

Chapter 3: Maps as Numbers

14SND5080090837

- A place given by coordinates
- A text string "14SND" followed by an easting 50800 and a northing 90837
- But how do we represent this in the computer?

Maps as Numbers

- GIS requires that both data and maps be represented as numbers
- The GIS places data into the computer's memory in a physical data structure (i.e. files and directories)
- Files can be written in binary or as ASCII text
- Binary is faster to read and smaller, ASCII can be read by humans and edited but uses more space

ASCIL Codes													
	Dec	Bex	Char	Dec	Bex	Char	Dec	Bex	Chaz	Dec	Bex	Char	
	0	00	Nat	32	20	Space	64	40	9	96	60	-	
	1	01	Start of heading	33	21	1	65	41	*	97	61	•	
	2	02	Start of text	24	22	-	66	42	в	98	62	Þ	
	3	03	End of text	3.5	23		67	43	c	99	63	e	
	1	04	End of transmit	36	24	ę.	60		Ð	100	64	d	
	5	05	Engury	37	25	•	69	45	ε	101	65	e	
	6	06	Acknowledge	38	26	6	70	46	r	102	66	٤	
		07	Augue bei	39	27		71	1	2	103	67	a	
		00	beckspace	10				10		104			
	10	0.8	Line feed		- 14	11	74			105	63		
	11	0.8	Vertical Int.		2.8		75	4.5	*	107	6.8	2	
	12	DC.	Form feed	44	2.0		76	40	L.	108	60	1	
	13	OD.	Carriege return	45	2.5	2	77	40		109	6.0	-	
	14	OE	Shift out	46	2.8		78	48	24	110	62	n .	
	15	or	Shitin	47	27	/	79	47	0	111	67	0	
	16	10	Data ink escape	45	30	0	80	50	P	112	70	p	
	17	11	Device control 1	49	31	1	01	51	9	113	71	q.	
	18	12	Device control 2	50	32	2	82	52	R	114	72	r	-
	19	13	Device control 3	51	33	з	03	53	5	115	73	8	
	20	14	Device control 4	52	34	4	8	54	T	116	74	e	
	21	15	Neg. acknowledge	-53	3.5	5	85	55	Q.	117	75	w.	
	22	16	Synchronous kille	54	36	6	36	56	v	118	76	v	_
	20	17	End trans. block	- 55	37	7	87	57	v	119	77	v	
	24	18	Cancel	56	38	8	88	58	x	120	78	×	_
	25	19	End of medium	-57	39	9	89	59	۲	121	79	¥	_
	26	LA	Substitution	50	3.8	-	90	53.	z	122	73.	ε	
	27	1.8	Escape	59	38	2	91	58	0	123	78	1	
	20	10	File separator	60	30	<	92	50	2	124	70	!	
	29	10	Chorth selberator	61	30	-	93	50	1	125	70	2	_
	30	18	record separator	62	1	2	94	20		126	14	õ	
	31	11	Our seberator	63	- 37	5	- 25	57		127	a	u	

Spot the data structure A. RASTER B. VECTOR

Features and Maps

- A GIS map is a scaled-down digital representation of point, line, area, and volume features
- While most GIS systems can handle raster and vector, only one is used for the internal organization of spatial data

.

Only one can be used in combined operations across layers

Attribute data

- Attribute data are stored logically in flat
- A flat file is a matrix of numbers and values stored in rows and columns, like a spreadsheet
- Both logical and physical data models have evolved over time
- DBMSs use many different methods to store and manage flat files in physical files

- One grid cell is one unit or holds one attribute
- Every cell has a value, even if it is "missing'
- A cell can hold a number or an index value standing for an attribute
- A cell has a resolution, given as the cell size in ground units
- Often create a "mask" to cover part of rectangle not in AOI

.....

Generic structure for a grid

Rasters are faster...

- Lines can become fat
- Areas may need separately coded edges
- Each cell can be owned by only one feature
- As data, all cells must be able to hold the maximum cell value
- Rasters are easy to understand, easy to read and write, and easy to draw on the screen

RASTER

- A grid or raster maps directly onto a programming
- Grids are good only at very localized topology, and weak otherwise
- Grids are a natural for scanned or remotely sensed data
- Grids suffer from the mixed pixel problem
- Grids must often include redundant or missing data
- Grid compression techniques used in GIS are runlength encoding, R-trees and quad trees

The Vector Model

- A vector data model uses points stored by their real (earth) coordinates
- Lines and areas are built from sequences of points in order
- Lines have a direction to the ordering of the points.
- Polygons can be built from points or lines
- Vectors can store information about topology

......

