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1. INTRODUCTION

The Significance of Land-Use Change

Land-use changeis alocdly pervasive and globaly significant ecologica trend. Vitousek
(1994) notes that “three of the well-documented globa changes are increasing concentrations
of carbon dioxide in the atmosphere; dterations in the biochemistry of the globa nitrogen
cycle; and on-going land- use/land-cover change.” In the case of the United States for
example, 121,000 knt of non-federal lands were corverted to urban developments over the
15-year interva between 1982 and 1997 (NRCSUSDA 1999). On agloba scale and over a
longer time period, nearly 1.2 million kn? of forest and woodland and 5.6 million knr? of
grasdand and pasture have been converted to other uses during the last three centuries,
according to Ramankutty and Foley (1999). During this same time period, cropland has
increased by 12 million knr?. Currently, humans have transformed significant portions of the
Earth’sland surface: 10-15 percent is dominated by agricultura rowcrop or urbartindugtrid
areas, and 6-8 percent is pasture (Vitousek et d. 1997).

The Need for Land-Use Models

These changes in land use have important implications for future changesin the Earth’'s
climate and, in return, great implications for subsequent land-use change. Thus, acritica
element of the U.S. Globa Change Program of the Department of Agriculture' s Forest
Service (FSGRCP) is to understand the interactions between human activities and natural
resources. In particular, FSGRCP has identified three critica actions for this program
eement:

1. Inresponseto globa climate change, identify and assessthe likely effects of changesin
forest ecosystemn structure and function on human communities and society;

2. Inorder to mitigate and adapt to the effects of globa climate change, identify and evduate
potentia policy options for rurd and urban forestry; and

3. Inorder to integrate risks associated with globa climate change, identify and evauate
potentia rurd and urban forest management activities.

In addition to the action items listed above, sgnificant attention has focused on land-use
change models. All land-use models need to be built on good science and based on good data.
Research models should exhibit a high degree of scientific rigor and contribute some origind
theoretica ingghts or technicad innovations. In contragt, origindity islessof anissuein

policy models and sometimesiit is more desirable for amode to be considered “tried and
true.” Also important to policy modesis whether the modd is transparent, flexible, and
includes key “policy variables” Thisis not to say that research models might not have
ggnificant policy implications (asis the case with globd dimate models developed during the
past decade) nor isit to say that policy models might not make origina contributions to the
science of environmenta modeling.

Because of the gpplied mission of the FSGRCP, we propose that the FSGRCP will need to
focus on land-use moddlsthat are relevant to policy. This does not mean that we expect these
land-use models to be “ answer machines.” Rather, we expect that land- use change models



will be good enough to be taken serioudy in the policy process. King and Kraemer
(1993:356) list three rolesamodd must play in apolicy context: A modd should clarify the
issues in the debate; it must be able to enforce a discipline of analysis and discourse among
gakeholders, and it must provide an interesting form of “advice,” primarily in the form of
what not to do—since apalitician is unlikdy to smply do what amoded suggests. Further, the
necessary properties for agood policy modd have been known since Lee (1973) wrote his
“requiem” to large-scae modds. (1) trangparency, (2) robustness, (3) reasonable data needs,
(4) appropriate spatio-tempora resolution, and (5) inclusion of enough key policy variablesto
dlow for likdy and sgnificant policy questions to be explored.

Global Change Research and Assessments and Land-Use Change Models

In response to the FSGRCP s action priorities and associated interest in land-use modeling,
the Forest Service' s Northern and Southern Globa Change Programs decided, through the
Nationa Integrated Ecosystem Modeling Project (NIEMP.Eastwide), to

1. Inventory exiding land-use change mode s through areview of literature, webstes, and
professond contacts, and

2. Evduate thetheoreticd, empirica, and technica linkages within and among land-use
change models.

The god of this report isto contribute to the NIEM P.Eastwide modeing framework by
identifying gppropriate modds or proposing new modeling requirements and directions for
edimating spatid and tempord variaionsin land-cover (vegetation cover) and forest-
management practices (i.e. biomass remova or revegetation through forestry, agriculture, and
fire, and nutrient inputs through fertilizer practices) in terms of extent and distribution of land-
cover and land-management practices and historic, current, and potential future scenarios of
land-cover and land- management practices.

Overview of Report

This report is structured in the following way: In the Methods section, we develop a
framework for comparing different models of land-use change. In particular, we propose that
models of land-use change be compared in terms of scale and complexity, and how well they
incorporate pace, time, and human decision making (HDM). Subsequently, we describe the
methods we used for identifying the models we reviewed, including how we narrowed a list
of 250 relevant citations to a set of 136 possible references, and thento alist of 19 land-use
modd s that we found to be the most relevant and representative. In the Findings section, we
summarize the 19 modelsin terms of scale and complexity aswell as criticad modd features,
such as whether or not they include time lags and feedback loops. In the Discussion section,
we discuss model characterigics in terms of spatia and tempora complexity and which
mode s incorporate higher levels of human decison making. We then examine the socid
drivers of land-use change and methodological trends exemplified in the models we reviewed.
Finaly, we conclude with some proposals for future directions in land-use modding for the
NIEM P.Eastwide project.



2. METHODS
Background

Models can be categorized in multiple ways. One may focus on the subject matter of the
models, on modding techniques or methods used (from smple regression to advanced
dynamic programming), or on the actua uses of the models. A review of modes may focus
on techniques in conjunction with assessments of mode performance for particular criteria,
such as scale (see, for example, the review of deforestation models by Lambin 1994). In the
case of FSGRCP, models are evauated by the following criteria

1. Identify and assessthelikely effects of changes in forest ecosystem structure and function
on human communities and society;

2. Evduate potentid policy options for rurd and urban forestry; and

3. Evauate potentia rurd and urban forest management activities.

While this review does indirectly cover these topics, we developed an dternative anaytical
framework. As Ve dkamp and Fresco (1996a) note, land use “is determined by the interaction
in gpace and time of biophysica factors (constraints) such as soils, climate, topography, etc.,
and human factors like population, technology, economic conditions, etc.” In thisreview, we
utilize al four of the factorsthat Veldkamp and Fresco (19964) identify in the congtruction of
anew andyticd framework for categorizing and summarizing models of land-use change
dynamics.

Framework for Reviewing Human-Environmental Models

To assess land- use change models, we propose a framework based on three critical
dimendonsfor categorizing and summarizing modes of human-environmenta dynamics.

Time and space are the first two dimensions and provide a common setting in which dl
biophysica and human processes operate. In other words, models of biophysica and/or
human processes operate in atemporal context, a patia context, or both. When modeds
Incorporate human processes, our third dimension—referred to as the human decisionmaeking
dimens on—becomes important aswell (Figure 2.1).

Space (Y b

Time (A}

Human
[hecision-

Making (£}

Figure 2.1 Three-Dimensional Framework for Reviewing Land-Use Change Models



In reviewing and comparing land- use change models dong these dimensions, there are two
digtinct and important attributes that must be considered: model scale and model compl exity.
We begin with adiscusson of scae, since it is aconcept that readers will probably find most
familiar.

Model Scale
Time Step and Duration

“Real world” processes operate at different scales (Allen and Hoekstra 1992; Ehleringer and
Field 1993). When we discuss the tempora scale of models, we can talk in terms of “time
gep” and “duration.” Time step referred to here is the smallest tempord unit of andysis for
change to occur for a specific processin amodd. For example, in amode of forest dynamics,
tree height may change daily. The modd would not consider processes which act over shorter
tempora units. Duration refers to the length of time that the model is gpplied. For ingtance,
change in tree height might be modeled daily over the course of itslife from seedling to
mature tree: a period of 300 years. In this case, time step would be one day, and duration
would equal 300 years. When the duration of amodel is documented, it might be reported in
severa ways. In our example, the modd duration might be 109,500 daily time steps, a period
of 300 years, or caendar range: January 1, 1900, to January 1, 2200.

Resolution and Extent

When we discuss the spatid scale of models, we employ the terms “ resolution” and “extent.”
Resolution refers to the smallest geographic unit of analyss for the model such astheszeof a
cdl in arager grid system. (Note that each grid cdll areaistypicaly uniform across the
modeled area, while a vector representation would typicaly have polygons of varying sizes,
athough the smdlest one may be consdered the modd’ s resolution.) Extent describes the
total geographic area to which the model is gpplied. Consder amodd of individud treesina
50-hectare forested area. In this case, an adequate resolution for individua trees might be
severd meters, and the modd extent would equal 50 hectares.

Resolution may be characterized asfine or broad scale. Fine-scale models often depict
geographicaly smal units of analyss (and thus are large scale, to use the geographic term),
while broad-scale modd s usudly have larger spatid units of andyss (and are thus smadll
scae). Figure 2.2 provides an example of analyss moving from abroad scde (A) to
increasingly finer scaes (E).
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Figure 2.2 Hierarchical Spatial Scalesin Social-Ecological Contexts

For clarity, we use different terms to characterize temporal and spatid scade. Tempord time
step and duration are analogous to spatia resolution and extent. Resolution and extent are
often used to describe both tempora and spatid scales; however, we make these distinctions
so thet readers will not be confused by which scae we are referring to in any particular
discusson, and we think these careful digtinctionsin scale terminology are important for
further didog of land-use/land- cover modeling. We propose asmilar approach in describing
scae of human decison making.

Agent and Domain

How does one discuss human decison making in terms of scae? To date, the socid sciences
have not yet described human decision making in terms that are as concise and widdly
accepted for modeling, as time step/duration or resol ution/extent. Like time and space, we
propose an ana ogous gpproach which can be used to articulate scales of human decison
making in Smilar terms. “agent” and “domain.”

Agent refers to the human actor or actorsin the model who are making decisions. The
individual human is the samalest Sngle decison making agent. However, there are many
land-use change models that capture decision-making processes at broader scales of social
organization, such as household, neighborhood, county, state or province, or nation. All of
these can be considered agentsin models. Domain, on the other hand, refers to the broadest



socia organization incorporated in the modd. Figure 2.2 illugtrates agents (villages) and
domain (countries of the western hemisphere) for the study of socid ecosystemsin a
hierarchical approach.

While the agent captures the concept of who makes decisions, the domain describes the
specific indtitutiona and geographic context in which the agent acts. Representation of the
domain can be facilitated in a geographicaly explicit mode through the use of boundary
maps or GIS layers.

| B
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Examples of hierarchically nested patch structure at three scales in the Central Arizona—Phoenix (CAP, upper pandls) and
Baltimore Ecosystem Study (BES; lower panels) regions. At the broadest scale (A, D), patchesin the CAP study areainclude
desert (mustard), agriculture (green), and urban (blue); for the BES, patches are rural (green), urban (yellow), and aguatic
(blue). B: The municipality of Scottsdale, Ariz., showing major areas of urban-residentia development (blue, lower portion)
and undevel oped open lands (tan, devel opable; brown, dedicated). C: Enlargement of rectanglein B showing additional patch
structure at a neighborhood scale (green, golf course/park; mustard, undevel oped desert; red, vacant; pink, xeric residential;
purple, mesic residential; yellow, asphalt). E: Gwynns Fallswatershed, Md., with residential (yellow), commercial/industrial

(red), agricultural (light green), institutional (medium green), and forest (dark green) patch types. F: Enlargement of rectangle
in E showing additional patch structure at a neighborhood scale (dark green, pervious surface/canopy cover; light green,

pervious surface/no canopy cover; y elow, impervious surface/canopy cover; red, impervious surface/no canopy cover; blue,
neighborhood boundaries; black circles, abandoned lots). Panel A courtesy of CAP Historic Land Use Project
(caplter.asu.edu/elwood.la.asu.edu/grsl/); panels D, E, and F courtesy of USDA Forest Service and BES LTER

(http://www.ecostudies.org/bes).

Figure 2.3 Spatial Representation of a Hierarchical Approach to Modeling Urban
Systems (Grimm &t . 2000)



For example, in amodd of collaborative watershed management by different forest
landowners, a multiscae agpproach would incorporate severd levels of linked resolutions and
domains. For instance, at a broad scale, the domain would be the collaborative arrangement
among owners (coincident with the watershed boundaries), the agent would be the owner and
the resolution their associated parcel boundaries (the agent would be the collaborative
organization). At afiner scae, the owner would be the domain, and the resolution would be
the management units or forest slands within each parcd (the agent being the individud). In
this example, we might a'so modd other agents, operating in one of the two domains (e.g.,
other parcels), such as neighboring landowners whose parcel boundaries would aso be
depicted by the same domain map. Inditutiondly, agents may overlgp spatialy. For example,
alandowner might recaive financid subsidiesfor planting treesin riparian buffer areas from
an agent of the Forest Service; recaive extension advice about wildlife habitat and
management from an agent of the Fish & Wildlife Service; and have her lands inspected for
nontpoint-source runoff by an agent from the Environmenta Protection Agency.

In our watershed example, dso consider the role of other types of forest landowners. For
ingtance, the watershed might include a state forester (agent = state) who writes the forest
management plan for the sate forest (domain = state boundary) and prescribes how often
trees (resolution) in different forest stands (extent) should be harvested (time step) for a
spexific period of time (duration) within state-owned property. In this case, the human
decisionmaking component of the modd might include the behavior of the forester within the
organizationa context of the Sate-level naturd resource agency.

