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ABSTRACT 

 

Optimal Scheduling of Forest Treatments to Reduce Fire Intensity 

 

By 

 

Matthew Russell Niblett 

 

National Forests, particularly in the western United States, contain substantially 

denser forests than those at the turn of the 19
th

 century. Subsequently, major forest 

fires that fall outside the normal disturbance cycle clear the forest, threatening old 

growth stands and the flora and fauna that inhabit them. In order to protect these 

groves and habitats, the U.S. Forest Service has initiated a program to schedule 

treatments that aim to reduce the severity and size of wildfires by spatiotemporally 

scheduling various treatments that remove fuels and generally decrease the density of 

the forest. This document describes the model used to achieve this objective.  
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Introduction 

1.1. The Problem 

The forests of the Western United States have increased in both density of 

vegetation and litter  since the turn of the nineteenth century from a landscape 

interspersed with open areas populated with perennial grasses to one dominated by 

trees, undergrowth, and fuels (Gruell 2001). This increase in fuels has created 

conditions such that once a fire is started it burns so intensely that all life is 

effectively removed and what remains has the appearance of a “moonscape”. Fire 

suppression has also been blamed for the buildup of dead litter-based fuels as areas 

that experience periodic fire tend to have less severe fires and less dead or downed 

trees. Although the debate on the impact of fire suppression has been underway for 

decades, a more recent trend in forest management may also be a major contributor to 

large scale fire events. In the western United States, many national forests have 

reduced or eliminated harvesting, either by thinning or by clear cuts. Such activities 

tend to reduce fuels overall, create openings, reduce ladder fuels, and produce a 

landscape that is less prone to large severe crown fires. It is quite possible that the 

two trends, reduced harvesting and fire suppression, have caused a problem that will 

be difficult to reverse, without significant investment in fuels treatments. As National 

Forests have become increasingly targeted by environmentalists to serve as core 

habitat for threatened and endangered species, a return to large scale harvesting is 

unrealistic. Even large scale thinning and stand management has been discouraged.  
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In 1995, The “New Perspectives” approach of the US Forest Service was built 

around the philosophy that forests need to be managed within the natural range of 

variability. The goal of this approach was to allow natural processes to define the 

scale and level of activities in the forest so that over the long run forest health would 

improve, including the habitat quality of core areas, e.g. old growth: see “Federal 

Wildland Fire Management: Policy & Program Review” (United States Department 

of the Interior 1995).  

The big conundrum is to reintroduce fire as a natural (unsuppressed) process into 

forests without creating ground clearing events. This tact cannot be accomplished 

without a concerted effort towards fuels reduction.  The US Forest Service has 

developed a policy for fuels removal based upon the research of Mark Finney (Finney 

2004; Finney 2006). His research, which will be elaborated later, tends to suggest that 

spatially scattered areas designated for thinning and fuels removal would reduce the 

size of severe fires, regardless of where they start. Based upon the results of a large 

number of fire simulations, the forest service has developed a fuels reduction 

management strategy for forest operations. As the fuels treatment plans are instituted, 

it is expected that fire suppression will be reduced, leading to a healthier forest.   

In addition to re-integrating fire into the ecosystem after years of overgrowth and 

fire suppression, the Forest Service also needs to protect remnant old growth forest 

stand, endangered or threatened species, and lands classified as Wildland Urban 

Interface lands (WUI). Wildlife Urban Interface (WUI) lands, as the title implies, are 

lands in which humans reside or in which they are active, for instance a mountain 
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community with cabins and commercial shops or an area that is heavily used for 

camping and outdoor recreation. In addition to protecting these communities, the 

Forest Service must also preserve forest lands for future generations’ recreational and 

even possible industrial use supporting a sustainable base of forest products.  

The biggest constraint to moving forward with plans for fuels removal is cost. 

Congress has often underfunded Forest Service activities by relying on income 

generated from logging. Since income from logging has been virtually eliminated, 

Congressional authorizations limit the extent to which fuels removal can be 

accomplished. Although it would be desirable to treat an entire forest over a short 

period of time with the appropriate fuels removal projects, budget limitations mean 

that fuels treatment plans need to be spread over decades instead of a few years. This 

fact alone has created a “nightmare-like” problem of prioritizing and scheduling 

removal activities across a forest. In fact, this scheduling problem is the core issue of 

this thesis.  

The remainder of the thesis is as follows: This chapter  describes the research of  

Mark Finney associated with what is called the  “Finney Effect”, provides definitions 

for common terminology used  by planners of the United States Forest Service, and 

concludes with a  statement of the spatially-based scheduling problem that is the 

subject of this thesis.  Chapter two describes the mathematical formulation of the 

model, variables used, the objectives, and the constraints. Chapter three describes the 

methods used in the approach to solve the model. Chapter four contains the results of 
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the approaches used in the methods section. Chapter five discusses the results, and 

Chapter six provides conclusions. 

 

 

1.2. The “Finney Effect” 

The “Finney Effect” is an effect identified by Mark Finney of the United States 

Forest Service’s Rocky Mountain Research Station in Missoula, Montana; Finney 

stated that by creating, “a spatial arrangement of treatments that primarily modifies 

fire behavior would involve area-based or dispersed patterns (Finney 2001)” which 

are optimally placed (Finney 2006). That is, fuel reductions such as controlled burns 

and thinning in limited areas conforming to an optimized spatial pattern reduces fire 

severity without treating fuels in the entire forest. 

The reduction in fuels helps to confine forest fires to the ground, rather than the 

crowns of trees which results in areas devoid of live vegetation (See Figure 1). 

Figure 1 shows two post fire scenes, one that had been treated with controlled burn 

and one which had not been treated. The “post-fire scene” of the treated landscape 

shows that the forest was somewhat resilient as compared to the “post-fire” scene 

where there were no treatments.  An intense fire is one that creates a moonscape and 

or one that grows to an extremely large size; a less intense fire would be one in which 

life continues to exist after the burn, such as trees and habitat in the crowns, or one 

that is confined to small burned areas. Finney showed through the use of a fire 

simulation computer program that treatments need to be dispersed, but do not need to  
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Figure 1 - Treatment Effects at the Stand Level 

 

Source: Presentation by Mark Finney, September 15, 2004 in Washington, D.C.  

(Finney 2004) 
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involve the entire forest. He identified that if approximately 28% of the forest is 

treated in a dispersed pattern of small treatment areas, forest fire behavior was similar 

to that if the entire forest had been treated with fuel removal techniques. Thus, the 

concept of the “Finney Effect” was borne:  remove fuels in a dispersed treatment 

pattern covering about 28% of a forest, and fire size and severity will be substantially 

reduced. This concept has since been incorporated in the majority of forest 

management plans in California.  

 Unfortunately, the effectiveness of the “Finney Effect” for a given treatment lasts 

from approximately 15 to 20 years. This implies that areas will need to be retreated or 

maintained over time until the forest is in equilibrium with the disturbance due to fire.  

