Why Is It There?

Getting Started with Geographic Information Systems Chapter 6

6 Why Is It There?

- 6.1 Describing Attributes
- 6.2 Statistical Analysis
- 6.3 Spatial Description
- 6.4 Spatial Analysis
- 6.5 Searching for Spatial Relationships
- 6.6 GIS and Spatial Analysis

Dueker (1979) (review)

 "a geographic information system is a special case of information systems where the database consists of observations on spatially distributed features, activities or events, which are definable in space as points, lines, or areas. A geographic information system manipulates data about these points, lines, and areas to retrieve data for ad hoc queries and analyses".

GIS is capable of data analysis

- •Attribute Data
 - •Describe with statistics
 - •Analyze with hypothesis testing
- Spatial Data
 - •Describe with maps
 - •Analyze with spatial analysis

Attribute Description

- The extremes of an attribute are the highest and lowest values, and the range is the difference between them in the units of the attribute
- A histogram is a two-dimensional plot of attribute values grouped by magnitude and the frequency of records in that group, shown as a variable-length bar
- For a large number of records with random errors in their measurement, the histogram resembles a bell curve and is symmetrical about the mean

If the records are:

- Text
 - Semantics of text e.g. "Hampton"
 - word frequency e.g. "Creek", "Kill"
 - address matching
 - Semantics and word matching are of increasing value, e.g. web search, Metacarta
 - Ontology
- Example: Display all places called "State Street"

If the records are:

- Classes
 - histogram by class
 - numbers in class
- contiguity description, e.g. average neighbor (roads, commercial)

If the records are:

• Numbers

- statistical description
- min, max, range
- variance
- standard deviation

On Measurement

- One: all I have! [6:00pm]
- Two: do they agree? [6:00pm;5:57pm]
- Three: level of agreement [6:00pm;5:57pm;7:23pm]
- Many: average all, average without extremes
- Precision: 6:00pm. "About six o'clock"

Statistical description

- Range : min, max, max-min
- Central tendency : mode, median (odd, even), mean
- Variation : variance, standard deviation

Computing the Mean

- Sum of attribute values across all records, divided by the number of records.
- Add all attribute values down a column, / by # records
- A representative value, and for measurements with normally distributed error, converges on the true reading.
- A value lacking sufficient data for computation is called a missing value. Does not get included in sum or n.

Variance

- The total variance is the sum of each record with its mean subtracted and then multiplied by itself
- The standard deviation is the square root of the variance divided by the number of records less one
- For two values, there is only one variance

Standard Deviation

- Average difference from the mean
- Sum of the mean subtracted from the value for each record, squared, divided by the number of records-1, square rooted.

GPS Example Data: Elevation Standard deviation

- Same units as the values of the records, in this case meters.
- Average amount readings differ from the average
- Can be above of below the mean
- Elevation is the mean (459.2 meters)
- plus or minus the expected error of 82.92 meters
- Elevation is most likely to lie between 376.28 meters and 542.12 meters.
- These limits are called the error band or margin of error.

Samples and populations

- A sample is a set of measurements taken from a larger group or population.
- Sample means and variances can serve as estimates for their populations.
- Easier to measure with samples, then draw conclusions about entire population.

Testing Means

Mean elevation of 459.2 meters standard deviation 82.92 meters what is the chance of a GPS reading of 484.5 meters? 484.5 is 25.3 meters above the mean 0.31 standard deviations (Z-score) 0.1217 of the curve lies between the mean and this value 0.3783 beyond it

Data exploration

- Basic descriptive graphics can quickly summarize attribute
- Exploratory mapping: isoline, choropleth
- Some cross-variable methods e.g. bivariate choropleth
- Box plot, radar plot, histogram, scatter plot

Hypothesis testing

- Set up NULL hypothesis (e.g. Values or Means are the same) as H_0
- Set up ALTERNATIVE hypothesis. H₁
- Test hypothesis. Try to reject NULL.
- If null hypothesis is rejected alternative is accepted with a calculable level of confidence.