Model Complexity

A second important and distinct attribute of human-environmental modelsis the gpproach
used to address the complexity of time, space, and human decision making found in “red
world” situations. We propose that the temporal, spatial, or human decison-making (HDM)
complexity of any modd can each be represented with an index, where low vaues sgnify
smple components and high vaues sgnify more complex behaviors and interactions.
Congder an index for temporal complexity of models: A model thet islow in tempora
complexity may be amode that has one time step, or possibly afew, and ashort duration. A
modd with amid-range vaue for tempora complexity is one which may use many time steps
and alonger duration. Models with a high vaue for tempora complexity are ones that may
incorporate alarge number of time steps, along duration, and the capecity to handle time lags
or feedback responses among variables, or have different time steps for different submodels.

Temporal Complexity

There are important interactions possible among temporal complexity and human decision
making. For ingance, some human decisions are made in very short time intervals. The
decison of which road to take on the way to work is made daily (even though many
individuas routinize this decision and do not sdf-conscioudy examine this decison each
day). Other decisions are made over longer time periods, such as once in asingle growing
season: for ingtance, which annual crop to plant in aregion that has only one growing season
per year. Still other decisions may be made for severd years a atime, such as invesments



made in tractors or harvesting equipment. When the domain of a decision maker changes, this
change may dso affect the tempord dimension of decisons. For example, aforest landowner
might make a decision about cutting trees on his or her land each year. If thisland were

transferred to a State or Nationa Forest, the foresters may harvest only once every ten years.

The decision-making time horizon perceived by an actor could aso be divided into a short-

run decison-making period, and along-run time horizon. Thus, to extend the forest example,

if acertain tree species covering a 100- hectare area maturesin 100 years, thereisaneed for a
harvest plan that incorporates both the maturity period and the extent of forest land that is
available. In other words, at least one leve of actor needs to have an awareness of both short-
and long-time horizons and be able to communicate with other actors operating at shorter time
horizons. Indtitutional memory and culture can often play that role.

Spatial Complexity

Anindex of spatial complexity would represent the extent to which amodd is“spatidly
explicit.” There are two generd types of spatiadly explicit models: spatidly representative and
spatidly interactive. A modd that is spatialy representative can incorporate, produce, or
display datain at least two and sometimes three spatia dimensions, such as northing, essting,
and devation, but cannot model topologica relationships and interactions among geographic
features (cdls, points, lines, or polygons). In these cases, the vaue of each cell may change or
remain the same from one point in time to another, but the logic that makes the change is not
dependent on neighboring cells. In contradt, a gatialy interactive modd is one that explicitly
defines oatia relationships and their interactions (e.g., among neighboring units) over time.

A modd with alow vaue for spatid complexity would be one with little or no capecity to
represent data spatidly; amodd with amedium vaue for spatial complexity would be able to
fully represent data patidly; and amodd with a high vaue would be spatidly interactive in
two or three dimensions.

The human decisonmaking sections of models vary in terms of their theoretica precursors
and may be smply linked deterministically to a set of socioeconomic or biologicd drivers, or
they may be based on some game theoretic or economic models. Table 2.1 below presentsthe
equivaence among the three parameters, pace, time, and human decision making, based on
the earlier discussion about resolution and extent.

Table 2.1 Resolution and Extent in the Three Dimensions of Space, Time and Human
Decision Making

Space Time Human Decision Making
Resolution or | Resolution: smalest Time step: shortest temporal | Agent and decision-making
equivalent gpatia unit of andysis | unit of andysis time horizon
Extent or Extent: total relevant Duration: total relevant Jurisdictional domain and
equivalent geographical area period of time decision-making time
horizon




Human Decision-Making Compl exity

Given the mgor impact of human actions on land use and land cover, it is essentid that
models of these processes begin to illuminate the factors that affect human decison making.
Many theoretical traditions inform the theories that researchers use when modeling decison
making. As discussed below, some researchers are strongly influenced by deterministic
theories of decison making and do not attempt to understand how externd factors affect the
internal calculation of benefits and cogs: the “dos’ and “don'ts’ that affect how individuas
make decisons. Others, who are drawing on game theoretical or other theories of reasoning
processes, make much more sdlf-conscious choices to mode individua (or collective)
decisons as the result of various factors which combine to affect the processes and outcomes
of human reasoning.

What is an gppropriate index to characterize complexity in human decison making? We use
theterm HDM complexity to describe the capacity of a human-environmental model to handle
human decisor making processes. In Table 2.2, we present a classification scheme for
edimating HDM complexity using an index with values from one to six. A modd with alow
vaue (1) for human decision making complexity isamode that does not include any human
decison making. In contrast, amodd with a high vaue (5 or 6) isamode that includes one
or more types of actors explicitly or can handle multiple agents interacting across domains
like those shown in figures 2.2 and 2.3. In essence, figures 2.2 and 2.3 represent a hierarchica
approach to socid systems where lower-level agents interact to generate higher-leve
behaviors and where higher-level domains affect the behavior of lower-leve agents (Grimm

et d. 2000; Vogt et d. 2000; Grove et a. 2000).

Table 2.2 Six Levels of Human Decision-M aking Complexity

Level
1 No human decision making -- only biophyscd varigblesin the model
2 Human decision making assumed to be determinately related to population Size,

change, or density

3 Human decison making seen as a probability function depending on
socioeconomic and/or biophysical variables beyond population variables
without feedback from the environment to the choice function

4 Human decison making seen as a probability function depending on
socioeconomic and/or biophysical variables beyond population variables with
feedback from the environment to the choice function

5 One type of agent whose decisions are overtly modeled in regard to choices
made about variables that affect other processes and outcomes
6 Multiple types of agents whose decisons are overtly modeled in regard to

choices made about variables that affect other processes and outcomes; the
model may aso be able to handle changes in the shagpe of domains as time steps
are processed or interaction between decision-making agents a multiple human
decisionmaking scaes




Application of the Framework

The three dimengons of land-use change modd s (pace, time, and human decison making)
and two digtinct attributes for each dimension (scale and complexity) provide the foundation
for comparing and reviewing land- use change modds. Figlire 2.4 is an example of the
framework with the three dimens ons represented together with afew generd models,
including some types that were reviewed in this sudy. Various modeling approaches would
vay in their placement along these three dimengons of complexity snce thelocation of a
land-use change modd reflects its technical structure aswell as its sophigtication and

goplication.

Key

A-Time series statistical models,
STEL LA modelswith no human dimension

B- Time series models with human decision-
making explicitly modeled

C- Most traditional GIS situations

D- GISmodeling with an explicit temporal
component (e.g. Cellular Automata models)

E- Econometric (regression) and Game
Theor etic models

F- RBSim, Swarm and SME: Spatial Modeling

Environment

* Theultimate goal of human-environment
dynamic modeling: highin all three
dimensions

High

Space(Y)

@

Human
Decision-
Making (Z2)

-
Figure 2.4 A Three-Dimensional Framework for Reviewing and Assessing Land-Use
Change Models

L

The anadysis that follows attempts to characterize existing land- use models on each modeling
dimension. Modds are assigned alevd in the human decisonmaking dimendion, and ther
ability in the spatia and tempora dimensions are estimated as wdll. In addition, we document
and compare models across severa other factorsincluding: the model type, dependent or
explanatory variablesif any, modules, and independent variables.

10



I dentifying List of Models

Any project that purports to provide an overview of the literature in an area needs to provide
the reader with some information regarding how choices were made regarding incluson in the
et to be reviewed. In our case, we undertook literature and web searches aswell as
consultations with experts.

Literature and Web Searches

We began our search for appropriate land-use/land-cover change models by looking at a

variety of databases. Key word searches using land cover, land use, change, landscape, land*,
and model*, where * was awildcard, generated alarge volume of potentia articles. The
databases that proved to be most productive were Academic Search Elite and Web of Science.
Both databases provide absiract and full-text searches. Other databases consulted, but not

used as extensively, include Carl Uncover, Worldcat, and IUCAT (the database for Indiana
Univergty’slibrary collections). We dso searched for information on various web search

engines. Some of the gppropriate web sites we found included bibliographies with relevant
citations.

All of these searches yielded atota of 250 articles, which were compiled into bibliographic
lists. The lists were then examined by looking at titles, key words, and abgtracts to identify the
aticles that appeared rdlevant for thisreview. This preiminary examination yielded a master
bibliography of 136 articles. They were chosen because they ether assessed |land-use modds
directly or they discussed approaches and relevance of modd s for land-use and land-cover
change. The master bibliography is attached for reference (see Appendix 1). We then checked
the bibliographies of these articles for other relevant works. Web of Science dso alowed us
to search for articles cited in other articles.

Twelve models were selected by reading articles identified through this process. The basic
selection criteria were relevance and representativeness. A modd was relevant if it dedt with
land-use issues directly. Thus, models that focused largely on weter qudity, wildlife
management, or urban trangportation systems were not reviewed. The other seven models
were chosen from recommendeations received from colleagues and experts, especidly the U.S.
Forest Service. These additional models were aso reviewed for relevance and
representativeness.

The criteriafor representativeness included the following:

(1) Emphasis onincluding diverse types of models. Model type was considered in
choosing articles for review. If severd modes of a particular type had aready been
reviewed, other gpplications of that mode type were excluded in favor of different
modd types. For example, our search uncovered multiple spatid smulation modds,
severd of which were reviewed.

(2) If there were numerous papers on one mode (e.g., Sx on the NELUP modd), only the
more representative two or three were reviewed.

(3) If there were severa papers by one author (e.g., Wear) covering two or more models,
a subset that looked most relevant was reviewed.
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Survey of Experts

Expert opinion helped locate some of the models we reviewed. In addition to our literature
and web searches, we consulted with the Program Managers for the USFS Southern and
Northern Globd Change Programs to identify other significant land- use change models. In
addition to the mode s they identified, the Program Managers adso identified science contacts
who were working in or familiar with the field of land-use modeing. We followed up with
these contacts in order to (1) identify any additiond relevant models that we had not identified
through our literature and web searches, and (2) evauate whether or not our literature and
web searches were producing a comprehensve list. The evauation was accomplished by
comparing our “contacts ligs” with the land-use mode list we had developed through our
literature and web searches. Over the course of three months, this follow-up activity provided
fewer and fewer “new models,” and we shifted our efforts to the documentation and analys's
of the moddls we had aready identified.

By the end of the exercise, we had covered arange of modd types. They included Markov
chain models, logigtic function models, regression models, econometric models, dynamic
systems modds, spatid smulation modds, linear planning models, non-linear mathematica
planning modds, mechanigtic GIS modds, and cdlular automatamodds. For further
discussion, please refer to the subsection on methodological trendsin Section 4.

3. FINDINGS

We reviewed 19 land-use models for their spatid, tempora, and human decison-making
characterigtics using the framework we discussed in the previous section.

Models Surveyed
1. Generd Ecosystem Model (GEM) (Fitz et d. 1996)
2. Patuxent Landscape Model (PLM) (Voinov et a. 1999)
3. CLUE Modd (Conversion of Land Use and Its Effects) (Veldkamp and Fresco 1996a)
4. CLUE-CR (Conversion of Land Use and Its Effects — CostaRica) (Veldkamp and Fresco 1996h)
5. Areabase modd (Hardie et a. 1997)
6. Univariate spatid models (Mertens et a. 1997)
7. Econometric (multinomid logit) mode (Chomitz et d. 1996)
8. Spatid dynamic modd (Gilruth et d. 1995)
9. Spatid Markov modd (Wood et d. 1997)
10. CUF (Cdifornia Urban Futures) (Landis 1995, Landis et a. 1998)
11. LUCAS (Land Use Change Analysis System) (Berry et al. 1996)
12. Simple log weights (Weer et a. 1998)

13. Logit model (Wear et d. 1999)
14. Dynamic modd (Swalow et a. 1997)

1 We have tried to be as thorough as possible in our search for existing land-use/land-cover change models (as of

May 2000). However, we certainly would like to know of any important models we may have missed in this

review. For this reason, we will be posting the model references to a new web-based database we call the “ Open

Research System” (at http://www.open-research.org). If you have areference to amodel we missed, we

encourage you to visit this site, register with the system, and submit areference to amodel publication using the

submit publication form.



15. NELUP (Natural Environment Research Council [NERC]—Economic and Social Research
Council [ESRC]: NERC/ESRC Land Use Programme [NELUP]) (O’ Calahan 1995)

16. NELUP - Extension, (Oglethorpe et a. 1995)

17. FASOM (Forest and Agriculture Sector Optimization Model) (Adams et a. 1996)

18. CURBA (Cdifornia Urban and Biodiversity Anadysis Mode) (Landis et al. 1998)

19. Cdlular automatamodel (Clarke et a. 1998, Kirtland et a. 2000)

We summarize some key variations in modeling approachesin Table 3.1. All the moddls were
spatidly representative. Of the 19 models, 15 (79 percent) could be classified as spatidly
interactive rather than merdly representative. The same number of models were modular.
Modéels that were not modular were conceptualy ssimple and/or included few eements.
Interestingly, amgority of the models did not Sate they were spatidly explicit. Another
observation was the level of tempora complexity: some models include multiple time steps,
time lags, and negative or positive feedback loops.