This is an issue that is still subject to debate as changes in climate may increase the 

occurrence of fire, and longer and extended droughts may increase tree mortality due 

to insects, which will increase downed litter and ladder fuels. Thus, in the near to 

longer term, the Forest Service may find it necessary to continue treatments (both 

initial and maintenance).  

 

The US Forest Service is chronically underfunded and cannot treat even a portion 

of a forest without spreading the treatment activities over time. Fuels treatment plans 

tend to be spread over a period of 20 years.  In order to fully characterize the problem 

of fuels treatment planning it is first necessary to define several important spatial 

constructs. These are constructs are covered in the next section. Given these spatial 

constructs, the problem of fuels reduction is then defined in section 1.4 



 

 

 7 

1.3. SPLATs and PUCS 

The first important term to define is the SPLAT. SPLATs are Strategically Placed 

Area Treatments or Strategically Placed Landscape Area Treatments; both 

breakdowns of the SPLAT acronym are used interchangeably by the United States 

Forest Service (USFS) and in the fire literature. When forest planners develop a fuels 

removal plan, the areas that have been delineated for treatment within the plan are 

called SPLATS. Overall, approximately 25-28% of a forest may be represented by 

SPLATS. Essentially, treating all SPLATS will bring the forest to the “Finney” 

condition.  

 

Each SPLAT has a defined type of activity, e.g. control burns, thinning, and 

mechanized fuel removal. They are often placed in order to help protect nearby 

critical habitat and WUI lands.  

SPLATs are drawn by United States Forest Service (USFS) staff at the Ranger 

District level in a national forest. SPLAT boundaries are controlled in part by the 

forest stand and the density of fuels, by natural features, such as rivers and mountain 

ridges, by breaks in vegetation like forest service roads and escarpments, and by slope 

and aspect, as well as political boundaries, such as county lines, and other 

administrative boundaries. Generally, SPLAT boundaries are drawn by a group of 

forest service personnel who are familiar with the area and forest condition.  (Kohler 

2008).  
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SPLATs in and of themselves are quite small and are too small to consider as a 

project in which to contract with a company to apply the necessary treatments. 

Therefore, nearby SPLATs are clustered into a planning unit called Planning Unit 

Containing Splats (PUC). A PUC contains a set of SPLATs and is considered large 

enough to be a project that can be contracted for fuels removal.  A  PUC boundary is 

defined by SPLATs that have been grouped, political boundaries such as county lines, 

and other administrative boundaries such as Ranger districts, as well as size. If all 

SPLATs within a PUC are treated, then it is assumed that the Finney condition will be 

met throughout the PUC (Error! Reference source not found.). 

1.4. A detailed Statement of the Problem 

One of the principal goals in forest management in the western United States is to 

reduce the intensity and size of fires. Forest management practices over the last two 

decades have changed considerably based upon a change in priorities. This change 

has resulted in moving from an emphasis on timber production to one of habitat 

protection. Along with this major shift in priorities has been a continued push towards 

fire suppression, especially in areas that are close to recreation areas.  Given that fire 

has been suppressed, forest litter and ladder fuels have accumulated to the extent that 

many fires are large ground clearing events. Fire is a part of the natural regime, but 

fuels have accumulated to the extent that the state of a forest has changed such that a 

fire cannot be maintained as fires tend to be too large and intense and what replaces 

the forest tends to be scrub and chaparral. To remedy the outbreak of large fires and 

the expansion of scrub and chaparral, it makes sense to attempt to bring the condition  
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Figure 2 - PUCS and SPLATS 

 
Note: In this case only the colored SPLATS would be scheduled; the gray area 

contains other SPLATS that are not shown because they have not been scheduled.  
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of the forest into a state in which naturally occurring fire events do not destroy 

substantial amounts of habitat, and public and private property, and reduce the 

expansion of scrub and chaparral land cover.    

Ideally, one could treat the entire forest at the same time. However, with a limited 

budget one can only treat small amounts of area at a time. It thus makes sense to 

remove the right quantity of fuels (called fuels treatments) in optimal areas across a 

forest so that the forest landscape can remain viable with periodic fire events. 

Reducing fuels can be accomplished by a number of fuels treatment techniques, such 

as controlled burns, mechanical collection of litter and ladder fuels, and thinning of 

stands. Unfortunately most of the fuels treatment techniques involve substantial cost. 

Even though thinning of stands can provide revenue, it often involves smaller less 

valuable trees, and requires extra care so as to not damage the trees that are retained.  

The bottom line is that all fuels removal techniques do not generate enough revenue 

to cover the costs. Thus, fuels removal is constrained by available resources.   

The main problem is that resources are limited to the extent that fuels treatments need 

to be scheduled over a relatively long planning horizon, e.g. 20 years. This is not 

ideal, as it means that it will take quite some time to bring a forest into a treated, more 

fire resistant state through the Finney effect. Given that a forest cannot be treated all 

at once, the locations chosen for treatments early in the schedule may play a 

significant role in protecting the forest and recreational areas from fires that may 

occur before the entire forest has been brought entirely into a treated state. Thus, the 

basic problem in fire intensity planning is to: 
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Select those areas (SPLATS) within the forest which are ideal for 

fuels removal within the context of slowing fire propagation. The 

number and pattern of SPLATS must be large enough in number and 

distributed widely across a forest, so that the pattern meets the 

criterion identified by Mark Finney (Finney 2001; Finney, McHugh 

et al. 2005).  

 

 

SPLATs are then clustered into Planning Units, called PUCS, which are of a size 

that makes sense within the context of contracting and project monitoring. Basically, 

treating a PUC means treating those SPLATs within that PUC.   Since not all PUCs 

can be treated at the same time, the treatments must be scheduled over a 20 year 

period. Thus, the basic problem in fuels removal planning then is to: 

Schedule which PUCs should be treated in each year subject to a 

yearly budget constraint while attempting to schedule SPLATS in 

areas of high priorities first and to cluster treated areas so that over 

time large tracts of the forest meet the Finney condition. 

 

This problem is called the fire intensity reduction scheduling (FIRS) problem. 

Though this problem has been generally defined within the context of forest 

maintenance and fuels reduction, it is also applicable to other spatial problems as well 

including allocating emergency response needs and how best to allocate aid 

distributed over time.  

 

Section 2 – FIRS Model 

The basic mathematical formulation of the Fire Intensity Reduction Scheduling 

(FIRS) model is outlined in the following pages. This model is an NP hard model that 
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schedules PUCs (planning units containing SPLATs) over space and time. Two 

versions of the model were developed; the initial model is described below and then 

followed by the revised model and a discussion of why the model was revised.  

