

Following up on the last lecture...

2. New Geospatial Occupations

Occupation	(2008)	(2008-18)	(2008-18
Geospatial Information Scientists and Technologists*	209,000	72,600	7-13% (Average)
Geographic Information Systems Technicians*	209,000	72,600	7-13%
Remote Sensing Scientists and Technologists*	27,000	10,100	7-13%
Remote Sensing Technicians*	65,000	36,400	7-13%
Precision Agriculture Technicians*	65,000	36,400	7-13%
Geodetic Surveyors*	58,000	23,300	14-19%
Surveyors	58,000	23,300	14-19%
Surveying Technicians	77,000	29,400	≥ 20%
Mapping Technicians	77,000	29,400	≥20%
Cartographers and Photogrammetrists	12,000	6,400	≥ 20%
Totals	857,000	339,900	
Department of Labor Employment and Training http://online.onetce		2). O*Net Online.	
Dr			PENNS
Directions Media			

Organizing data and information

- Information can be organized as lists, numbers, tables, text, pictures, maps, or indexes
- Clusters of information called data can be stored together as a database
- A database is stored in a computer as files
- File systems are often hierarchical

Þ	Flat file	database	;	
		Attribute	Attribute	Attribute
	Record	Value	Value	Value
	Record	Value	Value	Value
	Record	Value	Value	Value

The GIS database (ctd)

- Data in a GIS must contain a geographic reference to a map, such as latitude and longitude
- The GIS cross-references the attribute data with the map data, allowing searches based on either or both
- The cross-reference is a link or index

Cartography and GIS

- Understanding the way maps are encoded to be used in GIS requires knowledge of cartography
- Cartography is the science that deals with the construction, use, and principles behind maps and mapping
- A map is a depiction of all or part of the earth or other geographic phenomenon as a set of symbols and at a scale whose representative fraction is less than one to one

Geodesy: Models of the earth

The earth can be modeled as a

- -sphere
- -oblate ellipsoid ("spheroid")
- -geoid
- -flat surface

Measuring the Ellipsoid

- Oblate ellipsoid predicted by Newton
- Existing triangulation along Paris meridian in France (Cassini-Prolate spheroid)
- French Academy of sciences sent expeditions to Lapland and Peru (now in Ecuador) to measure the length of a degree along a meridian
- La Condamine sent to Mitad del Mundo, Peru (Equador) (Bouguer, 3 deg.)
- Moreau de Maupertuis sent to Tornio River Valley, Finland

Measuring the Ellipsoid (ctd)

- Maupertuis reported a meridian degree as 57,437.9 toises (1 toise = 1.949 m)
- Meridian degree at Paris was 57,060 toises
- Concluded Earth was flatter at poles
- Measures were erroneous but conclusions
 were correct
- Published as "La Figure de la Terre" (1738)

Maupertuis's Map

- River Tornio in modern
 Finland
- 14.3 km base line laid out on the ice
- Surveyed line by triangulation
- Anders Celsius, Swedish physicist, was a member, and had suggested solution by direct measurement

The spheroid and ellipsoid

- The sphere is about 40 million meters in circumference.
- An ellipsoid is an ellipse rotated in three dimensions about its shorter axis.
- The earth's ellipsoid is only about 1/298 off from a sphere (difference in circumferences is about 42km)
- Many ellipsoids have been measured, and maps based on each.
- Examples are NAD27, WGS84 and GRS80
- Major difference when earth-centered
- IERS: International Terrestrial Reference Frame

What is a datum?

- Geodetic datums define the size and shape of the earth and the origin and orientation of coordinate systems used in mapping
- Hundreds of different datums have been used
- Datums have evolved from a spherical earth to ellipsoidal models derived from satellite measurements

Datum

- While cartography, surveying, navigation, and astronomy all make use of geodetic datums, the science of geodesy is central
- Different nations and agencies use different datums as the basis for coordinate systems used in geographic information systems, precise positioning systems, and navigation systems
- Referencing geodetic coordinates to the wrong datum can result in position errors of hundreds of meters

The datum and the geoid

- An *ellipsoid* gives the base elevation for mapping, called a datum
- Examples are NAD27 and NAD83
- The *geoid* is a figure that adjusts the best ellipsoid and the variation of gravity locally
- It is the most accurate, and is used more in geodesy than GIS and cartography
- Geoids are dynamic!

"That it is the opinion of this Congress that it is desirable to adopt a single prime meridian for all nations, in place of the multiplicity of initial meridians which now exist."

"That the Conference proposes to the Governments here represented the adoption of the meridian passing through the center of the transit instrument at the Observatory of Greenwich as the initial meridian for longitude."

"That from this meridian longitude shall be counted in two directions up to 180 degrees, east longitude being plus and west longitude minus."

Geographic coordinates

• Geographic coordinates are the earth's latitude and longitude system, ranging from 90 degrees south to 90 degrees north in latitude and 180 degrees west to 180 degrees east in longitude

- A line with a constant latitude running east to west is called a parallel
- A line with constant longitude running from the north pole to the south pole is called a meridian
- The zero-longitude meridian is called the prime meridian and passes through Greenwich, England
- A grid of parallels and meridians shown as lines on a map is called a graticule

Map projections

- A transformation of the spherical or ellipsoidal earth onto a flat map is called a map projection
- The map projection can be onto a flat surface or a surface that can be made flat by cutting, such as a cylinder or a cone
- If the globe, after scaling, cuts the surface, the projection is called secant
- Lines where the cuts take place or where the surface touches the globe have no projection distortion

Coordinate systems

- A coordinate system is a standardized method for assigning codes to locations so that locations can be found using the codes alone
- Standardized coordinate systems use absolute locations
- A map captured in the units of the paper sheet on which it is printed is based on relative locations or map millimeters, we want earth coordinates
- In a coordinate system, the x-direction value is the easting and the y-direction value is the northing
- Most systems make both values positive

206.4, 294.9786982]],PRIMEM["Greenwich",0],UNIT["Degree", 0.017453292519943295]],PROJECTION["Albers"],PARAMETER ["False_Easting",0],PARAMETER["False_Northing",-4000000], PARAMETER["Central_Meridian",-120],PARAMETER ["Standard_Parallel_1",34.0],PARAMETER["Standard_Parallel_ 2",40.5], PARAMETER["Line to the second sec

PARAMETER["Latitude_Of_Origin",0],UNIT["Meter",1]]

Building complex features

- Simple geographic features can be used to build more complex ones.
- Areas are made up of lines which are made up of points represented by their coordinates.
- Areas = {Lines} = {Points}