Table 3.1 Summary Statistics of M odel Assessment

Review Criteria #(%) of Models | Model #s

Spdtid interaction 15 (79%) All but 5,9,12,13
Tempora complexity 6 (31%) 1,2,3,4,15,16
Human Decison Making — Level 1 3 1,6,9

Human Decison Making — Level 2 2 12,

Human DecisonMaking — Levd 3 7 5,7,10,11,13,17,18
Human Decison Making — Level 4 4 2,348,

Human Decison Making — Level 5 2 14,16

Human Decison Making — Level 6 1 15

Intables 3.2, 3.3, and 3.4, we provide a summary and assessment of land-use change models.
Table 3.2 gives basic information about each modd: type, modules, what the modd explains
(dependent variables), independent variables, and the strengths and weaknesses of each
model. Table 3.3 describes the spatial characteristics of each model: patia representation or
interaction, resolution, and extent. Table 3.4 details the tempora characteristics of each

mode!: time step and duration as well as the human decision-making e ements complexity,
juridictional domain, and tempora range of decisonmaking. A list of definitionsis provided
in the glossary at the end of this report. We discuss some of our findingsin Section 4.
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Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/ |Model Type [Components/ What It Explains / |Other Variables Strengths Weaknesses
Citation Modules Dependent Variable
Name of model, | Technical, [Different models, or Description of other sets of
if any, and descriptive  |submodels or modules variables in the model
citation terms that work together
1. General Dynamic 14 Sectors (modules), e.g.|Captures feedback 103 input parameters, in a set of Spatially dependent model, with|Limited human decision
Ecosystem systems model|Hydrology among abiotic and linked databases, representing the feedback between units and [making
Model (GEM) Macrophytes biotic ecosystem modules, e.g. across time
(Fitz et al. 1996) Algae components Hydrology Includes many sectors
' Nutrients Macrophytes Modular, can add or drop
Fire Algae sectors
Dead organic matter Nutrients Can adapt resolution, extent,
Separate database for Fire and time step to match the

each sector

Dead organic matter

process being modeled

2. Patuxent
Landscape
Model (PLM)
(Voinov et al.
1999)

Dynamic
systems model

Based on the GEM model
(#1, above), includes the
following modules, with
some modification:

1) Hydrology

2) Nutrients

3) Macrophytes

4) Economic model

Predicts fundamental
ecological processes
and land-use patterns
at the watershed level

In addition to the GEM variables, it

-adds dynamics in carbon-to-nutrient
ratios

-introduces differences between
evergreen and deciduous plant
communities

-introduces impact of land
management through fertilizing,
planting and harvesting of crops and
trees

In addition to the strengths of
the GEM, the PLM incorporates
several other variables that add
to its applicability to assess the
impacts of land management
and best management
practices.

Limited consideration of
institutional factors

3. CLUE Model
(Conversion of
Land Use and
Its Effects)
(Veldkamp and
Fresco 1996a)

Discrete, finite
state model

1) Regional biophysical
module

2) Regional land-use
objectives module

3) Local land-use
allocation module

Predicts land cover in
the future

Biophysical drivers

Land suitability for crops

Temperature/Precipitation

Effects of past land use (may explain
both biophysical degradation and
improvement of land, mainly for
crops)

Impact of pests, weeds, diseases

Human Drivers

Population size and density

Technology level

Level of affluence

Political Structures (through
command and control, or fiscal
mechanisms

Economic conditions

Attitudes and values

Covers a wide range of
biophysical and human drivers
at differing temporal and spatial
scales

Limited consideration of
institutional and
economic variables
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Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/ [Model Type |Components/ What It Explains / |Other Variables Strengths Weaknesses
Citation Modules Dependent Variable
4. CLUE-CR Discrete finite [CLUE-CR an application |Simulates top-down and|Same as CLUE (#3, above) Multiple scales - local, regional,|Authors acknowledge
(Conversion of [state model of CLUE (#3, above) bottom-up effects of and national limited consideration of
Land Use and Same modules land-use change in Uses the outcome of a nested [institutional and
Its Effects — Costa Rica analysis, a set of 6x5 scale- |economic factors
Costa Rica) depen(_jent Iand-use{land-
cover linear regressions as
(Veldkamp and model input, which is
Fresco 1996b) reproducible, unlike a specific
calibration exercise
5. Area base Area base Single module Predicts land-use Land base - classified as farmland, |Uses publicly available data An extended dataset
model model, using a proportions at county forest, and urban/other uses Incorporates economic (rent), over longer time
(Hardie et al. modified level County average farm revenue and landowner characteristics| periods would improve
1997) multinomial Crop costs per acre (age, income) and population| the model's predictions
logit model Standing timber prices density Long-term forecasts run
Timber production costs Incorporates the impact of land| the risk of facing an
Land quality (agricultural suitability) heterogeneity increasing probability
Population per acre Can account for sampling error| of structural change,
Average per capita personal income | in the county-level land-use calling for revised
Average age of farm owners proportions and for procedures
Irrigation measurement error incurred
by the use of county averages
6. Mertens et |Univariate Multiple univariate Frequency of All four models run with all four Does not model

al. 1997

spatial models

models, based on
deforestation pattern in
study area

1) Total study area

2) Corridor pattern

3) Island pattern

4) Diffuse pattern
Each model runs with all
four independent
variables separately.

deforestation

independent variables:
1) Road proximity
2) Town proximity
3) Forest-cover fragmentation
4) Proximity to a forest/non-forest
edge

Presents a strategy for
modeling deforestation by
proposing a typology of
deforestation patterns

In all cases, a single variable
model explains most of the
variability in deforestation.

interaction between
factors

ar



Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/ [Model Type |Components/ What It Explains / |Other Variables Strengths Weaknesses
Citation Modules Dependent Variable
7. Chomitz et |Econometric |Single module, with Predicts land use, Soil nitrogen Used spatially disaggregated |Strong assumptions that
al. 1996 (multinomial |multiple equations aggregated in three |Available phosphorus information to calculate an can be relaxed by
logit) model classes: Slope integrated distance measure| alternate specifications
Natural vegetation Ph based on terrain and Does not explicitly
Semi-subsistence Wetness presence of roads incorporate prices
agriculture Flood hazard Also, strong theoretical
Commercial farming [Rainfall underpinning of Von Thunen’s
National land model
Forest reserve
Distance to markets, based on
impedance levels (relative costs of
transport)
Soil fertility
8. Gilruth et al. |Spatial Several subroutines for |Predicts sites used for |Site productivity (# of fallow years) Replicable Long gap between data
1995 dynamic different tasks shifting cultivation in Ease of clearing Tries to mimic expansion of collection; does not
model terms of topography Erosion hazard cultivation over time include impact of land-
and proximity to Site proximity quality and
population centers Population, as function of village size socioeconomic variables
9. Wood et al. |Spatial Markov |Temporal and spatial Land-use change Models under development Investigating Markov variations, |Not strictly a weakness,
1997 model land-use change Markov which relax strict assumptions|this is a work in progress
models associated with the Markov |and, hence, has not yet
chain approach included HDM factors.
Explicitly considers both spatial
and temporal change
10. CUF Spatial Population growth Explains land use in a |Population growth, DLUs, and Underlying theory of parcel Compresses long period
(California simulation submodel metropolitan setting, in [ intermediate map layers with: allocation by population (20 years) in a single

Urban Futures)
(Landis 1995;
Landis et al.
1998)

Spatial database, various
layers merged to project
Developable Land Units
(DLUs)

Spatial Allocation
submodel

Annexation-incorporation
submodel

terms of demand
(population growth) and
supply (underdeveloped
land available for re-
development) of land

Housing prices

Zoning

Slope

Wetlands

Distance to city center

Distance to freeway or BART station

Distance to sphere-of-influence
boundaries

growth projections and price,
and incorporation of
incentives for intermediaries-
developers, a great strength

Large-scale GIS map layers
with detailed information for
each individual parcel in 14
counties provide high realism
and precision.

model run; has no
feedback of mismatch
between demand and
supply on price of
developable
land/housing stock; does|
not incorporate impact of
interest rates, economic

growth rates, etc.
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Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/ [Model Type |Components/ What It Explains / |Other Variables Strengths Weaknesses
Citation Modules Dependent Variable
11. LUCAS Spatial 1) Socioeconomic module|Transition probability |Module 1 variables: Model shows process (the LUCAS tended to
(Land-Use stochastic 2) Landscape change matrix (of change in [Land cover type (vegetation) TPM), output (new land-use fragment the
Change model module land cover) Slope map), and impact (on species| landscape for low-
Analysis 3) Impacts module Module 2 simulates the Aspec? habitat), all in one, which is proportion Ignd uses,
landscape change. |Elevation rare and commendable. due to the pixel-based
System) (Berry Module 3 assesses the|Land ownership Is modular and uses low-cost | independent-grid
et al. 1996) impact on species Population Density open-source GIS software method.
habitat. Distance to nearest road (GRASS) Patch-based simulation
Distance to nearest economic market would cause less
center fragmentation, but
Age of trees patch definition
requirements often
Module 2: Transition matrix and same lead to their
as Module 1, to produce a land- degeneration into one-
cover maps cell patches
Module 3: Utilizes land-cover maps
12. Wear et al. |Simple log Single module Predicts area of Raw timberland Simple and powerful indicator |Limited consideration of
1998 weights timberland adjusted for |Population density (per county) of forest sustainability, of the |[human decision making
population density impact of human settlement  |and other forest goods
decisions on one forest function|and services
--its role as timberland
13. Wear et al. |Logit model |Single module Predicts the probability |Population per square mile Includes several biophysical |Includes only basic
1999 of land being classified |Site index variables human choice variables,
as potential timberland [Slope e.g., population density
Two dummy variables defining
ease of access to a site
14. Swallow et |Dynamic Three components: Simulates an optimal [Present values of alternative possible|The long time horizon, and the |Authors note that the
al. 1997 model 1) Timber model harvest sequence states of the forest, using the three |annual checking of present optimal management

2) Forage production
function

3) Non-timber benefit
function

model components

values under alternate possible
states of the forest makes it a
useful forest management tool
for maximizing multiple-use
values.

pattern on any individual
stand or set of stands
requires specific analysis|
rather than dependence
on rules of thumb.
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Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/ [Model Type |Components/ What It Explains / |Other Variables Strengths Weaknesses
Citation Modules Dependent Variable
15. NELUP General 1) Regional agricultural |Explains patterns of Variable types include: Uses land cover to link market [Limited institutional
(O'Callahan systems economic model of land|agricultural and forestry [Soil characteristics forces, hydrology, and variables
1995) framework use at catchment levels |land use under different| Meteorological data ecology in a biophysical
Economic 2) Hydrological model scenarios Parish census data model of land use
component [3) Ecological model Input/output farm data Uses mostly publicly available
uses a Species data, especially in the
recursive Land cover economic model, which
linear greatly aids transferability
planning
model
16. NELUP - Linear Four sub-models for farm|Maximizes income Level of farm activity Detailed farm-level model, with|Limited institutional
Extension planning types Profit is the dependent |Gross margin per unit of farm activity [ extensive calibration variables.
(Oglethorpe et model at farm [1) Lowland and mainly variable. Fixed resources, r_epresented as Farmt_ars shpwn_as rat_ional
al. 1995) level arable physical constraints profitmaximizing beings, but
2) Lowland mainly grazing also includes the impact of
livestock off-farm income
3) Dairy
4) Hill
17. FASOM Dynamic, non- [Three submodels : Allocation of land in the |Forest sector variable groups: Incorporates both agriculture |Broad scale means that
(Forest and linear, price |1) Forest sector - forest and agriculturall Demand functions for forest products| and forest land uses land capability variations
Agriculture endogenous, transition timber supply | sectors. Timberland area, age-class dynamics|Price of products and land is |within regions are not
Sector mathemati_cal mod_el Object_ivg function Production technology and costs endogeno_us _ taken into account.
L programming |2) Agricultural sector that | maximizes the The model is dynamic, thus
Optimization model is optimized with the discounted economic|Agricultural sector variables: changes in one decade
Model) forest sector submodel | welfare of producers |Water influence land-use change in
(Adams et al. 3) Carbon sector for and consumers in the|Grazing the next decade
1996) terrestrial carbon U.S. agriculture and |Labor Good for long-term policy
forest sectors over a [Agricultural demand impacts
nine-decade time Imports/exports.

horizon

Carbon sector variables:
Tree and ecosystem carbon

Additional variables:
Land transfer variables

an




Table 3.2 In-Depth Overview of M odels Reviewed

Model Name/
Citation

Model Type

Components/
Modules

What It Explains /
Dependent Variable

Other Variables

Strengths

Weaknesses

18. CURBA
(California
Urban and
Biodiversity
Analysis
Model) (Landis
et al. 1998)

Overlay of GIS
layers with
statistical
urban growth
projections

1) Statistical model of
urban growth

2) Policy simulation and
evaluation model

3) Map and data layers of
habitat types,
biodiversity, and other
natural factors

The interaction among
the probabilities of
urbanization, its
interaction with habitat
type and extent, and,
impacts of policy
changes on the two

Slope and elevation

Location and types of roads
Hydrographic features
Jurisdictional boundaries
Wetlands and flood zones
Jurisdictional spheres of influence
Various socioeconomic data

Local growth policies

Job growth

Habitat type and extent maps

Increases understanding of
factors behind recent
urbanization patterns

Allows projection of future
urban growth patterns, and of
the impact of projected urban
growth on habitat integrity
and quality.