 

  



 

 

 13 

Fire Intensity Reduction Scheduling (FIRS) model  

Notation 

 

ji,  = indices used to represent a specific project areas, where j = 1, 2, 3, …, n 

t  = an index used to represent planning periods, where t = 1, 2, ,3 …, m 

k  = an index used to represent a specific planning area, where k = 1, 2, …, p 

jtc  = the cost of treating project j in time period t 

ja
 

= the size of treatment area in project  j in acres 

jf
 

= the total acreage of project j (treated and untreated) 

jw
 

= the amount of wildland-urban interface acres present in project j 

jh
 

= the number of acres of  sensitive habitat present in project j 

j
 

= the earliest time period in which project j can be scheduled 

tH
 

= the total number of acres of habitat that can be disturbed in time period t 

td
 = 

the discount factor for time t, where value is zero in time one and 

increases with time 

tB
 = the available budget for fuel removal projects in time period t 

t  =  tjj   periodin ent for treatm assigned becan   project   |  

j  =  tjt   periodin ent for treatm assigned becan   project   |
 

jP  =  kjj   area planning ofpart  is project   |
 

E  =  jijiji  hereadjacent w are  and  areasproject   |),(
 

ts  = deviation above the average yearly level of treatment area for time t 

tv
 = deviation below the average yearly level of treatment area for time t 

 

In addition to the above notation, we will need the following decision variables: 

 






                                                                       otherwise  0,

 period in timeent for treatm scheduled is  project  if 1,
  

tj
x jt  

 






                                                                     otherwise ,0

 periodin project  a assignednot  is  area planning if ,1 tk
ukt  

 






                                                                                  otherwise 0,

 period in time scheduledboth  are  project  and project   if 1,
0

tji
zijt  
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

 


                                                                                                  otherwise 0,

  1 in time scheduled is project  and  in time scheduled is project  if 1,
1

tjti
zijt  



 


                                                                                                   otherwise 0,

  1 in time scheduled is project  and  in time scheduled is project  if 1,
1

titj
z jit  

 

Initial Model Formulation 

 

Fire Intensity Reduction Scheduling (FIRS) model 

Basic formulation 


 


m

t j

jtj

t

xfZMaximize
1

1        


 


p

k

m

t

ktuZMinimize
1 1

2        


 


m

t

m

j

jtjt

t

xwdZMinimize
1

3        





m

t

tt vsZMinimize
1

4 )(       

  
 



















Eji

T

t

T

t

jitijtijt

ji ji

zzzZMaximize
),( ),max(

1

),max(

110

5                   
 

 

 

Subject to the following: 

 

  



 

 

 15 

Fire Intensity Reduction Scheduling Model 

Basic formulation continued 

 

1)   mtpkux
tkPj

ktjt ,...,3 ,2 ,1  and  ,...,3 ,2 ,1each for         1           
  

 

2) 



tj

tjtjt mtBxc ,...,3 ,2 ,1each for                      

 

 

3) 



tj

tjtjt mtHxh ,...,3 ,2 ,1each for                     

 

 

4) njx
m

t

jt

j

,...,3 ,2 ,1each for                         1  


 

 

5) A) 

      
ijmtEjixz jiitijt    and  ),max(  and  ),(each for                         0   

ijmtEjixz jijtijt    and  ),max(  and  ),(each for                         0   

B)  

       
ijmtEjixz jiitijt    and  1),max(  and  ),(each for                         1                

       ijmtEjixz jijtijt     and  1),max(  and  ),(each for                      1

1                 

       ijmtEjixz jijtjit    and  1),max(  and  ),(each for                        1                

       ijmtEjixz jiitjit     and  1),max(  and  ),(each for                      1

1 
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Fire Intensity Reduction Scheduling Model 

Basic formulation continued 

 

6) mtsvxaxa
m tt

j

jtj

m

t j

jtj

tt

,...,3 ,2 ,1each for                         1

1

 
   

 

7)   mtnjx jjjt ,...,1 ,  and  ,...,3,2,1each for                   1,0      

  mtpkukt ,...,3 ,2 ,1  and  ,...,3,2,1each for                   1,0     

  mtvt ,...,3 ,2 ,1each for                       0     

  mtst ,...,3 ,2 ,1each for                       0     

      
  mtEjiz jiijt  ...., ,),max( and  ),(each  for                   1,0   0   

      
  1 ...., ,),max( and  ),(each  for                   1,0   1  mtEjiz jiijt   

        1 ...., ,),max( and  ),(each  for                   1,0   1  mtEjiz jijit 

  

 

The FIRS model is a multi-objective integer-linear programming model 

consisting of five objectives. The FIRS model schedules projects over space and time 

in order to reduce fire intensity, protect WUI and sensitive habitat, by allocating a 

limited treatment budget over a number of years.   One of the principal objectives in 

scheduling is to schedule neighboring PUCs in the same year if at all possible. By 

doing this, an even large contiguous chunk of land is brought to the “Finney” 

condition. Forest planners have reasoned that larger chunks of larger treated land tend 

to form an even greater defensive element for nearby habitat that needs to be 

protected. When neighboring units cannot be scheduled in the same year, then it is 
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even considered desirable to schedule such units in subsequent years as this helps to 

generate a large chunk of treated land over a few years rather than in the same year. 

This objective is loosely called the adjacency objective, as there is an attempt to treat 

adjacent units in either the same year or a subsequent year.  

Within the FIRS model there are five binary integer decision variables that are 

necessary to track: adjacency, the number of projects scheduled within a planning 

area (ranger district), and whether or not a specific PUCS is scheduled. They are as 

follows: 

 The xjt variables, take on the value of one if PUC project j is scheduled at 

time t, 0 if not; 

 The ukt variables, take on the value of one if planning area k is not 

assigned a PUC project in time period t, 0 if it is assigned a PUC project in 

time period t; 

 The 
0

ijtz  variables, take on the value of one if PUC project i and PUC 

project j are both scheduled in time period t, 0 if not; 

 The 
1

ijtz  variables, take on the value of one if PUC project i is scheduled in 

time t and PUC project j is scheduled in time 1t , 0 if not; 

 The 
1

jitz  variables, take on the value of one if PUC project j is scheduled in 

time t and PUC project i is scheduled in time 1t , 0 if not. 

The model solution is comprised of xjt variables that signify when a PUC project 

has been scheduled, as well as ukt variables which keep track of PUC projects 
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scheduled in planning areas, and the z variables which keep track of scheduled PUC 

project adjacencies. 

2.1. Model Components Explained 

A. The Objective 

The first objective, Z1 or 
 


m

t j

jtj

t

xfZMaximize
1

1       , involves maximizing the 

total number of acres of PUC projects , over the entire planning period that is 

classified as meeting the Finney threshold. The second objective, Z2 or 


 


p

k

m

t

ktuZMinimize
1 1

2       , involves minimizing the number of time periods t in which 

a given planning area k has not been assigned at least one project (ukt). Planning areas 

are relatively large subdivisions of the forest and represent ranger districts. Since each 

ranger district is a somewhat independent operating unit within a National Forest, it is 

important to keep planning and operations staff involved in each ranger district during 

each time period t if at all possible. The third objective, Z3 or 


 


m

t

m

j

jtjt

t

xwdZMinimize
1

3       , is an objective that is designed to minimize or 

maximize a discounted function of treated WUI area over time. Given a discount 

function it is possible to attempt to “Front-loads” or in the maximize sense “End-
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loads”
1
 WUI acres on the schedule. In the FIRS model this objective is used 

maximize the treatment of PUCs within WUI areas as quickly and as early as 

possible. This objective is often touted as an attempt to protect cabins and other 

recreational facilities from the outset. It also helps to keep fire suppression costs to be 

lower than what would be otherwise needed to keep cabins from being destroyed in a 

wildfire. Scheduling PUCs containing WUI acreage as early as possible  is achieved 

by multiplying the discount factor dt by the amount of Wildland-Urban Interface 

(WUI) acres present in PUC project j (wj) multiplied by the decision variable jtx

where PUC project j has been scheduled in time period t,.  

