It seems clear that more research using
real-world preexisting spatial categories is essential to resolve the
issue of when Bayesian combination is used (and how) and when
it is not.
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