Human decision making
not explicitly
considered

Further, errors are likely
from misclassification
of data at grid level or
misalignment of map
feature boundaries

Errors also possible from
limitations in explaining
historical urban growth
patterns

19. Clarke et al.|Cellular Simulation module Change in urban areas|Extent of urban areas Allows each cell to act Does not unpack human

1998; Kirtland |automata consists of complex over time Elevation independently according to decisions that lead to

et al. 2000 model rules Slope rules, analogous to city spread of built areas
Digital data set of Roads expansion as a result of Does not yet include

biophysical and human
factors

hundreds of small decisions
Fine-scale data, registered to &
30 m UTM grid

biological factors
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Table 3.3 Spatial Characteristics of Each Model

Model

Spatial Complexity

Representation

Static. Represents
data on a map and
may portray variation
as well

Interaction

Dynamic. Includes effect of
variation on processes as well

as feedback between

neighboring units and location of
parcel within the larger scale

Spatial Scale

Resolution

Rastor or vector. The area of the basic unit
of analysis. A grid if rastor.

Extent

Location and total area covered by
model, e.g., grid area x # of grids

1. General Ecosystem |Yes Yes. Feedback between units Raster A trial simulation for the Florida Everglades/
model (GEM) Entire model runs for each spatial unit Big Cypress area
(Fitz et al. 1996) Trial unit of 1 sg. km can vary Approx. 10,000 acres
2. Patuxent Landscape |Yes Yes Raster 58905 cells (200 m) or 2352 cells (1 sq. km)
Model (PLM) Feedback between units Hydrological model: 200 m and 1 km The Patuxent watershed (Maryland, USA),
(Voinov et al. 1999) covering 2353 sqg. km
3. CLUE Model Yes Yes Raster See next model, CLUE-CR, for an
(Conversion of Land Attributes of one grid unit affect In the generic CLUE model, size determined by |application
Use and Its Effects) land-use outcomes in another extent divided by grid scale neutral matrix of
(Veldkamp and Fresco unit. 23x23 cells

Can be scaled up or down
1996a)
4. CLUE-CR Yes As above Raster Multiple extents that correspond to different
(Conversion of Land Run at local, regional, and national levels modules
Use and lts Effects — One grid unit = 0.1 degrees or 6 minutes (= National: Costa Rica, 933 aggregate grid
Costa Rica) 7.5x7.5 km = 56.25 sg. km at the equator) units
Veldk dF Regional: 16 to 36 aggregate grids
(19(;6b)amp and rresco Local: 1 grid unit
5. Area Base Model Yes No Neither raster nor vector Five southeastern U.S. states - Florida,

(Hardie et al. 1997)

Relies on land
heterogeneity to
explain the coexistence
of several land uses
and the shift between
them

Data averaged at county level
Average county area = 315,497 acres

Georgia, South Carolina, North Carolina,
Virginia
=147,423,760 acres




Table 3.3 Spatial Characteristics of Each Mode

Model

Spatial Complexity

Representation

Interaction

Spatial Scale

Resolution

Extent

6. Mertens e al. 1997 |Yes Yes Raster Southeast Cameroon. Area not specified,
Status of pixel is dependent on 80 m x 80 m (Landsat Pixel size) but is the overlap between 2 Landsat
other spatial factors. images
7. Chomitz et al. 1996 |Yes Yes Uses vector data only Central and South Belize, approx. 2/3 of the
Spatial variation in several total area of 22,000 sqg. km
variables, influences other
variables, e.g., wetness and roads
and slope to assess impedance to
markets
8. Gilruth et al. 1995 Yes Dynamic, spatially explicit model |Raster 6 sqg. km area, representative of a 60 sq. km
100 m x 100 m cells, in a 60x60 cell grid, Diafore watershed, in the Tougue district,
resampled from 120x120 grid Guinea
9. Wood et al. 1997 Yes No Raster One department, Velingara, in south-central
Cell size of 80 m (x 80m) Senegal
10. CUF (California Yes Yes Vector. Nine counties of the San Francisco Bay areal
Urban Futures) Individual sites, with property boundaries (Alameda, Contra Costa, Marin, Napa, San
(Landis 1995: Model run at city and county levels Francisco, San Mateo, Santa Clara, Solano,
Landis et al ,1998) Sonoma) and five adjacent ones, (Santa
’ Cruz, Sacramento, San Joaquin, Stanislaus,
Yolo)
11. LUCAS (Land-Use |Yes Tentatively Yes, if the transition Raster Two watersheds, the Little Tennessee river
Change Analysis probability for one pixel, affected by |Each pixel in this example represents 90 X 90 |basin in North Carolina and the Hoh river
System) factors in another pixel m, and has an attached table with unique watershed on the Olympic Peninsula in
(Berry et al. 1996) attributes. Washington State
12. Wear et al. 1998 Yes No Neither Southern states of the USA
Displays variations County-level aggregate data
among counties
13. Wear et al. 1999 Yes No Vector. Five-county region around Charlottesville, in
Variations among Fine scale, forested plots in private ownership |Virginia - Albermarle, Fluvanna, Louisa,
counties Greene, and Nelson
14. Swallow et al. Yes Yes Still conceptual, neither raster nor vector Multiple stands

1997

Takes interactions among stands
into account

Model simulates multi-stand dynamics.
Stands can vary in size.

Case study uses a simplified ecosystem of
two stands.
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Table 3.3 Spatial Characteristics of Each Mode

Model

Spatial Complexity

Representation

Interaction

Spatial Scale

Resolution

Extent

15. NELUP
(O’Callahan 1995)

Yes
Incorporates variation

Yes
Variation affects neighboring units.

Raster
Ecological model: 1 sq. km units
The main economic model treats the whole

catchment as a macro farm, but accounts for
land-use variation using the land-cover data.

River Tyne catchment in Northern England -
3000 sqg. km

16. NELUP - Yes Yes Neither Multiple farms

Extension Developed four Not in submodel itself, but in the |Farm level Trial runs for 10 and 14 farms, and will cover
(Oglethorpe et al submodels to capture| total NELUP model the entire catchment.

1995) ' variation

17. FASOM (Forest Yes Yes. Vector The entire USA, except, Hawaii and Alaska

and Agriculture Sector
Optimization Model)
(Adams et al. 1996)

Divides USA in 11
regions that may be
represented on a
map

Model at subcontinental scale, and
changes in inventory and prices in
one region affect prices and
inventory in other regions.

Demand: one national region
Supply: subnational region

18. CURBA (California |Yes Yes, as impact of changes in one |Raster County level in California
Urban and Biodiversity cell - in terms of highway, growth  [One-hectare grid cell (100x100 m) Pilot study for Santa Cruz County
Analysis Model) policies, population and job growth, Model data sets developed for nine counties
(Landis et al. 1998) influences probability of
urbanization of surrounding cells
19. Clarke et al. 1998; |Yes Yes Raster Initial run for 256 sg. km region around San

Kirtland et al. 2000

Each cell acts independently, but
according to rules that take spatial
properties of neighboring
locations into account

Converted vector data, e.g., roads to raster
Base data registered at 30x30 m
Model run at 1 sq. km level

Francisco in central California, USA
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Table 3.4 Temporal and Human Decision-M aking Char acteristics of Each M odel

Model Temporal Scale Human Decision Making
Time Step Duration of Model Run Complexity Domain Temporal Range
Time period for one Time step x number of runs  |A 6-point scale for human  |Jurisdictional domain Short-run decision-making
iteration of the model. decision making or human period and longer-run
Modules may have different choice (rank and rationale) decision-making horizon
time steps -a function of the
particular process
1. General Initial simulation runs at 0.5- [Can match the cycle of process [Level: 1 Not really considered Not really considered, as there
Ecosystem Model | day time step being modeled Not covered in core model is no explicit socioeconomic
(GEM) The time step can vary across component in the basic GEM

(Fitz et al. 1996)

modules- to match the
dynamics of particular
sectors.

model

2. Patuxent Hydrological module: one-day [Experimental run compared Level: 4 Maximizes rent as a function [Annual iteration to capture
Landscape Model time step 1990 land-use patterns with Incorporates human decisions|of the value in different uses [variations in land use
(PLM) Land-use map from the complete forest as a functio_n of eco_nomic and the costs of conve_rsion,
(Voinov et al. economic model imported at and ecological spatial hence generally referring to
a one-year interval variables. private decision making, but
1999) Predicts probabilities of land- |aggregated at the grid level
use conversion as functions
of predicted values in
residential and alternative
uses and the costs of
conversion
3. CLUE Model One month to update model |[Set by user Level: 4 Incorporates collective Considers the temporal range

(Conversion of
Land Use and Its
Effects)
(Veldkamp and
Fresco 1996a)

variables

Changes in land-use types
however, are made on
decisions for each year

Example scenario is for several
decades

It applies several human
drivers.

decision-making levels, from
local to national

of decision making explicitly, in
determining, for example the
time period for updating
changes in land-use types as
well as minimum economic age
and rotation length of the 10
different land-use types

AN




Table 3.4 Temporal and Human Decision-M aking Char acteristics of Each M odel

Model Temporal Scale Human Decision Making
Time Step Duration of Model Run Complexity Domain Temporal Range
4. CLUE-CR One month One-month time step Level: 4 As above, applied to Costa  [As in CLUE, above

(Conversion of
Land Use and lIts
Effects — Costa
Rica)

(Veldkamp and
Fresco 1996b)

Run 252 times

Human demographic drivers
only

Rica

5. Area Base
Model
(Hardie et al.
1997)

No

Cross-sectional study with
1982 data

At second stage, 5-year time
step as pooled 1987 data

Mostly 1982 to 1987 data

Level: 3

Land-use proportions are
modeled as dependent on
rent from land as well as
average age, income, and
population density

While decision making is
mostly at landowner level, the
study explanatory variable,
land-use proportions, is
consistent with the county-
level data.

Not considered in this cross-
sectional study

6. Mertens et al.
1997

13 years. Single time step

13 years, 1973-86

Level: 1

Human decision making not
included directly

Implicit in the inclusion of
variable like distance from
road and town

Not considered

Not considered

7. Chomitz et al.
1996

Cross-sectional analysis,
hence time period not
applicable

Most data collected
between 1989-92

Level: 3

Human decision making
implicit in the inclusion of
variables that impact rent -
distance to market, soil

Not considered

Not considered

quality
8. Gilruth et al. Two years 1953 t0 1989 Level: 4 Subwatershed, with a small |Model time step tries to mimic
1995 Based on the average Tries to predict location of enough scale to capture the estimated fallow period of

cultivation period in the
exterior fields

shifting cultivation decisions
on the basis of biophysical
variables over time, with
feedback

large clearing
No attempt to model individual
fields

two years; however, too long a
period between the base and
final year - 36 years




Table 3.4 Temporal and Human Decision-M aking Char acteristics of Each M odel

Model Temporal Scale Human Decision Making
Time Step Duration of Model Run Complexity Domain Temporal Range
9. Wood et al. Two steps: Four years (1973- |17 years (1973-90) Level: 1 Mostly at farm and field level, [Considered implicitly, in choice
1997 78) and 12 years (1978-90) Notincluded while model operates at of time step, to capture
Will add a third step by department level agricultural land-use change
including 1985 over longer time periods, rather
than the decision making
associated with each crop cycle
10. CUF Same as duration? 1990-2010 Level: 3. Model operates at the level of [Not considered explicitly
(California Urban  |Not clear from reference Model takes 1990 base data and|Human choice seen as individual parcels, which is the|Model run compresses 20
Futures) whether annual data are forecasts growth in 2010. determined by market price |level at which decisions are years intc_) one run
(Landis 1995: collected and other environmental andfusually taken Such housing decisions are
. ! zoning constraints often made quickly
Landis et al. 1998) No feedback, excessive Model uses base-year price
demand does not lead to data
increase in prices, in the It may inadequately represent
model exogenous factors in later
years of the model
A shorter time step may be
better
11. LUCAS (Land- |Five Years 15 years (1975-91) Level: 3 Not considered explicitly Not considered explicitly

use Change
Analysis System)
(Berry et al. 1996)

Single time step

Human choice modeled via a
probability function for land-
cover change, with basic
socioeconomic determinants
and no feedback

Grid does not include
ownership, though it is at
fine enough scale to broadly
reflect private decision
making in U.S.

12. Wear et al.
1998

Nine years

time steps or three
observations in forest
inventory years)

18 yrs- 1974,1983,1992 (two

Level: 2
Demographic drivers
determine impact.

Not considered explicitly

The impact of individual
decisions is aggregated to
county level

Not considered explicitly

Ar




Table 3.4 Temporal and Human Decision-M aking Char acteristics of Each M odel

Model Temporal Scale Human Decision Making
Time Step Duration of Model Run Complexity Domain Temporal Range
13. Wear et al. No Single run, no duration Level: 3 Average population data at Cross-sectional study, hence

1999

Cross-sectional, 1990s data

Human choice included at
basic determinant level
(population density), along
with the impact of several
biophysical factors, on the
probability of a certain land
use

aggregate county block level,
correlated with individual plots

not considered explicitly

14. Swallow et al.
1997

One year

Run of 250 years, sufficiently far
into the future that heavy

discounting makes a change in
the time horizon inconsequential

Level: 5

A land management model

The explanatory variable,
optimal harvest rotations,
provides a decision support
tool

Focused on multiple stands,
which is the level at which
decisions are usually made,
particularly if there are multiple
owners

Land management decisions
are usually made annually, or
even more occasionally,
especially for forests.

The long time horizon, and the
annual checking of present
values under alternate
possible states of the forest
makes it a useful forest
management tool.

15. NELUP
(O’Callahan 1995)

Economic model uses annual
data from parish-level
records

The time step of the hydrologic
model was not available.