The fourth objective, Z4 



m

t

tt vsZMinimize
1

4 )(      , is the “Evenflow” objective 

which minimizes year to year variation in treated acres by minimizing the deviation 

of treated acreage above the average (st) and the deviation of treated acres below 

average (vt) over all years. Minimizing the deviation of treated acres above and below 

the average level of treatment helps ensure that acreage treated from year to year does 

not dramatically vary. This is an objective that helps to keep workload consistent 

from year to year for the forest service staff. The fifth objective, Z5 or 
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1
 Front-loading attempts to schedule all WUI acreage early in the planning 

horizon; End-loading attempts to schedule WUI acreage late in the planning horizon. 

In this case we have chosen to front-load WUI acreage as it has the greatest amount 

of human interaction and, therefore, the greatest potential for damage by forest fire. 
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adjacencies in time period t ( 0

ijtZ ) and project adjacencies over subsequent years ( 1

ijtZ

). This objective was described as one of the principal objectives at the beginning of 

this section. Scheduling neighboring PUCs at the same time or close to the same time 

is considered to be very beneficial as barriers to large severe fires. 

B. Simple Constraints 

Constraint 1 assigns at least one PUC project, xjt, to each planning unit k in each 

time period t, or it forces  ukt =1. The constraint is set up such that if a PUC project j 

in time period t is scheduled ( jtx  =1), then ktu  will take on the value of zero. In this 

way the ktu  variables tracks when a project is scheduled in a planning area (ranger 

district). This constraint along with the objective 2   attempts to keep each planning 

area, or ranger district and its personnel, within a national forest occupied with a PUC 

project each year. Constraint 2 forces the sum of every scheduled project xjt and its 

associated fuels treatment cost cjt to be less than the years allotted budget Bt. This 

constraint keeps the number of scheduled projects (PUCS) scheduled in year t to 

remain at or below the specified budget for year t. Constraint 3 forces every 

scheduled project xjt and the sum of all sensitive habitats contained within it (hjt) to be 

less than the years maximum limit on disrupting sensitive habitat.  In this way, the 

amount of sensitive habitat that can be disturbed in a year can be kept to an amount 

that is deemed appropriate for each year. tH  amounts do not vary from year to year; 

national forest staff define this vale as a small percentage of the total amount of 
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sensitive habitat.  Constraint 4 stipulates that each project j can be scheduled at most 

once between the earliest possible time project j can be scheduled and the last year of 

the planning horizon. 

C. Adjacency Constraints 

The fifth objective of the model represents an attempt to maximize occurrences of 

when adjacent units are scheduled during the same year or on a successive year. This 

objective is designed to generate a large cluster of units that have been brought to a 

“Finney” treatment level. The adjacency constraints, 5A and 5B are used to track 

whether adjacent units have been scheduled in the same time period (5A) or split 

between two successive time periods (5B). The objective seeks to maximize the 

occurrences of when 
0

ijtZ variables equal 1 or when 
1

ijtZ  variables equal 1. Type A 

constraints include the decision variable 
0

ijtZ , which can take on the value of 1 only 

when both projects i and j are both scheduled in time period t  (or zero if this is not 

the case). Note that the constraints and scheduling variables, itX , are only written for 

time periods in which it is feasible to schedule both projects i  and j. Also note that 

such variables  itX  exist only when units i and j are adjacent.   Type A constraints are 

written in groups of two, one for unit i being scheduled in time period t,  itX  , and 

one form unit j being scheduled in time period t, jtX . The value for 
0

ijtz   can equal 1 

only when both 1itx  and when 1jtx . Thus, the objective terms of 
0

ijtz  will count 
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only those occurrences when adjacent units i and j are scheduled in the same time 

period.     

Constraints of type 5B are similar to 5A except that they capture the occurrences 

of when one unit, say i is scheduled in time t, and an adjacent unit, say j, is scheduled 

in time period t+1.  It is important to note that there are several ways in which to 

account for when an adjacency occurs. In the above model, the constraint format is 

designed to t follow one developed by Balinski (1965) for a facility location model.  

Such constraints are considered tight constraints and tend to create facets in the model 

that are “integer friendly” in that they tend to force decision variables to be integer in 

value.  

D. Treatment Constraints and Variable Restrictions 

Constraint 6 tracks the treatment level in each year and computes the deviation 

from the average. This constraint is needed to define the level of deviation that is used 

to support objective 4.  Constraint 7 defines the restrictions on the variables; in this 

case to be binary or non-negative in value. 

E. iFASST and FIRS 

iFASST, or the Initial Forest Activities Spatial Scheduling Tool, is a tool that the 

USFS uses to schedule initial forest treatments based upon a set of inputs and weights 

from which a heuristically generated solution is derived. It is based upon the FIRS 

model which is formulated above.  iFASST can handle a maximum of five objectives 

and automatically assigns a weight value of one to each; these weights can be 
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changed by the user to weight each objective before the user starts the heuristic 

process. The default objectives are to: 1) maximize the number of project adjacencies, 

2) maximize the number of times at least one project is completed in each planning 

unit period, 3) maximize treated area, 4) maximize discounted WUI, and 5) attempt to 

even out year to year treatment levels.  

Constraints that can be added include an Earliest Scheduling Time and various 

Budget constraints. The Earliest Scheduling Time constraint sets the earliest time 

period that a PUC project can be scheduled. The planning horizon that iFASST 

generally schedules projects is twenty years, though the user can change the planning 

horizon if desired.  The Budget constraint sets the maximum budget available in a 

given time period, as well as sets an upper bound on the total amount of  treatment 

that occurs in  sensitive habitats. In this case sensitive habitats are marked by Home 

Range Core Areas (HRCA) and Protected Activity Centers (PACs) of the California 

Spotted Owl that overlap with specific SPLATS of a given PUC. 

The research team at UCSB has developed the iFASST program from scratch. It 

uses MapObjects in order to support mapping functions and is a stand-alone decision 

support system. iFASST generates an initial solution utilizing a heuristic developed 

for the multi-dimensional knapsack. problem Once an initial solution is obtained it is 

added to the elite solution pool; the starting/current elite solution is modified into a 

“new” solution at which point the heuristic tries to reshape the “new” solution into the 

current elite solution using path re-linking. If a better solution is found it is added to 

the elite solution pool; this process is done 100 times (See Figure 3 & Figure 4). A 
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module programmed and added to iFASST as a part of this study in order to create an 

MPS problem file, representing a given FIRS problem. That is, a given FIRS problem 

instance can be set up and defined by this added functionality of the iFASST system. 