-

-

VECTOR

- At first, GISs used vector data and cartographic spaghetti structures
- Vector data evolved the arc/node model in the 1960s
- In the arc/node model, an area consist of lines and a line consists of points
- Points, lines, and areas can each be stored in their own files, with links between them
- The topological vector model uses the line (arc) as a basic unit. Areas (polygons) are built up from arcs
- The endpoint of a line (arc) is called a node. Arc junctions are only at nodes
- Stored with the arc is the topology (i.e. the connecting arcs and left and right polygons)

Vectors just seemed more correcter

- TIN must be used to represent volumes
- Vector can represent point, line, and area features very accurately
- Vectors are far more efficient than grids
- Vectors work well with pen and light-plotting devices and tablet digitizers

 Vectors are not good at continuous coverages or plotters that fill areas

TOPOLOGY

- Topological data structures dominate GIS softwa
- Topology allows automated error detection and elimination
- Rarely are maps topologically clean when digitized or imported
- A GIS has to be able to build topology from unconnected arcs
- Nodes that are close together are snapped
- Slivers due to double digitizing and overlay are eliminated

ed ay are

.

Topology Matters

- The tolerances controlling snapping, elimination, and merging must be considered carefully, because they can move features
- Complete topology makes map overlay feasible
- Topology allows many GIS operations to be done without accessing the point files

Vectors and 3D

- Volumes (surfaces) are structured with the TIN model, including edge or triangle topology
- TINs use an optimal Delaunay triangulation of a set of irregularly distributed points
- TINs are popular in CAD and surveying packages

TIN: Triangulated Irregular Network

- Way to handle field data with the vector data structure
- GISs and most AM/FM packages
- More efficient than a grid
- Surface is interpolated through the triangles

.

FORMATS

- Most GIS systems can import different data formats, or use utility programs to convert them
- Data formats can be industry standard, commonly accepted or standard

 Formats are part way from logical to physical data structures

Vector Data Formats

- Vector formats are either page definition languages or preserve ground coordinates.
- Page languages are HPGL, PostScript, and Autocad DXF
- GeoPDF gaining acceptance
- Script languages like GML, SVG, KML
- True vector GIS data formats are DLG and TIGER, which has topology

.......

KMI sample	
<pre><tassellate>1</tassellate></pre>	
-134.148103,37.752967 -128.917074,38.803008	
-125.166954,39.583592 -122.137625,39.656880	
-120.421783,40.036311 -118.298157,40.235316	
-114.348386,40.631532 -112.670431,40.761033	
-111.916045,40.681939 -110.177711,40.653055	
-109.544331,40.619327 -107.155697,40.642007	
-105.410526,40.421505 -103.192299,40.430138	_
-102.853712,40.427904 -98.168302,40.363524	_
-97.093391,40.308754 -94.831304,40.479175	
-93.760070,40.395392 -84.913828,39.466651	
-84.414888,39.387332 -81.380660,39.188551	
-80.276261,38.977744 -77.811560,38.872542	
-75.062267,38.521146 -72.006956,38.101733	
-66.67819,37.664687	

Raster Data Formats

- Most raster formats are digital image formats
- Most GISs accept TIF, GIF, JPEG or encapsulated PostScript, which are not georeferenced
- DEMs are true raster data formats
- GeoTIF now common, tif plus wrl

nats wrl

.

Multi-resolution NED: Puget Sound

EXCHANGE

- Most GISs use many formats and one data structure
- If a GIS supports many data structures, changing structures becomes the user's responsibility
- Changing vector to raster is easy; raster to vector is hard
- Data also are often exchanged or transferred between different GIS packages and computer systems
- The history of GIS data exchange is chaotic and has been wasteful

.......

-

GIS Data Exchange: SDTS

- Data exchange by translation (export and import) can lead to significant errors in attributes and in geometry
- In the United States, the SDTS was evolved to facilitate data transfer
- SDTS became a federal standard (FIPS 173) in 1992

 SDTS contains a terminology, a set of references, a list of features, a transfer mechanism, and an accuracy standard

GIS data exchange: Standards

- FGDC has published metadata standards
- Both DLG and TIGER data are available in SDTS format
- Other standards efforts are DIGEST, DX-90, the Tri-Service Spatial Data Standards, and many other international standards
- OpenGIS Consortium has pioneered open standards and interoperability

- Format conversion still an issue, but much better!
- Efficient data exchange is important for the future of GIS

Transfer Standards

Coming up next: Getting the map into the computer