Economic submodel tested with
annual data, 1981-88

Level: 6

The model overtly models
choices of farmers, while
actions of other actors are
included in the form of
technology or policy
constraints.

The main economic model
treats the whole catchment as
a macro-farm, thus perhaps
overestimating factor mobility.

The annual time step
corresponds to time scale of
broad agricultural decision
making.

16. NELUP -
Extension
(Oglethorpe et al.
1995)

Annual financial and cost data

10-year period, 1981-82 to
1991-92

Level: 5

This submodel includes
choices of farmers.

When combined with the rest
of the NELUP model, it
would rank at 6.

Also tries to model their risk-
averse behavior

The model resolution perfectly
matches the decision-making
unit - the individual farm.

The annual time step
corresponds to the time scale of
broad agricultural decision
making.

Ar




Table 3.4 Temporal and Human Decision-M aking Char acteristics of Each M odel

Model Temporal Scale Human Decision Making
Time Step Duration of Model Run Complexity Domain Temporal Range
17. FASOM Decadal — 10 years 100 years, 1990-2089 Level: 3 Demand region: nation A decadal time step is

(Forest and
Agriculture Sector

Policy analysis limited to 50
years, 1990-2039

Human choice seen as
economic rational decision
making based on returns

Factor decision making is
modeled at subnational
regional level, with

consistent with the slow rate of
changes in forest sector, but
not the annual decision-making

Optimization under alternative uses with | aggregation from individual |cycle in agriculture. To

Model) limited feedback from the landowner level, rather than |compensate, the agricultural

(Adams et al. environment at farm level objective function is weighted

1996) Accounts for changes in inter- by a factor reflecting the
temporal and price harvest of agricultural products
complexity each year during adecade.

18. CURBA Not apparent 15 years, 1995 to 2010 Level: 3 Calculates impacts at one- Long enough model period to

(California Urban
and Biodiversity
Analysis Model)
(Landis et al.
1998)

Projections made for the latter
year

Human decision making in the
urbanization context
implicitly a function of
highway facilities, natural
constraints, growth policies,
and job and population
growth

Useful depiction of zoning
policies

hectare grid level, a bit
broader than individual
decision-making levels in the
urban context.

Also includes the impacts of
scale decision making, i.e.,
county or subcounty-level
zoning

capture longer term shifts in
urbanization and its
determinants

19. Clarke et al.
1998; Kirtland et
al. 2000

Annual

Used linear interpolation to
estimate annual changes
between datasets

Used about 90 years of data for
validation to project urban
growth a 100 years from 1990

Level: 2

While human decisions not
explicitly modeled, their
impact taken into account

Operates at a broader scale of
1 sq. km, utilizing the
aggregate impact of hundreds
of human decisions that affect
urbanization

Annual time step appropriate to
reflect aggregate changes in
built area, as most buildings are
ready in less than a year

~=7




4. DISCUSSION

In this section we discuss the mgor issues related to modeling land- use change as determined
through our modd review. In particular, we discuss trends in land-use modeing and the
theoretica foundations behind these trends. Methodological evolution has alowed
exploration of new modeling approaches, and we discuss the application of these new
methodol ogies to land-use change modeling. Finaly, we discuss various condraints facing the
modeling community and certain opportunities based on the current direction of modeling and
new methodologcal possbilities

Trendsin Temporal, Spatial, and Human Decision-Making Complexity

A graphical representation of the tempora time step and duration and the spatia resolution
and extent of the modds (Figure 4.1) facilitates severa observations. These diagrams are
congtructed by plotting four values on an x-y plot: time step and duration on the x-axis and
resolution and extent on the y-axis (see inset in lower |eft corner of Figure 4.1). The plotted
areafor each modd then represents the spatia and tempord scaes under which the model
operaes (colors of moddsin Figure 4.1 smply aid the reeder in distinguishing them). Figure
4.1 shows that the 19 models examined in the report together cover awide range of scales,
from less than a day to more than 100 yearsin time and from less than one hectare to more
than 1 million kn?* in space. Yet this range of scalesis not covered by any one modd. Clearly,
models seem to be associated with a particular spatio-tempora niche. Severd more tempord-
gpecific conclusions can be drawn from these diagrams.
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Figure 4.1 Spatial and Temporal Characteristics of Reviewed Models
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Temporal Complexity

Many models with separate ecologica modules operate at fine time steps, for example, aday
or amonth (exceptions include certain climate-focused models). This fine tempora resolution
alows these models to more accuratdly represent rapid ecological changes with timein

certain biophysica spheres, eg., hydrology. Second, models with multiple time steps (e.g.,
models 1, 2, 3, 4, 15, 16) can span both fine and coarse time steps and reflect the temporal
complexity of different socioeconomic and biophysica sectors more effectively. Third, some
of the more complex modds (CLUE and CLUE-CR) dso incorporate time lags and take into
account the time taken for different crops and other land uses to provide economic returns as
well as provide atwo-year buffer againg food shortages by carrying over yield surpluses from
previous years.

Spatial Complexity

More than hdf of the models provide for spatid interaction and demondtrate the advantages
of spatidly explicit models that move beyond smple spatia representation. These modds
include the impact of variations across space and time of different biophysicad and
socioeconomic factors on land-use change. Figure 4.2 depicts the 19 models asin Figure 4.1,
aswell as displaying which models use araster or vector gpproach (or neither). The spatio-
tempord footprint of the Landsat data sets is aso included.
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Figure 4.2 Raster and Vector Characteristics of Reviewed Models
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Eleven of 19 models are raster based, four are vector based, and four are classified as neither.
That may change, for example, if modd #14 (Swalow et d. 1997) goes beyond the
conceptud stage. The mechanistic vector models (#10 and #18) are focused at city and county
levels and provide the finest spatid resolution. Their extent may be limited by availability of
data. Mogt of the raster modd's have spatid resolutions that are larger than 30-80 meters,
broadly mirroring the pixel Sze of common remote-sensing data (e.g., Landsat TM and M SS).
Likewise, the raster models generdly seem to have extents at or less than the area covered by
one Landsat scene (185 kilometers x 185 kilometers).

The modd with the largest extent (neither araster nor a vector model) was the continental-
scale FASOM mode, with a 100-year time horizon, a good example of adynamic,
mathematica programming modd that predicts dlocation of land between agriculture and
forestry, and is spatidly representative but not spatidly explicit.

Human Decision-Making Compl exity

Figure 4.3 (a space-time—human—decision-making diagram) adds the level of complexity of
human decision making to the graphical representation of tempora and spatia scales. Each
mode’ s level of human decison making islisted in Table 3.1. Modds et leve 3 (7 of 19)
include sgnificant levels of human decision making beyond demographic drivers, but are
defined by the lack of feedback; thus, the CUF modd alocates land based on cost, but does
not factor in feedback on prices. At level 4, modes incorporate feedback, but most do not
overtly mode aparticular kind of actor. Thus, the PLM and CLUE/CLUE-CR models (#2,
#3, and #4) have well-developed ecologica sectors and extensve human decision-making
edements aswd| as feedback among sectors, but do not explicitly modd different types of
actors. Model #8 (aland-use mode that incorporates shifting cultivation decisons) isranked
at 4, based on its overal complexity in portraying human decison making. Models & level 5
(#14 and #16) and 6 (#15) explicitly modd one or more kinds of actors. Model #14 smulates
harvest decisons and includes both economic and non-economic criteria (e.g., habitat for
wildlife). The NELUP modd extension (#16) isafarm-level modd that includes the impact
of farming decisons on changesin intengty of land use and in land cover. The generd
NELUP mode has ecologica and economic components and farming decisions, and can
serve as adecison support tool to provide feedback on the impact of collective-leve policies
(e.g., support prices or conservation programs). These characteristics position the NELUP
model among the most detailed in terms of moded specification in avariety of sectors
affecting land-use change. However, it should be noted that a highly detailed modd is not
necessarily more suitable than a modd with less specificity. The utility of aland-use change
model can be measured primarily by its ability to demongtrate emergent patternsin land-use
change processes and, secondarily, as a predictive tool.
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Figure 4.3 Human Decision-M aking Complexity of Reviewed Models

Theoretical Trends
Social Drivers of Land-Use Change

Recently, a genera consensus has emerged from working groups focusing on socid drivers of
globd change, particularly asit rdates to land- use change. Building upon the Nationd

Research Council’s (NRC) report on Global Environmental Change: Under standing Human
Dimensions (1992:2-3), aLong- Term Ecologica Research (LTER) Network working group
report to the Nationa Science Foundation (NSF), Toward a Unified Understanding of Human
Ecosystems: Integrating Social Science into Long-Term Ecological Research (2000), has
articulated core social science areas that need to be studied in order to understand variationsin
humean land-use, production, and consumption patterns.

To illugtrate this further, we examine the smplified modd in Figure 4.4, which describes a
generd, traditional, conceptua framework that many ecologists have used to study
ecosystems. Although this conceptud mode is powerful in itsinclusion of both ecologicd

and human-based processes, important interactions and feedbacks influencing long-term
ecosystern dynamics are absent. An activity such as land usg, traditionaly seen asadriver,
a0 can be viewed as the result of more fundamenta socid and ecological patterns and
processes. Because many of these missing features relate to the socid sciences, incorporating

31



greater contributions from these disciplines together with existing biophysica/ecologicd
models may greetly enhance our understanding of globd change in generd, and land-use

changein particular.

Human Ecosystem
Activities | == | Dynamics

Biogeophysical
Drivers

Figure4.4 Traditional Conceptual Framework for Ecosystem Studies

In contrast to Figure 4.4, the LTER report proposes a more dynamic framework that explicitly
links whét is often divided into separate “natural” and human systems into a more integrated

mode (Figure 4.5).
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Figure 4.5. Conceptual Framework for Investigating Human Ecosystems
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Although disciplinary training and traditional modeling often trest elements of human and
ecologicd sysems as digtinct, this framework emphasizes dynamic linkages by focusing on
the interactions a the interface of the human and ecologica components of any human
ecosystem. The LTER report defines the following interactions as the specific activities that
mediate between the human and ecologica eements of the broader human ecosystem:

Land-use decisons

Land cover and land-cover changes
Production

Consumption

Disposa

While each of these activities can be examined independently, the report acknowledges their
strong interdependencies. Though there might be other mediating activitiesaswell, the LTER
report proposes that the activities listed above are a good starting point, Snce they are dready
identified by both ecologists and socid scientists as prominent and relevant processes.

Having defined a set of gpecific activities thet are at the interface of the human and ecologica
aspects of any human ecosystem, the next step isto develop a perspective on what motivates
these activities. To integrate the socid, behavioral, and economic aspects of human
ecosystems, the LTER report proposes alist of social patterns and processes. We further
propose that this list can be used as a practica guide for modeling land-use change. These
processes include the following:

demography

technology

economy

politicd and socid inditutions

culturdly determined attitudes, beliefs, and behavior
information and its flow

One may expect that aspects of the last three drivers on the ligs—inditutions, culture, and
informationCIwill be difficult to integrate with more familiar biological factors. Certain

aspects of each of these last three drivers (and the first three to alesser extent) are constrained
by human perception of the driver and how it is dready integrated into the ongoing system. In
a human ecosystem, al choices are not equaly available to everyone; they are conditioned by
perceptions and preconceptions as well as* physica” condrants.

To guide the development of land-use modds that are more inclusive of socid patterns and
processes, we see aneed for land-use model devel opers to consider one broad question and
three subsidiary questions.

How did the social-ecological system develop into its current state, and how might it change
in the future?



This question focuses on severd critical agpects of the broader system, such as the nature of
feedback linkages, rates of change, important system components, and the specifics of
resource use and production. Three subsidiary questions are so important for land-use model
development:

How have ecological processes influenced the social patterns and processes that have
emerged?

How have social patterns and processes influenced the use and management of

resour ces?

How are these interactions changing, and what implications do these changes bring to
the state of the social-ecological system?

These questions can help guide the development of an integrated land-use mode as
researchers attempt to characterize the fundamenta aspects of system composition, system
trends, and system operation. We recognize that such an integrated approach to modding
land-use change may necessitate a collaborative venture among scientigts in different
disciplines, each expanding from atraditiond viewpoint. For most socid scientigs, thiswill
mean a greater emphasis on the flows of matter and energy in human ecosystems. For
ecologidts, issues surrounding information flow and decision making may take on greater
relevance.

Current Social Driversin Land-Use Models

Rdevant humandriver varidbles from dl land-use models that were reviewed for this report
are summarized in Table 4.1 and Appendix 2. These drivers can be examined in the context of
the socid driversidentified by both the NRC and L TER reports. While some aspects of socid
drivers are dearly included in severa models, such as demography (population size, density,
growth), markets (land production profits and rent), ingtitutions (zoning, tenure), and
technology (types of and access to trangportation), there was no clear and systematic
congderation of each type of driver (and the relationships among them) in any one modd.
Certainly not dl drivers are equaly important over time, space, and a different scaes. We
propose that, smilar to ecologica modes of forest growth (that might include the rdlaive
effects of nitrogen, water, and light availability and changes in amospheric carbon on
different tree gpecies), there is a comparable need for land- use modds that can include the
relative effects of different socid drivers on land-use change in the context of space, time, and
scde Thisis particularly crucia for ng dternative future scenarios and relative impacts
of different policy choices. We bdieve it iscrucid for developers of land-use models to
discuss and adopt a more comprehensive and systematic gpproach to including socid drivers
of land-use change within the context of the NRC and L TER reports and existing socid
science efforts.