Using this special model file is described in greater detail below.   
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Figure 3 - iFASST Heuristic Routine A 
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Figure 4 - iFASST Heuristic Routine B 
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Section 3 - Methods 

Several approaches were undertaken to solve the FIRS model. This section 

describes those approaches and the result of their application, in order of application. 

Each of these approaches was run on a Sun Solaris SunBlade 2500 Workstation 

running the Solaris 5.8 operating system with two gigabytes of memory and two Sun 

Sparc 1.28GHz processors, utilizing the ILOG CPLEX 11.0.1 solver.  

3.1.  Running the FIRS Model  

The FIRS model was setup for a given problem instance using the well-known 

MPS model format. This was accomplished using the module that was added to 

iFASST and described in the previous section. MPS format is a specific layout for 

specifying all components of a math programming problem and is supported by 

virtually all state-of-the-art general purpose optimization packages. MPS format is a 

generic file format and problem layout that can be used to import a given problem 

into an integer-linear programming solver.  . This problem file was then transferred to 

the SunBlade 2500 workstation. The MPS model file was then read and solved by the 

ILOG CPLEX optimization package. Solution results for a given problem were 

redirected to a text file. This solution text file was then transferred to the PC running 

iFASST. The solution text file was then converted to a windows text file format using 

Notepad++, an open-source text and coding editor. A second module was added to 

the iFASST program so that the converted solution file could be read and processed 
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by iFASST for display. Thus, a solution that is generated by CPLEX can be displayed 

on a map as well as analyzed by any of the charting routines that iFASST contains.  

As solution times in solving a given problem by CPLEX can be quite large, most 

of the analysis reported here was concentrated on a specific, representative problem. 

This problem was developed by the US Forest Service for planning fuels treatments 

on the Stanislaus National Forest (See Figure 5). Stanislaus National Forest is 

representative of other national forests in that it involved all of the major planning 

objectives:    

1) Maximize treated acreage,  

2) minimize the number of planning periods (years) that a planning area lacks a 

scheduled project,  

3) minimize the amount of WUI acreage scheduled in later time periods (“Front 

Load”),  

4) minimize the variation in the amount of treatment from year to year 

(evenflow), and  

5) maximize number of project adjacencies as described in section 2.  

The objectives were respectively weighted with values of 1, 1000, 100, 10, and 1000. 

These weights were chosen to emphasize certain objectives over others; especially the 

adjacency objective. They were also representative of the relative weights that were 

used in the overall planning problem by forest planners.  
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Figure 5 – Map and general location of the Stanislaus National Forest 
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A. FIRS model with Balinski Constraints 

The FIRS model as described in section  2 uses a particular constraint format 

called the Balinski constraint, first proposed by M. L. Balinski in 1965 (Balinski 

1965). The Balinski constraints keep the constraints tight because they help to force 

the scheduling variables to be integer in value, however, the number of constraints 

that is needed to support this structure is high. The FIRS model utilizing Balinski 

constraints for the adjacency constraints for the same and subsequent years creates a 

total of 41,774 linear constraints. The sheer number of constraints and the lack of 

sufficient computer power locked up CPLEX and the run for the full model was 

aborted after close to two months of computer time.   

B. FIRS model with Balinski and Efroymson and Ray Constraints 

The second approach used was to use a form of the well known Efroymson and 

Ray constraints to track adjacencies. In this case, Balinski constraints were used for 

the adjacencies in the same time period and Efroymson and Ray type constraints were 

used for the adjacencies in prior and subsequent years. Efroymson and Ray 

constraints are constraints that were introduced by Efroymson and Ray in their 1966 

paper (Efroymson 1966). These constraints are not as tight as Balinski constraints, 

however, they often require greater computational effort and force the solver to rely 

heavily on the branch and bound algorithm.  The general mathematical formulation 

used is as follows: 

Successive Years (5b constraints) – Modified Formulation 
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In this case, the Efroymson and Ray style of constraints significantly reduce the 

number of constraints; total constraints went from 41,774 to 25,006 constraints. The 

Efroymson and Ray constraints reduced the original formulation constraint count to 

59.9% of the originally formulated FIRS model. Using this approach, CPLEX was 

still unable to solve the model, though, it reached the same point as the model with 

the Balinski constraints in about half the amount of time needed for a set of all 

Balinski constraints. This was expected as Rosing, ReVelle, and Rosing-Vogelaar 

postulated that a mix of Balinski and Efroymson constraints could lead to faster 

solution times (Rosing 1979) for a classic location problem.  

C. FIRS model with Efroymson and Ray Constraints 

The third approach was to use Efroymson and Ray constraints for all of the 

adjacency constraints (5a and b constraints). The general mathematical formulation 

used is as follows: 

Same Year – Modified Formulation: 
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itiit xnz 0   where zit is the number of shared edges and ni is the number of 

adjacent units j to unit i where j>i. 


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i

xz0

       

where Ni is the set of neighbors of j.  

 

Successive Years – Modified Formulation  
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In this case, exclusive use of the Efroymson and Ray formulation for the 

adjacency constraints reduced the number of constraints from 41,774 in the original 

formulation to 16,062 or to 38.4% of the size of the original FIRS model utilizing 

Balinski constraints. Solving a model with all Efroymson and Ray style adjacency 

constraints actually took longer than the time needed to solve the larger but tighter 

mixed Balinski and Efroymson and Ray constraint model to the same bound or point 

of convergence. Unfortunately, this model run was also aborted as it did not converge 

in a reasonable amount of time.  
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D. Tuning 

Given the performance of the mixed Balinski and Efroymson and Ray constraints 

MPS model, it was thought that tuning the solver to solve this version of the problem 

could improve performance and return a solution. CPLEX 11.0.1 provides this 

capability and the tuning settings were saved in a parameters file. The parameters file 

was then loaded into CPLEX and the mixed FIRS model with Balinski and 

Efroymson and Ray constraints was then re-run. CPLEX was able to identify a 

feasible solution and reduce the bound farther than it had previous runs. However, 

after running for several weeks, CPLEX bogged down once again and the problem 

was aborted. This last approach with tuning indicated that the FIRS model could not 

be fully solved to optimality in any reasonable amount of computer time.  We could, 

however, confirm that the heuristic solutions of iFASST were within 15% of 

optimality.  

