

Information ordering: Lists and indexes

Organizing data and information

- Information can be organized as lists, numbers, tables, text, pictures, maps, or indexes
- Clusters of information called data can be stored together as a database
- A database is stored in a computer as files
- File systems are often hierarchical

The GIS database (ctd)

- Data in a GIS must contain a geographic reference to a map, such as latitude and longitude
- The GIS cross-references the attribute data with the map data, allowing searches based on either or both
- The cross-reference is a link or index

Cartography and GIS

- Understanding the way maps are encoded to be used in GIS requires knowledge of cartography
- Cartography is the science that deals with the construction, use, and principles behind maps and mapping
- A map is a depiction of all or part of the earth or other geographic phenomenon as a set of symbols and at a scale whose representative fraction is less than one to one

Geodesy: Models of the earth
The earth can be modeled as a
-sphere
-oblate ellipsoid ("spheroid")
-geoid
-flat surface

The Flat Earth Society

Measuring the Ellipsoid

- Oblate ellipsoid predicted by Newton
- Existing triangulation along Paris meridian in France (Cassini-Prolate spheroid)
- French Academy of sciences sent expeditions to Lapland and Peru (now in Ecuador) to measure the length of a degree along a meridian
- La Condamine sent to Mitad del Mundo, Peru (Equador) (Bouguer, 3 deg.)

Datum

- While cartography, surveying, navigation, and astronomy all make use of geodetic datums, the science of geodesy is central
- Different nations and agencies use different datums as the basis for coordinate systems used in geographic information systems, precise positioning systems, and navigation systems
- Referencing geodetic coordinates to the wrong datum can result in position errors of hundreds of meters

The datum and the geoid

- An ellipsoid gives the base elevation for mapping, called a datum
- Examples are NAD27 and NAD83
- The geoid is a figure that adjusts the best ellipsoid and the variation of gravity locally
- It is the most accurate, and is used more in geodesy than GIS and cartography
- Geoids are dynamic!

Coordinate systems

- A coordinate system is a standardized method for assigning codes to locations so that locations can be found using the codes alone
- Standardized coordinate systems use absolute locations
- A map captured in the units of the paper sheet on which it is printed is based on relative locations or map millimeters, we want earth coordinates
- In a coordinate system, the x-direction value is the easting and the y-direction value is the northing
- Most systems make both values positive

Coordinate Systems for the US

- Some standard coordinate systems used in the United States are - geographic coordinates
- universal transverse Mercator system
- military grid/MGRS/National grid - state plane
- To compare or edge-match maps in a GIS, both maps MUST be in the same coordinate system

Coordinate examples

- 238,479 mE; 3,811,950 mN; 11, N
- 11SKU3847911950
- N 34ํ24'57.24" W 11950'42.9"
- 6031531830382 CA 5

GIS minimum capability

- A GIS package should be able to move and convert between:
-map projections
-coordinate systems
-datums
-ellipsoids

Projection metadata

PROJCS["Teale_Albers",GEOGCS["GCS_North_American_ 1927",DATUM
"D_North_American_1927",SPHEROID["Clarke_1866",6378 206.4,
294.9786982]],PRIMEM["Greenwich",0],UNIT["Degree",
$0.017453292519943295]], P R O J E C T I O N[" A l b e r s "], P A R A M E T E R$
["False_Easting",0],PARAMETER["False_Northing",-4000000],
PARAMETER["Central_Meridian",-120],PARAMETER
["Standard_Parallel_1",34.0],PARAMETER["Standard_Parallel 2",40.5],
PARAMETER["Latitude_Of_Origin",0],UNIT["Meter",1]]

Geographic information

- Characteristics
- volume
-dimensionality
-continuity

Building complex features

- Simple geographic features can be used to build more complex ones.
- Areas are made up of lines which are made up of points represented by their coordinates.
- Areas $=\{$ Lines $\}=\{$ Points $\}$