Table4.1 Summary of Model Variables That Characterize Relevant Human Drivers

Human Driversor Social Modd Variables Modé€ #s
Patternsand Preferences
Population Size 2,3,4,10, 15,18
Population Growth 2,3,4,10,18

Population Density

2,3,4,5,10,11,12,13, 18

Returns to Land-Use (costs and prices)

2,5,10,14, 16,17

Job Growth 10,18

Costs of Conversion 2,10

Rent 2,3,5,16
Collective Rule Making Zoning 2,10, 15, 18

Tenure 7,11

Infrastructure/Accessibility

Relative Geographical Positionto Infrastructure:

Distance from Road

2,3,4,6,10,11, 18

Distance from Town/Market 6,7,10,11, 18

Distance from Village 8

Presence of Irrigation 5
Generalized Access Variable 13
Village Size 8
Silviculture 2,15,16,17
Agriculture 2,15,16,17
Technology Level 3,4,17
Affluence 3,4,5
Human Attitudes and Values 3,4
Food Security 3,4
Age 5

# 8 — population a proxy of village size

# 9 — measures both distance to downtown San Francisco aswell asto the nearest sphere-of-influence boundary

(asaproxy for infrastructure costs— water, drainage, electricity, etc.)
#14 — includes weal th and substitution effects of harvesting decisions across stands; includes non-timber
benefits, e.g., of providing forage and cover to wildlife
#18 — not clear if economic rent isavariable

Multidisciplinary Approaches

Land-cover change is a complex process affected by awide variety of social and ecologica
processes. The multidisciplinary nature of land-cover changeiswidely recognized in both the
socid and natura sciences, yet the indtitutiona powers of the disciplines remain strong, and
multidisciplinary scienceis dill initsinfancy. The broad spatid and tempora scaes of the
humean dimension of land-cover change (that our reviewed models cross) demand that models
aso cross multiple disciplines. As the dimension becomes broader, more disciplines may need
to be incorporated. Any mode of land-cover change is probably limited by the personnel
congructing it, in accordance with their disciplinary limitsin understanding and funding.

Some of the models we examined incorporated multiple disciplines, NELUP and GEM/PLM
incorporated many biophysica disciplines, aswell as socid sciences and fields of modeling
methods. Other moddls, especidly the purdy satistical ones, were more limited in scope.
Broadly, the higher the ability of the mode to dedl with complexity, the more
multidisciplinery the modd islikdly to be.




Temporal and Spatial Synchrony and Asynchrony

Human decison making does not occur in avacuum. Rather, it takes placein a particular
gpatial and tempora context. Further, since decison making about land use usualy concerns
some biophysicd process, we must include these processes in the discussion. The following
section discusses the interaction of decision making and biophysica processes within the
dimensions of space and time.

The spatid extent of human problems is sometimes smdler than key actors and sometimes
larger. Equivaence between the spatid extent of a given biophysicd process and the
jurisdictional domain of at least one decision-making unit can often help actors make effective
decisons. A lack of equivaence can present potentia problemsinhibiting the incorporation of
al impacts of aprocessin decison making. In the red world, decisons are made at multiple
scales with feedback from one scale to another. Also, actors at afiner scale may have evolved
adecison-making system a a broader scae, without actudly having an actor at that scae.

This problem of scade mismatch occurs when the physica scae of an ecologica system varies
subgtantialy from that of at least one organized decisonmaking system that regulates human
actions related to that system. Scale mismatch can occur, for example, when the physica
system is much larger than any human decision-making system that affectsit. Most globa
ecologica problems currently are characterized by thiskind of scae mismatch. These
mismatches are often characterized as externdities. For example, until an internationa tresty
or specid regimeis crested, nationstates are smaller than the stratosphere, but actions taken
within dl nationstates affect the level of greenhouse gases contained in the stratosphere.
Looking at the ozone in the atmosphere as a shield, substantia progress has been made in
developing an internationd regime that has successtully limited the level of
chlorofluorocarbons (CFCs) that can be emitted, as well as providing awarning system for
when ozone levels are dangeroudy low (Sandler 1997, 106-115). While stratospheric ozone
levels are il falling, measurable progress has been made. In regard to globa warming, on
the other hand, while various efforts to achieve an internationa regime to limit greenhouse

gas emissions are underway, such aregimeis gill along way from being redized (Y oung
1999).

Scale mismatch aso can occur when the ecological systemissmdler (or adramaticaly
different geographic shape) than any relevant decison-making regime. Wilson et d. (1999)
andyze scale mismatches that occur in fisheries when managersin alarge fishery agency
percaive their task as managing asingle large population of fish, when, in fact, multiple,

smdl, spatidly discrete populations actualy characterize the fishery. If afishery is
characterized by “metapopulations” where loca populations of fish are relatively discrete and
reproduce separately to some degree, then management of the species at a broader scale may
overlook the protection of specific spawning grounds and alow rapid extinction of loca
populations (Gilpin 1996). The extinction of loca populations can adversely affect the
spawning potentia of the entire population. Similarly, if urban areas are governed only by
large units of government, and neighborhoods are not well organized, many neighborhood-
leve functions are overlooked, leading eventualy to serious problems throughout an urban
area (McGinnis 1999).



At aregiond scde, SO, emissons from midwestern U.S. cod-burning power plants carry
downwind and cause high ozone levels (in the lower atmosphere) in severd states on the esst
coast. Thishasled to regiond initiatives, like the Ozone Trangport Authority Group (OTAG)
with 34 member states trying try to resolve the problem.

Furthermore, missng connections may arise, if potentidly effective inditutions exis a the
appropriate scaes but decision-making linkages between scaes are ineffective. Decisons

may also be based on information aggregated at an inappropriate scale, even though it may
exis at the appropriate scae (Clevdand et d. 1996). An example of the latter isthe biennid
national forest cover andysis prepared by the Forest Survey of India. While forest cover is
assesd at the level of smdll locdl units it is aggregated and reported at the district leve, which
isalarger adminidrative unit, rather than at the watershed-based forest division levd, a which
forests are managed.

When human decisions relate to processes which change over time, there may be atempord
mismatch between the time step and duration of biophysical processes and the decision+
making time horizons of the human actors. For example, eected officids on three- to five-

year terms may make decisons on issues and processes that have long-term biophysca
consequences, such as tree species with long rotations, or storage of nuclear waste. See earlier
discussion on decision-making time horizons.

Humans usudly use some form of discounting to compare preferences over time. The
discount rate may be implicit or explicit. Thus, afarmer choosing between growing an annud
crop and planting treesthat are harvestable in 30 yearsis comparing the flows of costs and
benefits over different periods of time. Since models do not have the luxury of implicit
comparisons, they usualy use a discount rate to compare such choices. Most models make
such comparisons by adjusting the vaue of money as afunction of time. However, linking
biophysica and socid modds by vauing socid, economic, and environmental systemswith
this single parameter involves many assumptions and has been controversa (Longerhan et d.
1994).

Figure 4.6 represents spatial and tempora interaction of decision-making and biophysica
processes in a nine-box figure. The boxes in the middle of each row of edge boxes, with bold
text (a b, ¢, and d), represent the four factors whose interaction determines land use—space,
time, human decision making, and biophysica processes. The corner boxes represent the
results of the interaction of the two adjacent headings. Thus, box (ii) represents the tempora
dimension of biophysical processes (i.e., time step and duration), while box (iii) represents the
gpatia dimengion of human decision making. The center box represents the problems of
mismatches between decison making and biophysica processes in the tempora and spatid
dimensions, as discussed above.
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Figure 4.6 A Nine-Box Representation of the I nteraction between the Three Dimensions
of Space, Time, and Human Decison M aking with Biophysical Processes

Land-use modds and modeling tools or gpproaches may be viewed in terms of their
sophistication or technical ability in portraying processes in each of the three dimensions of
space, time and human decision making. In other words, they can be assessed in their ability
to handle spatid, tempora, and/or human decision making complexity.

Methodological Trends

Model Types

The modds reviewed employ arange of modeling methods (Table 3.2). The CUF and
CURBA models (10 and 18) both use a mechanidic GIS amulation, combining layers of
information with growth projections. Both were noted for their detailed vector resolution. A
range of Statigtical/econometric models (5, 6, 7, 9, 12, and 13) applied either raster or vector
approaches (though at least two used neither) using aggregated county-leve data, mostly
without spatia complexity. Dynamic systems models include the GEM and its gpplication,

the PLM (1 and 2). The NELUP modd (15) aso utilized agenerd systems framework.
Additiondly, severa other models utilized dynamic approaches (3, 4, 8, 11, 14, and 17). One
modd (19) applied a cdlular automata gpproach to andyze urban expansion.



Systems Approach

Non-linearities and spatid and tempord lags are prevaent in many environmenta systems.
When models of environmenta systems ignore the presence of non-linearities and spatid and
tempord lags, ther ability to produce insghtsinto complex human-environmenta systems
may be sgnificantly reduced.

Satidica gpproaches using historica or cross-sectiona data are often used to quantify the

rel ationships among the components of human-environmental systems. In this case, rich data
sets and daborate statistica models are often necessary to deal with multiple feedbacks
among system components and spatid and tempord lags. Modd results are often driven by
data availability, the convenience of estimation techniques, and Setidtical criteria—none of
which ensure that the fundamenta drivers of sysem change can be satisfactorily identified
(Leontier 1982; Leamer 1983). By the same token, a tatistical modd can only provide insight
into the empirica relaionships over asystem’s history or a aparticular point in time, but it is
of limited use for analyses of a sysem'’ s future developmernt path under dternative
management schemes (Allen 1988). In many cases, those dternative management schemes
may include decisons that have not been chosen in the padt, and their effects are therefore not
captured (represented) in the data of the system’ s history or present state.

Dynamic modding is digtinct from satisticd modding, because it buildsinto the
representation of a phenomenon those aspects of a system that we know actualy exist (such
asthe physicd laws of materid and energy conservation) and that describe input- output
relationships in industrial and biologica processes (Hannon and Ruth 1994, 1997). Therefore,
dynamic modding starts with this advantage over the purdy datistical or empirica modeling
scheme. It does not rely on higtoric or cross-sectional data to reved those relationships. This
advantage dso dlows dynamic models to be used in more applications than empirical models,
dynamic models are often more transferable to new applications because the fundamental
concepts on which they are built are present in many other systems as well.

To model and better understand nontlinear dynamic systems requires that we describe the
main system components and their interactions. System components can be described by a set
of date variables (stocks), such asthe capital stock in an economy or the amount of sediment
accumulated on alandscape. These state variables are influenced by controls (flows), such as
the annua investment in capital or seasond sediment fluxes. The nature of the controls (Sze

of the flows), in turn, may depend on the stocks themsalves and other parameters of the
system. Using this gpproach, models are constructed by identifying, choosing, and specifying
vaues and relationships among stocks, flows, and parameters.

Many land-use change models focus on specific processes affected by a defined set of
variables. An dternative gpproach is to examine land-use change as one component of a
socio-ecologica system. In developing this systems gpproach, one difficulty liesin deciding
how to incorporate model complexity. Researchers from the socid sciences may tend to add
complexity on the socid side while generdizing components on the biophysicad sde.
Researchersin the natural sciences may do the opposite. A multidisciplinary team must
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struggle to find a compromise in complexity, making the mode complex enough to operate
properly and produce reasonable behavior without making any single part of the modd overly
complex. Another struggle is how to incorporate scale issues into this systems gpproach. A
number of researchers have developed mode s that have provided greet insight into highly
complex systems (Costanza 1998; Voinov 1999). Many of these models operate at a set
spatia scae, but there may be important processes or relationships that are not evident at that
particular spatia scale.

Y et once a systems model has been constructed, what-if scenarios can be explored more
eadly than with other modeling approaches that are not systems oriented. In particular, a
systems gpproach can examine what feedbacks exist in a socio-ecologicd system such asthe
impact of increases or decreasesin agriculturd productivity on the loca market prices of
those agricultura goods. This scenario-testing ability has proved vauable both to researchers
and to policy expertsin ducidating important rdaionshipsin avariety of different sysems.

Modularity of Models

The multidisciplinary nature of land-cover change modding is pardlded by modulaity in the
models themsalves. Of the 19 modds eva uated for this study, al but four were characterized
by modular components. In generd, modularity may help facilitate modding land-cover
change by assigning a particular disciplinary aspect of the mode to a separate module. We
found that the mgority of the modular moddls tended to consder multiple disciplines. This
was true for those model s with explicit biophysica and socia components, such asmodels 1,
2, 3,4, and 15. Thisaso held true for the largely biophysical models, which incorporate
multiple processes in asingle modd.

The complexity of amodd isadso rdaed to mode modularity. Complex modelstypicaly
involve the interaction of multiple parameters, and their crestion and validation can be
faallitated by utilizing multiple modular components; for example, modularity alows

different processes to run at different time steps, different actors can be modeled
smultaneoudy in different modules, and differencesin their decision-making horizons can be
incorporated by varying the time step of different modules. Aswe noted previoudy, thereisa
need for amodular approach to land- use change mode s that includes the relative effects of
different socia drivers such as demography; technology; economy; political and socid
indtitutions; culturdly determined attitudes, beliefs, and behavior; information and its effect

on land-use change, dl in the context of space, time, and scae.