3.2. Fixing in a Percentage of a Heuristic Solution 

Solving the complete FIRS problem to optimality for a realistic problem setting 

proved to be impossible, so   another approach was attempted.  The idea behind this 

approach uses concepts from the Lambda-Opt approach (Lin 1965).  Lin developed a 

solution strategy for the travelling salesman problem that was based upon a swapping 

strategy. He suggested to take    elements of a tour and swap them with a different 

set of  elements of the tour. If this generated a shorter tour then the improved tour 

was now the incumbent, solution. A   -opt solution is one that cannot be improved 
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by and swaps of size  . Overall, the  -opt process starts with a feasible solution and 

attempts to make a swap of    elements. If this is an improvement, it becomes the 

incumbent solution. The process continues until all swaps of size a will result in no 

change to the incumbent solution. In practice it has been found that the  -opt process 

will find optimal or near optimal solutions with regularity when  = 1, 2 or 3. Lin 

called the process   -opt  as he reasoned that if a problem has n elements, then when 

 =n, the  -opt heuristic would generate am optimal solution.  However, in practice 

it usually only requires small values of   to generate an optimal or near optimal 

solution. The only drawback of this heuristic in solving combinatoric problems like 

the travelling salesman  problem or the FIRS problem is that the computational 

burden of making swaps for large values of  is too  high to be practical. The saving 

grace of this approach is that it is usually not necessary to use a high   value.   

 

We can employ the  -opt approach in a rather unique and novel way for the 

FIRS problem. The iFASST software package employs a heuristic based upon a set of 

strategies, including path relinking, GRASP, and swapping. Technically it is at least 

as good as   =1. For the FIRS problem, there are n PUCS that can be scheduled over 

20 years. In practice, not all PUCS can be scheduled as the budget is too limiting.  

The output of the iFASST heuristic is considered to be good, and should form the 

basis of a good starting solution for  -opt approach where  is considerably higher 

than 1. For the Stanislaus National Forest, there are 140 PUCs that are schedulable. A 

good solution involves scheduling about 120 units over the planning period. Let’s 
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suppose that we wish to test a swap of a given 15 scheduled units with another 15 

schedulable units. The problem is that there are many ways in which a given 15 can 

be swapped with another 15 in the schedule. For example, consider the possibility of 

3 units:  PUC 45 scheduled in period 2, PUC 77 is scheduled in period 20, and PUC 

13 is scheduled in period 5.  Swapping these three amongst themselves produces 

several possibilities: 1) PUC 77 in 2, PUC 45 in 5, and PUC 13 in 20; 2) PUC 77 in 5, 

PUC 13 in 2, and PUC 45 in 20; and so on. Finding the best swap amongst these three 

units can be done by using the FIRS model. To show how this can be done, consider 

the following notation: 

 solution heuristic in the  1|),(  jtxtj , the scheduling solution  

 )5,13(),20,77(),2,45(s , the swap set 

The FIRS  model can be defined as follows: 

 FIRS model (5 objectives and 7 constraint types) with the additional 

constraints: sjt tjx  ),(each  for   1  

Solving FIRS to optimality using CPLEX will produce the best solution involving 

swaps between the swap set and between the swap set and PUCs that were never 

scheduled in the heuristic solution. Although FIRS is not easy to solve to optimality,  

FIRS is a reduced problem, and considerably easier to solve to optimality. To show 

how we, might use this modeling construct further, consider the following set: 

   randomlychosen  been  have  of elements     
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The set   represents a selection of a certain portion of a solution at random, to 

serve as the swap set. The basic idea is that once we have generated a swap set,  , 

We can then solve  FIRS  to optimality to produce the optimal  swap using the set 

 . The beauty of FIRS is that it is identifies the best of all possible swaps within 

the swap set or elements without enumerating all such possibilities. For example, 

swapping 15 for 15 would entail at least (15 factorial permutations -1) solutions (the -

1 represents the original swap set). The number of possible swaps between 15 for 15 

is at least 1.307 x 10
12

 solutions. Thus, solving FIRS  with doing a 15 for 15 swap 

would represent an enormous set of possible swaps of which it would identify the 

best.   

To use FIRS to generate the best swap for 15 would involve using a 30  swap set. 

A size of 30 represents approximately 25% of scheduled units for the Stanislaus 

forest.  

We have now described a new model called FIRS . FIRS is a constrained 

version of the FIRS model which when solved will identify the best   swap for a 

given candidate set. In many combinatoric problems, using   = 1 or 2 yields a close 

to optimal, if not optimal solution when applied over the entire solution space.  

Because of the knapsack like constraints and the adjacency objective in FIRS, it is 

necessary to make   as high as practicable. Unfortunately, it is impossible to 

generate all permutations of swap sets with a problem of 140 PUCs. By using a high 

  value, many of these sets will overlap, negating the need to generate all possible 
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swap sets.  For the analysis reported here, we generated 1000 swap sets involving 

25% of the total solution elements.  

To solve FIRS , we begin with a starting heuristic solution H0. Each FIRS

problem represented fixing at random 75% of the solution as fixed and allowing the 

remaining 25% to vary. We solved each FIRS problem using CPLEX where the 

convergence criteria was set at 1%. That is CPLEX stopped when it had solved a 

given problem to within 1% of optimality.  The process was of solving FIRS a 

thousand times was done in batch form. A module was added to the iFASST software 

package to take a heuristically generated solution and set up 1000 FIRS problems 

associated with the heuristic solution. These problems were specified in MPS format 

and sent to CPLEX to solve within the 1% bound value.  The results of each of the 

one thousand CPLEX runs were sent to a text file. The text files of each of the 

individual runs were then processed on the UNIX machine into two text files: one file 

containing all of the objectives, and the other file all of the proven bounds. 

These two files were then transferred to a PC running Microsoft Windows XP and 

converted into the Windows text format using Notepad++. Once this was done, all of 

the space characters were replaced by a tab character. The text files were then opened 

by a specially defined program to process the objective and bound text files into a 

neatly sorted tab-delimited file.   These processed text files were then imported into 

Microsoft Excel where descriptive statistics were calculated and the run containing 

the greatest improvement identified. 
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 The best solution found from the 1000 FIRS solutions was identified and saved. 

This new solution became the “incumbent” best, and the  FIRS process was 

restarted with this as the starting solution. After 1000 FIRS problems were solved 

using this solution, the best was found and this was then designated as the new 

incumbent solution. This process was continued until no improvement was found in a 

thousand runs of FIRS . Note this process will monotonically converge to a stable 

solution.  Figure 6 depicts a flow chart of the process used in solving FIRS .  

The basic premise for FIRS  is that the final stable solution is likely to be close 

to optimal if not optimal. Even though the original FIRS model cannot be solved to 

optimality, there is a high probability that  FIRS  can converge to a solution that is 

within 1%.   

 

Section 4 - Overall Results 

Solving the FIRS model to optimality was impossible, though the FIRS

approach utilizing the concept of Lambda-Opt was successful. The first FIRS model 

formulation consisting only of Balinski constraints for tracking scheduled project 

adjacencies ran for nearly two months without even obtaining a feasible solution 

before it was aborted. The second FIRS model formulation using Balinski constraints 

for tracking adjacent projects scheduled in the same time period and Efroymson and 

Ray constraints for tracking adjacent projects scheduled in previous and subsequent 

years ran in about half the time it took to run the original FIRS model to the same  
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Figure 6 – Steps Used by λFIRS to Generate an Improved Solution 
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level of convergence, but was also aborted without obtaining a feasible solution.  The 

third FIRS model formulation utilizing Efroymson and Ray constraints for tracking 

all scheduled project adjacencies ran for several weeks, took longer than the second 

FIRS model formulation, but was shorter than the first FIRS model formulation. It 

also failed to identify a feasible solution. 