Testing the Mean

- Mathematical version of the normal distribution can be used to compute probabilities associated with measurements with known means and standard deviations.
- A test of means can establish whether two samples from a population are different from each other, or whether the different measures they have are the result of random variation.

Accuracy

- Determined by testing measurements against an independent source of higher fidelity and reliability.
- Must pay attention to units and significant digits.
- Can be expressed as a number using statistics (e.g. expected error).
- Accuracy measures imply accuracy users.

The difference is the map

- GIS data description answers the question: Where?
- GIS data analysis answers the question: Why is it there?
- GIS data description is different from statistics because the results can be placed onto a map for visual analysis.

Spatial Statistical Description

- For coordinates, the means and standard deviations correspond to the mean center and the standard distance
- A centroid is any point chosen to represent a higher dimension geographic feature, of which the mean center is only one choice.
- The standard distance for a set of point spatial measurements is the expected spatial error.

GIS and Spatial Analysis

- Descriptions of geographic properties such as shape, pattern, and distribution are often verbal
- Quantitative measure can be devised, although few are computed by GIS.
- GIS statistical computations are most often done using retrieval options such as buffer and spread.
- Also by manipulating attributes with arithmetic commands (map algebra).

Searching for Spatial Pattern

- A linear relationship is a predictable straight-line link between the values of a dependent and an independent variable. (y = a + bx) It is a simple model of the relationship.
- A linear relation can be tested for goodness of fit with least squares methods. The coefficient of determination r-squared is a measure of the degree of fit, and the amount of variance explained.

- Differences between observed values of the dependent variable and those predicted by a model are called residuals.
- A GIS allows residuals to be mapped and examined for spatial patterns.
- A model helps explanation and prediction after the GIS analysis.
- A model should be simple, should explain what it represents, and should be examined in the limits before use.
- We should always examine the limits of the model's applicability (e.g. Does the regression apply to Europe?)

Fitting the model

 $sqrt(T) = -2.8935 + 0.2956 \ln(P) - 3.0334 R + 13.0316 C + 0.1717 E + 0.2466 M \\ + 0.0164 sqrt(D) + 0.9491 F \tag{6.4}$

Variable	Coefficient	Standard error	t-value	One-sided P value
intercept	-2.8935	0.8994	3.2171	0.0007
In(P) (population)	0.2956	0.0691	4.2766	0.0000
R (rental housing)	-3.0334	1.4540	2.0862	0.0187
C (female-head of household with children)	13.0316	3.5894	3.6306	0.0002
E (elderly, 65 and up as a percent of population)	0.1717	2.2865	0.0751	0.4701
M (proportion of recent migrants)	0.2466	0.0815	3.0271	0.0013
D (destruction potential index)	0.0164	0.0029	5.6465	0.0000
F (Fujita scale)	0.9491	0.0848	11.1981	0.0000

Extrapolation

- How far does model extend?
- How fixed in time is the model?
- Data rich vs. data poor areas
- What if there are too many data points?

GIS and Spatial Analysis

- Geographic inquiry examines the relationships between geographic features collectively to help describe and understand the real-world phenomena that the map represents.
- Spatial analysis compares maps, investigates variation over space, and predicts future or unknown maps.
- Many GIS systems have to be coaxed to generate a full set of spatial statistics.

Analytic Tools and GIS

- Tools for searching out spatial relationships and for modeling are only lately being integrated into GIS.
- Statistical and spatial analytical tools are also only now being integrated into GIS, and many people use separate software systems outside the GIS (such as R, MATLAB, SPSS, SAS, GeoDA)
- Real geographic phenomena are dynamic, but GISs (and analyses) have been mostly static. Time-slice and animation methods can help in visualizing and analyzing spatial trends
- GIS places real-world data into an organizational framework that allows numerical description and allows the analyst to model, analyze, and predict with both the map and the attribute data

You can lie with...

- Maps
- Statistics
 - Correlation is not causation!
 - Hypothesis vs. Action

Coming next ...

•Terrain Analysis