Data and Data I ntegration
Sources and Uses of Data

The exploson in availability of detain recent years has enabled the devel opment of more
rigorous modds. Fundamentally, more data can enable more accurate calibration and
vaidation of models. Data for independent variables are used to cdibrate modd runs and the
time frame for data avallability often determines the time step for particular modules. After
cdibration, models are often vaidated by comparing outputs of variables being modeled,



typicaly land cover, with actud |and-cover data. Model cdibration and validation are perhaps
the mogt critical and labor-intensve parts of model devel opment.

Data are often differentiated by source and are either primary or secondary. Primary data
collection can be tallored to specific requirements. If collected extensively & aregiona scae,
the source is spread out by necessity and the data must be very broadly aggregated. If, on the
other hand, detailed information is collected intensively at a high concentration, say 100-
percent sampling, resource considerations often lead to very localized coverage. Secondary
data, by definition, are limited to what data are available dready but often cover longer time
scales and broader spatial scales (e.g., U.S. census data are averaged for census blocks, large
subcity units). At least one modd examined here (NELUP) conscioudy redtricted itsdlf to
publicly available data so the model could be transferable to other locations.

Another issue relates to data form and availability over time. When data are sought covering
the last severa centuries, data sources are often limited and highly aggregated. By

implication, it ismuch harder to look at past deforestation processes than current ones.
Assessing older land-use changes may involve other disciplines (e.g., arccheology) to
understand land cover. Thus, the forest trangtion in the USA, where deforestation likely
pesked around the end of the last century (1900), and Brazilian deforestation, which shows no
sgnsof pesking yet, are dmost dways viewed in different light primarily because of data
avallahility.

Satdllite images offer an extensive source of land-cover data collected remotely at a cost
typicaly sgnificantly lower than manua collection. Severd recent data trends are apparent
here and include higher spatia and spectra resolution and higher frequency of acquisition
with time. The number of satdlites providing imagery has increased dramaticaly snce the
early use of sadlite imagery. In the 1970s, the primary platform for publicly avalable
imagery was the Landsat M SS ingtrument, while presently there isawide variety of
platforms, each with different imaging characteridtics, including French SPOT panchromatic
and multispectrd instruments, data from the Indian IRS family of satellites, and radar imagery
from the Japanese JERS satdllite. Data are available at increasingly finer resolutions as well.
The firg satdlite insgrument used for public land-cover mapping in the 1970s (Landsat MSS)
provided image data at a spatia resolution of 56 m x 79 m. The current Landsat 7 provides
much finer resolution at 28.5 m x 28.5 m. The private IKONOS satdllite launched in 1999
provides 1-meter panchromatic data and 4-meter multispectral data. Also, image data are
available over an increasingly wider spectrd range, which includes data in opticd, thermd,
and radar wavelengths.

There are severa other trends that complicate the use of satdllite data for land-use modding.
Sadlite imagery is avalable from the early 1970s. Examining land- use change prior to this
period requires the use of other remotely sensed data, such as aeria photography or ground-
collected higtorical information. There are avariety of methodologica issues related to
comparing land-use data derived from different data sources. These considerations complicate
the study of land-use change processes across long time periods. Perhaps more importantly,
many land- use change processes are time dependent. For example, timber harvests in many
areas of the USA are based on an approximately 40-year rotation cycle, while tropica
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subsistence rotations may be much shorter (five years). These tempord issues have serious
implications for land- use change andysisin terms of identifying the relationship of these
land-use changes within the context of varying study durations.

The Landsat system provides an excdllent source of land-cover dataover afarly long
duration (1972—present). However, between 1972 and 1982, only image data from the Landsat
MSS ingtrument was available, but acquisition of MSS images was curtailed in 1992, after
which only Themetic Mapper (TM ) images were available. The difference in resolution
between the MSS and TM instruments means that the more recent, finer datawill haveto be
re-sampled to a broader resolution for comparison. There is dso a question of data availability
outsde the USA. Severad areas outside the USA have spotty image availability; e.g., from the
mid-1980s to the early 1990s, there is extremely limited availability for West African Landsat
TM scenes. This differentid availability of imagery is due to market-oriented policies
fallowing the privatization of the Landsat system in the mid-1980s. Findly, we must consider
questions of data migration and reading-device obsolescence. Data formats are proliferating,
and data stored in older formats need to be migrated to newer formats as older formats
become obsolete aong with the accompanying hardware and software. The ability to read
diverse formats affects data availability and may, in the extreme case, even render archives of
little use. For example, the earliest Landsat satdllites included a higher-resolution instrument,
the Return Beam Vidicon (RBV), which at the time was thought to be a superior instrument to
the MSS. However, these image data are stored on magnetic tape format which current data
providers no longer use; this means the archives do not currently provide RBV data.

Despite the above cavests, the Landsat TM is a useful remotely sensed data source. It has
globa coverage, an excdlent data set for the USA, and could potentialy map the entire world
at 16-day intervals (except for occurrences of cloud cover). Another broader-scale remote
sensing source is the AVHRR with alower resolution of 1.1 kilometer, but which provides
dally datafor the entire globe. AVHRR gpplications include a famine early-warning sysem
(operationa in a dozen African countries) that maps agricultura production based on land-
cover parameters.

Aerid photographs, another form of remotely sensed data, often have a higher resolution than
satellite images and can provide detailed information on land cover. For example, some
counties in Indiana use agrid photos to determine land- use categories at extremely fine scaes
for property tax assessment. Aeria photographs have been available in the USA for more than
half a century. However, they have both geometric and radiometric distortions, which make
them not directly comparable with satellite images. Aerid photographs often vary in scae and
season of acquistion; for example, agrid photos in Indianawere acquired every five years
dternady in summer and winter and usudly require manua interpretation, a skilled and
labor-intensive task with a declining supply of interpreters.

Data Integration
Nearly dl parameters used in land-cover change models have a spatid dimension, and much

of the data can be organized effectively usng a Geographic Information System (GIS). While
some models may use parameters that are spatid in nature, these parameters may not be
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spatialy explicit. For example, models 5, 12, 14, and 16 exhibit parameters neither as raster
(grid cdls) nor as vector (points, lines, or polygons). In our survey, these non-spatidly
explicit models may reflect unavailable data at more extreme scales (see Figure 4.2).

One of the strengths of GIS and spatia representation is the ability to integrate data from
disparate sources. For example, consider arura areawhere population data are collected as
point data from villages. These point data can be used to create a surface of land- useintengty
by creating a weighted interpolation surface modified by other community-leve variables
such as the sex ratio, occupation of village resdents, and landholdings. This land-useintengty
surface can be integrated with aland-use map to explore the relationship between land use
and past land-use changes and to predict future changes. These data tranformations are
enabled by a GIS gpproach through the development of a spatid representation of the factors
affecting the land-use system. There are varieties of sources of error associated with these
data transformations, and researchers must carefully evauate the contribution of these errors
to the overdl error in the modd. However, even given these errors, spatia representation can
alow relationships between socid and biophysica factors to be explored, which would not be
possible with non-spatialy explicit methods of research.

Scale and Multiscale Approaches

We considered scae in three dimensions in this assessment. We have a'so demongtrated the
broad equivaence of spatia (resolution and extent) and tempora (time step and duration)
scaes and their echoes in tempora (decision-making horizon) and spatid (jurisdictiond
domain) attributes of human decison making. Mertens and Lambin (1997) hint at the
importance of both resolution and extent when they recognize the trade-off between andysis
at broad scdes (where the high level of aggregation of datamay obscure the variability of
geographic Stuations, thus diluting causal relationships) and fine scaes (impracticd, if there
were no posshility of generdizing over large arees).

One of the issues in broader- scale decision-making modeling is that developing such a sector-
level modd involved “ huge complexities likely to arise while trying to assess behavioura
characterigtics at the sector level” (Oglethorpe et d. 1995). Certainly, fine-scade models have
particular benefits. Oglethorpe and O’ Cdlaghan (1995) conclude that the farm-level mode
alows them to project land- use patterns and management practices arisng as aresult of
agriculturd market and policy changes, while demondrating the short- and long-term
consequences for the environment.

The resolution and extent of amodd or its submodules are often based on the extent of
computing power available, and scale at which certain biophysical processes operate.
Increasingly, there is recognition that different land- use change drivers operate at different
scaes and that interscae dynamics should be included in land-use/cover change models
(Vedkamp and Fresco 1996a).

The importance and challenge of scale and nested, hierarchica gpproaches cannot be
overestimated. The physicd, biologica, and socid sciences are struggling with the issue of
scae, and these have implications for gppropriate frameworks for collecting and andyzing



data a different spatid and temporad scdes. Thisissue infuses many activities that influence
modding, from data collection to data andyses and interpretation of results. In a*“human’
spatial sense, scales of interest range fromindividuas to groups or indtitutions of increesingly
large size until they encompass globa networks.

Inasmilar fashion, understanding processes acting a varying tempora scaesisimportant to
understand high-frequency processes as well as those operating over longer time periods. The
importance of this chalenge is even more pronounced when modelers consider integrated
models. For example, some socid and ecological processes may be associated with a
particular scale, while other processes may occur across mulltiple scales. Further, ecologica
and socia processes may not operate at the same scale, and linkages may have to be
developed to connect across scales. Findly, it is unknown whether theories that explain
processes at one scale can be used to explain processes at other scales. To date, no land-use
model combining socid and ecological processes has completed a multiscale gpproach. Thus,
fundamentd research and modeling paradigms may need to be rethought (Redman et dl.
2000).

We will need to develop anumber of cgpahilities for multiscae gpproaches and modd's of
land-use change. These include the ability to identify the following (Redman et. a. 2000):

Optimd scde(s) and resolution(s) for modding underlying socid and ecologica
patterns and processes of land-use change

Timelags, non-linear relaionships, and defining events that affect the responses
among socid and ecologica processes of land-use change

Spatia characteritics of certain phenomena such as shape, adjacency, and matrix, and
how they affect social and ecologica processes of land-use change

Boundary conditions relative to pace and time that might affect social and ecologica
processss of land-use change

Large-scde datato explain amdl-scale behavior (ecologicd inferences) and small-
scale data to explain processes at other scales of land-use change

Data associated with one unit of andysisthat can be dis- and reaggregated to another
unit (e.g., from census tracts to watersheds) to modd land-use change

Future Directionsin Land-Use Modeling

Many of the models reviewed in this report have been under development for a number of
years. Modd s that have evolved over along period of development often have to
accommodate changes in misson and expansion into new substantive areas important to the
system being modeed but not origindly included in earlier versons of the modd. For
example, the Patuxent Landscape Modd (PLM) was origindly designed as an ecologically
based modd of the Patuxent watershed in the eastern USA. Subsequent functiondity has been
added to the PLM to incorporate various social-based inputs, including population growth,
agricultura policy, and land-use management. This new functionality has expanded the
domain of the modd but the socia-based inputs are not necessarily optimally accommodated
by the modeling framework developed for the origina ecologically based components of the
modd.



Thisis not to detract from the cons derable accomplishments of the PLM or the SME
framework in which the PLM has been implemented. However, developing moddsin this
fashion may lead to early design decisions which obstruct the performance of future mode
components added to the base modd.

In another example, during amodel design workshop in support of the FLORES modd, the
initid conversation among the workshop participants was used to design the overdl
framework for the modd: the time step, spatia unit of andysis, and how the model
components would interact. Certain compromises had to be made by each of the workshop
groups representing separate components of the model.

Constraints

Avallability of datafor mode validation imposes serious condraints in conddering variables
for incluson. Models that utilize Sgnificant amounts of primary deta are constrained in extent
or duration, or both. Some mode development approaches have ddliberately restricted
themsdves to publicly avallable data, for replicability spatidly.

Ancther issue in the land-use modding community is the duplication of effort and sharing of
models. We have observed that severd models addressing smilar systems are often
developed independently. This has the advantage of demonstrating unique approaches to the
same research questions and may produce better models by enacting some form of
competition between models. Y €, the downside is the considerable documentation needed to
alow mode developers to understand each other’ s code such that supplanted code may be
cannibalized into other models. Issues of intellectud property rights need to be addressed as
well.

Opportunities

In accordance with Moore s Law, we have witnessed incredible increases in raw computing
power. Desktop PCs can now run modd s that would have required aroomful of mainframe
computers a decade ago. This development itsdlf is a grest enabler and has contributed
immeasurably to expanding land-use modeling efforts. More computing power gives models
the ability to expand their extents and durations and, at the same time, make resolutions and
time gepssmdler.

Modding tools are o getting better: they do more with time and are more user-friendly.
Development of modeling tools alows us to build more sophisticated moddsin dl three
dimensions. Various modding frameworks have been developed that provide model

developers with a set of tools suited to address common aspects of land-use systems. They are
eader to learn and use than writing code and often have graphicd interfaces. For example,
STELLA provides aformat for dynamic modeling thet gives the user avery intuitive GUI and
can be used to develop smple student models or complex research models. Another example
isthe SWARM smulation package, developed a the Santa Fe Indtitute, which has been used
for modeling multi-agent systems and the interactions between the agents in those systems. A



variety of other development tools are available to researchers. Many of these tools, such as
STELLA, are commercialy based, while others, such as SWARM, are accessible under
various public licensng structures. Of course, many modes we reviewed till depend on
labor-intensive mathematica programming or econometrics for their core modding (5, 13,
14, 15, and 16).