At this point tuning of the Second FIRS model formulation was attempted using 

the built-in tuner process of CPLEX 11.0.1. The tuning process took 50,002 seconds 

or nearly 14 hours. The second FIRS model formulation was then re-run with the 

parameters determined by CPLEX 11.0.1’s tuning feature. CPLEX was able to 

identify a feasible solution, though still inferior to the solutions identified through the 

iFASST software package’s heuristic approach, and identified an improved bound 

with a smaller gap in much less time than had been previously needed; the best bound 

found was -3,092,711. However, even with these improvements, CPLEX was still 

unable to determine an optimal solution in a reasonable amount of time and the run 

was aborted. This lead us to the last approach using FIRS  to identify an improved 

solution. 

The results shown here are those from the FIRS  method. This method did 

indeed identify an improved solution; the FIRS  approach was started with a 

heuristically determined solution generated by iFASST. This seed solution had an 

objective of negative 2,695,176 and the FIRS  approach converged to a stable 

incumbent solution of negative 2,707,420 after seven complete iterations (i.e. 7 sets 

of 1000 FIRS model runs). Figure 7 shows the distribution of each set of FIRS  
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Figure 7 - Depiction of objective values, starting and best bound, 

associated with 7 Sets of λFIRS Runs. 
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runs (1000 swap models each). In each of the runs, there is a red line that shows the 

starting objective value ( 0H ) from which each of the one thousand models in a set 

were generated.  The points that lie below this red line are improved solutions; as the 

number of sets of runs increases, the number of improved solutions and variation 

between the starting H0 solution and the best improved solution tends to decrease. In 

the last run of Figure 7 (i.e. run seven) no improvement in any of the generated 1000 

swap models was found. The largest gap found in any of the solutions associated with 

the last set of 1000 swap models was resolved to a gap of less than 0.01%, without 

finding an improvement. As a final check, this solution was subjected to a FIRS test 

of 1000 swap models with no improvement.   We also tested the FIRS  by starting 

with a seed solution that was known to be inferior (but still relatively good) and 

subjected that solution to a FIRS run of a 1000 swap models.  This heuristic seed 

solution had an objective of -2,665,293.  The result of this test involving 1000 swap 

models is shown in Figure 8.  

The results of Figure 8 indicate that an inferior seed for the λFIRS model will 

result in many new and better solutions being identified. Comparing Figures 7 and 8, 

one can see, as the incumbent seed solution improves, the likelihood of identifying 

better solutions through swapping tends to decrease. This type of convergence 

indicates that when a 1000 λ=15 swap tests fail to produce a better result the solution 

is stable, and unlikely to be improved regardless of the number of tested swaps. Since 

the swap neighborhood size is very large, results from Lin (1965) would lead to the 

conclusion that the final incumbent solution is not only locally optimal, but globally  
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Figure 8 -  Results of the λFIRS Model Applied to a second heuristic 

solution where the initial solution seed is dominated by other 

solutions. 
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optimal. Figure 9 displays the results of the inferior heuristic seed solution compared 

to the runs of those displayed in Figure 7. The histograms of objective values for 

each set of λFIRS runs is presented in  Figure 10 and also help support this 

conclusion, where it can be seen that as the run sequence number increases, the 

results of λFIRS tends to spike at the seed solution.  

 Table 1 shows the starting H0 value and the most improved solution found in the 

1000 models solved. The starting H0 objective of -2,695,176 identified by the 

iFASST software package heuristic was improved to -2,707,420 after 6 runs of 

λFIRS. The seventh run resulted in no improvement. The total improvement over the 

7 runs totaled -12,244 or 0.45%. The solution reduced the gap from the known best 

bound of -3,092,711 from 12.9% to 12.5%.  Figure 11 shows the number of 

improvements found, by run. The number of improved swaps found in Run 3 was 

quite low. The general trend in the number of solutions identified that are better than 

the starting solution, and the difference in objective value between the improved 

solution and the starting solution, decrease as the number of runs increase.  
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Figure 9 –Depiction of objective values, starting and best bound, 

associated with 8 Sets of λFIRS Runs. 
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Figure 10 - Twenty bin Histogram of 8 Runs representing sets of 1000 

λFIRS model solutions.  
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Figure 11 - Scatter plot showing the number of improved solutions as a 

function of sequence of λFIRS model application. 
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Table 1 - Results of Runs 

Run 
Heuristic Starting 

OBJ (H0) 
Most Improved 

Solution Objective 
OBJ Difference 

Number of 
Improved 
Solutions 

1 -2695176 -2698270 -3094 18 

2 -2698270 -2699834 -1564 20 

3 -2699834 -2701946 -2112 3 

4 -2701946 -2704361 -2415 18 

5 -2704361 -2706693 -2332 17 

6 -2706693 -2707420 -727 2 

7 -2707420 N/A N/A 0 

Difference Between Starting H0 and best solution identified in run 6 is 
 -12244 

or   0.45% 
    

  

Figure 12 shows the difference between the starting initial λFIRS seed solution based 

upon the iFASST heuristic and the final stable, incumbent solution generated after 7 

runs of the λFIRS model. Note, the units that change are outlined in blue, and the 

color of the unit indicates the final schedule. In the map legend, -999 represents a 

PUC that did not have enough fuels to merit a fuels treatment, and   -2 represents a 

PUC that was not scheduled for treatment. Five scheduling units (PUCs) that were not 

initially scheduled are now scheduled and four scheduling units (PUCs) that were 

previously scheduled are now unscheduled; representing a net increase of one 

scheduled project (PUC). This effectively increased project adjacencies through the 

increase in scheduling units (PUCs) that are treated and through the changing of years 

a scheduling unit (PUC) is scheduled to bring the scheduling of PUCS closer to large  
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Figure 12 - Map display depicting the difference between the intial seed 

solution and the final solution generated by the λFIRS 

model. 
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clusters of scheduled projects. Figure 13 shows just the initial FIRS  seed solution, 

and Figure 14 shows just the ending FIRS  solution shown in Figure 12. 