Open Source Approaches

Modesinvolving time, gpace, and human decision making can be incredibly complex and
depend upon knowledge from many disciplines. Until now, most models have developed in
isolation. Thisis related to the fact that modeers have been funded through grants or focused
funds from a particular organization with an interest in human-environmenta modding. Even
in the context of large interdisciplinary research centers like the NSF networks cited
previoudy, their efforts have been congrained by funds, staff, and expertise.

In contrast to traditiona approaches to model devel opment, recent advances in worldwide
web technology have crested new opportunities for collaboration in the development of
human-environmenta modeing. Recently, “open source’ programming efforts have been

used to solve complex computing problems (see for example, Kiernan 1999; Learmouth 1997;
McHugh 1998; and http://www.opensource.org). Open source programming is based on a
collaborative licensing agreement that enables people to fredy download program source
code and utilize it on the condition that they agree to provide their enhancements to the rest of
the programming community. There have been severd very successful, complex

programming endeavors using the open source concept; the most prominent being the Linux
computer operating system. However, there have a so been some open source endeavors that
have failed. But the Linux modd has shown that extremely complex problems can be tackled
through collaboration over the Internet and that this kind of collaboration can produce
extremely robust results. For ingtance, Linux is known to be a very stable software program
and it islargely because of what isreferred to as“Linus Law” (Linus Torvaddsistheinitia
developer of Linux): “Given enough eyebdls, al [problems] are shdlow” (Raymond 1999).
In other words, if we can get enough human eyes (and brains) with various skills and
expertise working together, many problems, regardless of their complexity, can be solved
because some individua or ateam of individuas will come up with elegant solutions.

How is an open source approach to computing connected to human-environmental modding?
We propose that a smilar approach to the development of human-environmental models
provides the basis for focusing enough “eyebals’ on important human-environmentd
problems (Schweik and Grove, In press). A smilar argument has been made for open source
endeavorsin other areas of scientific research (Gezeter 2000). Initiating such an open source
modeling effort will require several components. (1) aweb Site to support modeling
collaboration (e.g., data and interactions among individuas, such as bulletin boards and
FAQSs); (2) the establishment of one or more modding “kernels’ (core components of models
using various technologies) that are designed in amodular fashion and dlow relatively essy
enhancements from participants; and (3) the development of mechanisms for sharing mode
enhancements that encourage participation and provide incentives that are comparable and as
valued as publishing in peer-reviewed journds.



Over the last year, we have initiated the development of such aweb site, cdled the “ Open
Research System” or ORS (open-research.org). Thefirst step of this effort isto develop a
web- based metadatabase that allows the open sharing of geographic and non-spatia datasets,
and references to publications and reports. If areader knows of amodel not covered in this
review or in the Appendix, he or she could vist this Site, register, and submit a publication
reference to the system database. Thiswould alow other visitors to the Site, through the
search facility, to find the mode publication. The next step of this project isto move toward
extending the design to dlow the sharing of various types of land-cover modelsin an open
source approach.

We recogni ze that the gpplication of the open source programming concept to human-
environmenta moddling might appear daunting and even seem radica. However, the Linux
example shows how extremely complex problems can be solved when enough people work on
them. Given the complexities involved in modding time, space, and human decison making,
the open source programming concept might be a vital modeing gpproach for creative
solutions to difficult human-environmental moddling problems.

5. CONCLUSION

Land-use/land- cover changeis awidespread, accelerating, and very significant processto
humans. Land-use/land- cover change is both driven by human actions, and, in many cases, it
aso drives changes that impact humans. Modding these changesiis critica for formulating
effective environmenta policies and management drategies. Thisreport details our effortsto
inventory land-use change models through areview of literature, websites, and professiona
contacts. We then examined in detall 19 of these land-use change models, characterized their
Structure and function, and reviewed how they were gpplied. The models were compared in
terms of scale and complexity, and how well they incorporate time, space, and human
decison making. In this report, we examine the socid drivers of land-use change and
methodologica trends exemplified in the models we reviewed. We aso suggest some future
drategies for overcoming modeling problems.

For this review we developed a framework to observe and describe multiple modelsin a
gngle synoptic view. Thisframework is based on three critical dimensons: time, space, and
human choice or decision making. These three dimensions can be thought of as three axes on
acube. How wel amodd incorporates these three dimensions (measured by its complexity)
determines where that modd would plot in this 3-D volume. In terms of tempord scale,
models were characterized by time step (the smalest unit of time for a process to change) and
duration (the tota length of time that amodd is gpplied). In terms of spatid scale, models
were characterized by resolution (the smdlest geographic unit in amodd, such asasngle
grid cdl in araster model) and extent (the total areato which the modd is gpplied). Likewise
for human decison making, models were characterized by actor (the smallest body of humans
making decisons) and domain (the broadest socid organization incorporated in the modd).
Mode s were dso characterized by their tempora complexity (a modd’s ability to handle a
large number of time steps, along duration, time lags and feedback responses) and spatial
complexity (amode’ s ability to handle topologica rdationships, and be spatidly
representative and interactive). We aso created a scale to measure a modd’ s ability to handle

47



human decis o making complexity, asix-levd vaue. A modd with a high complexity vaue
would be able to handle multiple agents interacting across domains whaose choices are overtly
modeled.

All 19 modd s we reviewed were spatidly representative and most (15) were spatially
interactive. Eleven of the 19 models are raster based, four are vector based, and four are
classfied as neither. Severa vector models were associated with scales of city and county
levels and provided the finest spatid resolution. Their extent may be limited by availahility of
data. Mogt raster models have a spatid resolution and extent in the range of common remote-
sensing data, such as Landsat. Many models with separate ecologica modules operate at fine
time steps, which alows modds to more accurately represent rapid ecologica changes.
Modds with multiple time steps can span both fine and coarse time steps and can incorporate
tempora complexity of different socioeconomic and biophysical sectors more effectively.

We advocate the use of the LTER Network working group report list of socid patterns and
processes as a practical guide for incorporating socia processesin modeling land-use change.
Thisligt incdludes: demography; technology; economy; palitical and socid inditutions;
culturdly determined attitudes, bdiefs, and behavior; and information and its flow. We dso
advocate a more comprehengve and systematic approach to including socia drivers of land-
use change within the context of the NRC and LTER reports and existing socid science
efforts.

Severd problems regarding land-use modeling were discussed. Models which cover broad
gpatia and tempora scales demand that we cross mulltiple disciplines; however, amode of
land-cover changeis limited by the personnd congtructing it and ther disciplinary limitsin
understanding and funding. The problem of scale mismatch can occur when the physica scae
of an ecological system varies subgtantialy from that of the decison making. Furthermore,
missing connections may arisein modding if potentidly effective indtitutions exigt & the
appropriate scales but decision-making linkages between scales are ingffective. Also, humans
usualy use some form of discounting to compare preferences over time, and most such
model s make comparisons using the metric of money. However, linking biophysicd and
socid modds by vauing socid economic and environmental sysems with thismetric is
problematic.

Different modelling methodologies limit their gpplication. Non-linearity and spatia and
tempord lags are prevaent in environmenta systems, yet statistical models can only provide
indgght into the empirica relationships over asystem’s history, but are of less use for anayses
of asystem’ s future development path under aternative management schemes. Dynamic
modeling, which uses stocks and flows, is distinct from statistical modeling in thet it can
incorporate phenomenon whose aspects of a system are known to actudly exist. Of the 19
models evauated for this study, al but four were characterized by modular components.
Modularity may facilitate land-cover change by assgning a particular disciplinary aspect of
the model to separate modules. We found that the mgority of the modular models tended to
condder multiple disciplines.



Dataavallability can aso affect modding. Primary data collection can be tailored to specific
requirements, but must be collected either thinly across a broad extent or concentrated in a
locdlized coverage. Secondary data by definition are limited to what is available but often
cover longer durations and broader spatia scales. Some models are ddliberately restricted to
publicly avallable data, for replicability. Satdlite images offer an extendve source of land-
cover data collected remotely at a cost typically lower than manud collection, however there
are avariety of methodological issues related to comparing land-use data from different
sources, which complicate the study of land-use change processes across broader scales of
time and space.

Nearly dl parameters used in land-cover change modds have a spatid dimension, and much
of this data can be organized effectively usng Geographic Information System (GIS)
technologies. One of the strengths of GIS and spatia representation isthe ability to integrate
data from digparate sources. Increasingly powerful computers mean models can run multiple
modules at different time steps within short periods of time. Modeling tools are dso getting
better: they do more with time and are more user-friendly. Advancing devel opment of
modeling tools alows us to build more sophigticated modesin dl three dimensons. Findly,
open source modding, which is based on a collaborative licensng agreement that enables
people to freely download program source code and utilize it on the condition that they agree
to provide their enhancements to the rest of the programming community, offers additiona
hope for future moddling. There have been severd very successful, complex programming
endeavors using the open source concept, the most prominent being the Linux computer
operating system, and these methods might spur the development of land-use/land- cover
modding aswdll.

We would like to conclude with some thoughts about land-use models and policy.
Increasingly, the policy community is interested in land- use models that are relevant to their
needs. This does not mean that land-use models have to be “answer machines” Rather, we
expect that land-use—change modds will be good enough to be taken serioudy in the policy
process. King and Kraemer (1993:356) list three rolesamode must play in apolicy context:
it should darify theissues in the debate; it must be able to enforce adiscipline of andysis and
discourse among stakeholders; and it must provide an interesting form of “advice,” primarily
in the form of what not to do—since no conscientious palitician will ever smply do what a
model suggests. Further, the necessary properties for a good policy mode have been known
since Lee (1973) wrote his“Requiem to Large-Scale Modds™: (1) transparency, (2)
robustness, (3) reasonable data needs, (4) appropriate spatio-tempora resolution, and (5)
incluson of enough key policy variablesto dlow for exploration of likely and significant
policy questions.

To answer palicy questions, policy makers will have to begin to identify the key variables and
sectors that interest them, their scales of analys's, and the scenarios they anticipate. At the
sametime, land-use modelers should begin discussons with policy makersto understand their
needs. Given policy makers needs, land-use modderswill have to trandate those needs with
particular atention to implicit and explicit tempord, spatia, and human decision-making

scae and complexity and the interactions between scae and complexity. Further, land-use
moded erswill need to consder the relative sgnificance of different drivers—demography;
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technology; economy; politica and socid inditutions; culturaly determined attitudes, beliefs,
and behavior; and information and its flon—on land- use change within the context of policy
makers needs. Findly, thereis the need to provide a framework for collaboration and model
development. We propose an open source approach. Perhaps there are others. Regardless, we
bdieve land- use change is a sufficiently important and complex environmentd issue thet it
urgently needs “many eyebdls and brains” working together.
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GLOSSARY

Analytical modd: Quantifies functiona relationships and estimates parameters by means of
empirical data

Area base model: Allocates proportions of a given land base to predefined land-use
categories

Complexity: The complexity of human decision making refers to the specificity and detailed
consderation given in amode to the decisons that humans make that affect land-use change.
We have developed a scale of complexity that ranges from 1 to 6 for thisexercise.

Conceptual model: Theoretical description of socioeconomic and physical processes
Contral (or flow) variables: System dements that represent the action or change in agtate

Discretefinite state model: Mode that is discrete (space represented as cells or blocks) and
finite Sate (represents an object as being in only afew, finite number of states or conditions)

Duration: Thelength of time for which the modd is gpplied. The duration of amodd’s
results may be reported as the number of time steps used (e.g., 100 annual times steps), the
period of the model (100 years), or the mode dates (January 1, 1900, to January 1, 2000).

Dynamic systems model: Systems models that attempt to capture changesin rea or
Smulated time.

Extent: Thetota geographic areato which the modd is gpplied

Human Decision-Making: Refersto how models incorporate human eements. Human
decision-making sections of models vary in termstheir theoretical precursors and may be
samply linked determinigticaly to a set of socioeconomic or biologica drivers, or may be
based on some game theoretic or economic models. Three attributes of human decison
meaking thet are important to consder in thinking about diverse models of land-use change are
complexity, jurisdictiond domain, and tempord range.

Jurigdiction: Refersto the spatid scope of human decision making. If desired, a
jurisdictional domain may be split up to reflect resolution, the decision making domain for a
particular actor, and to reflect spatial extent, in this case the total area over which the actor(s)
hag(have) influence, or the jurisdictiond range.

Linear planning modd: Mode that optimizes alinear function subject to severd linear
congraints, expressed as linear inequaities or equdities

Resolution: The smdlest spatid unit of analysisfor the model. For example, in aragter or
grid representation of the landscape, each unit or cdll areais usudly treated as a congant size.
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Spatial complexity: Refersto the presence of a gpatid component of amodd or information.
Spatid complexity may be representative or interactive.

Spatial dynamic model: Modesthat are patialy explicit and dynamic as well

Spatial interaction: Models are based on topologica relationships. Topology isa
mathematical procedure for explicitly defining spatid rdationships, usudly asligs of

features, and using the concepts of connectivity, area definition, and contiguity .

Spatial Markov model: Spatidly explicit modds that carry over memory from one state to
the next, but usudly from only the last state; e.g., the probakility thet the sysem will beina
given ate (land class) at sometimet2, is deduced from the knowledge of its State at time t1.

Spatial representation: Spatidly representative models are able to digplay data as maps.
However, they do not include topology and spatia interactions.

Spatial stochastic modd: Spatidly explicit modd that is interactive and incorporates random
changes to determine trangition probabilities from one land cover to another.

State variables. Elementsthat make up the system for which the modd is being developed

Time step: The smdlest tempora unit of analyss of the mode varigble
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