Even though the final solution contains an extra scheduled unit (PUC), there is 

actually a decrease in the total number of acres that are effectively treated. The 

FIRS  method scheduled 108 PUCs which effectively treat 715,777.494 acres of 

Stanislaus National Forest. The difference in treated acreage between the starting 

iFASST software package heuristically generated schedule and the improved 

schedule found by the FIRS  method was only 4,045.163 acres; only a slight 

reduction in treated acreage. Table 2 shows the scheduling units or PUCs that 

changed between the starting iFASST software package heuristic solution and the 

solution generated through the use of  FIRS , and the respective change in acres 

protected. In addition to the decrease in acreage protected, a corresponding decrease 

in Treatable Acreage, and Critical Habitat acreage also occurred.  The only increase 

was a one acre increase in the number of WUI acres treated.  
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Figure 13 – The initial seed solution for the λFIRS model. 
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Figure 14 - The final stable solution generated by the λFIRS.  
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Table 2 - SUNIT Schedule 

SUNIT PUNIT 
From 
Year 

To 
Year 

AREA in 
Acres Area Start Area Finish 

7 2 14 13 26755.679 26755.679 26755.679 

34 3 -2 20 4179.852 0.000 4179.852 

38 2 14 15 8786.646 8786.646 8786.646 

40 3 19 20 3594.607 3594.607 3594.607 

44 3 -2 19 3343.437 0.000 3343.437 

48 3 -2 19 4244.133 0.000 4244.133 

50 2 19 15 12355.239 12355.239 12355.239 

65 3 4 6 5292.342 5292.342 5292.342 

66 3 -2 13 3116.419 0.000 3116.419 

72 3 6 4 2971.418 2971.418 2971.418 

74 3 13 14 3488.571 3488.571 3488.571 

77 3 20 -2 6736.823 6736.823 0.000 

96 1 13 -2 7101.280 7101.280 0.000 

99 1 19 -2 3275.749 3275.749 0.000 

106 1 14 13 4338.059 4338.059 4338.059 

112 1 20 -2 4433.601 4433.601 0.000 

116 1 6 4 8222.822 8222.822 8222.822 

135 4 19 20 3688.315 3688.315 3688.315 

139 1 4 19 10745.445 10745.445 10745.445 

152 4 1 4 1182.771 1182.771 1182.771 

157 4 4 6 8986.356 8986.356 8986.356 

158 4 -2 13 2618.449 0.000 2618.449 

161 4 15 14 5998.477 5998.477 5998.477 

    
Total = 127954.199 123909.036 

    
Difference =  -4045.163   

 

  

Section 5 - Discussion 

The three variants of the FIRS model: the Balinski, mixed Balinski and 

Efroymson and Ray, and Efroymson and Ray adjacency tracking constraints, and the 
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tuning of the mixed Balinski and Efroymson and Ray FIRS model adjacency tracking 

constraint formulations proved to be computationally too difficult to solve in a 

reasonable amount of time using ILOG CPLEX on the Sunblade workstation. The 

inability to generate an improved solution or confirm that the heuristic solution was 

optimal led to the development of the FIRS  method, which was able to identify an 

improved solution. If one needs to identify an improved solution for a complex 

integer programming problem in a timely manner, then this approach might be very 

useful. Although the λ opt approach has been used within a heuristic setting, this is 

the first time that such an approach has been tried through the use of an optimization 

algorithm.  

Though the approach only found a 0.45% improvement between the starting 

heuristic solution and the final solution in which no improvement occurred, this is 

likely due to the fact that the approach encountered a local, or potential global optima. 

Because the λ-opt approach has been successful at generating optimal solutions to 

many different “hard” combinatoric problems, it is quite likely that the last improved 

solution generated in the 6th λFIRS model set is optimal (within a 1% bound that was 

used in solving all λFIRS models).  An added benefit of this method is that the 

computational time of running of each set of 1000 swap models took on average two 

days. It took seven runs and approximately two weeks of computational time to final 

converge on a λ-opt solution.   

The FIRS  method not only obtained an improved solution, but provided 

important information on how likely the heuristic solutions deviate from a known 
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good solution. If the solution is indeed a global optima, then the starting heuristic 

solution is not more than 0.45% different from an optimal solution. Solving the FIRS 

model to optimality will ultimately determine whether this is the case, and the 

efficacy of this method. The solution obtained by the FIRS  method was interesting 

on its own. 

Though the solution obtained by the  FIRS  method is objectively better, the 

amount of effective acreage covered by the PUCs actually decreases by 4,045.163 

acres. However, the schedule found by the FIRS  method effectively treats 

715,777.494 acres or 66.3% of the entire forest area. It should be noted that not every 

area, or PUC, has enough fuel to necessitate a fuels treatment. For example, the 

eastern edge of Stanislaus National Forest is largely an alpine area and is quite rocky 

and rugged and not very conducive to fire. It doesn’t make sense to schedule a PUC 

for fire treatment in these locations. If you add in these locations, which consist of 

141,351.486 acres, the effective treatment level of Stanislaus National Forest as a 

whole increases to 857,129.000 acres or 79.4% of the forest.  

The decrease in treated acreage from the iFASST software package solution and 

the improved solution found by the FIRS  method is largely due to the objective 

weights used. In this case, scheduling at least one project in a planning area (Ranger 

District), project adjacency, and WUI acreage is weighted much more than total 

treated area. The solution therefore is better in that it schedules more than one 

scheduling unit (PUCs) in a planning area (ranger district) and effectively treats areas 

in which human activity is likely to be greater. At the same time, it also reduces the 
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amount of critical habitat, primarily old growth forest, which would have been 

impacted under the solution generated by the iFASST heuristic. In this way, the goal 

of restoring the forest to its natural state in which less intense fires occur is achieved 

by helping reduce the areas that are much more likely to have an intense fire emerge 

from human activity. 

 

Section 6 - Conclusions 

Though the FIRS model was not solved to optimally, an alternate model, called 

FIRS was developed which did converge. The value of Lambda set at approximately 

15, over seven times larger than what is normally used in the literature. Using a high 

value of lambda helps to reduce the probability that the model will not converge to an 

optimal or near optimal solution. The model took 7 iterations to converge to a new 

improved solution, better than what had ever been identified for this problem. . This 

solution allocates more scheduling units (PUCs) to a ranger district to reduce idle 

activity than previous solutions, while at the same time reduces impact to old growth 

forest and sensitive habitat. This is due to the weighting scheme used by the United 

States Forest Service to best meet the objectives they have specified. Future work 

should be done to determine the sensitivity of the model to the inputted weights, and 

if an alternative weighting scheme might better serve their needs.  

However, even though there is a reduction in the total amount of treated area 

(4,045.163 acres), this change is quite small in relationship to the total area of the 
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forest. Within the context of Stanislaus National Forest’s total area of 1,080,027.375 

acres, a difference of 4,045.163 acres in the overall solution of 857,129.000 acres is 

very miniscule; this is a change of less than 0.375% of the total forest area. In this 

case the ability to effectively utilize forest personnel, treat areas that are frequented 

by the public to reduce the likelihood of a severe fire outbreak, and reduce the effects 

of forest activities in old growth forest is an acceptable trade off.  

The inability to solve the FIRS model optimally led to the development of a novel 

model, based on a strategy used in heuristic programming called Lambda-Opt. This is 

the first time in which the Lambda-Opt approach has been used inside a optimal 

solution routine, guaranteeing an optimal swap each time. The swap size (i.e. 

Lambda) was set at a very high value without significantly impacting solution times. 

Overall, this approach was able to demonstrate that the heuristic solution and the best 

FIRS solution are close enough to give forest planners confidence in the use of the 

iFASST heuristic in solving their problems.  This –modeling approach may prove 

successful for other difficult to solve Integer Programming problems.    
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