

Geog 126: Maps in Science and Society

The rise of geodesy, satellites and GPS

The Figure of the Earth

- Eratosthenes assumed Earth to be a sphere
- As triangulation for mapping began, measurements showed irregularities
- Multiple causes, but instruments too coarse to detect source
- Biggest anomaly was the actual shape
- Led to extraordinary experiments in measurement during the early 1700 s

Gemma Frisius

- Dutch cartographer proposed using triangulation to accurately position far-away places for map-making in his 1533 pamphlet Libellus de Locorum describendorum ratione (Booklet concerning a way of describing places)
- Bound as an appendix in a new edition of Peter Apian's best-selling 1524 Cosmographica.

Triangulation spreads

Fig. 4. Die rheinifch-heffifche Kette und das niederrheinifche Dreiecksnetz.

Triangulation

Station A
Stellar Observations

Station B

Context

- Triangulation starts in the Netherlands, Germany, England
- Early measurements at Paris by the Cassinis
- Grand French triangulation under the Cassinis for the Paris meridian (1744) and the national map of France (1798-1812)
- Great trigonometrical survey of India
- Triangulations in the US lead to NAD27
- Major changes after WGS70

Geodesy begins

- Latitude can be accurately fixed using solar observation, origin at the poles and equator
- No origin for longitude
- Needed an established astronomical set of observations of stars and a link to time
- No common origin for longitude until 1884 (International Meridian Conference)

Paris, Royal Observatory completed 1671

Giovanni Cassini (1671-1712) Jacques Cassini (1712-1756)
 César-François Cassini de Thury (1756-1784) Dominique, comte de Cassini (1784-1793)

A note on prime meridians

- Ptolemy used Alexandria as prime
- Ulm Ptolemy starts numbering at African coast
- El Hierro, aka Isla del Meridiano , most westerly of the Canary Islands ($27^{\circ} 45^{\prime} \mathrm{N}, 18^{\circ} 00^{\prime} \mathrm{W}$)
- Later moved to Azores
- Important as the Line of Demarcation
- Also primes in London, Berlin, Paris, Bern, Washington D. C., Jerusalem, Lisbon, Madrid etc.
- Not standard until 1884, when Greenwich was chosen
- Adjustment made for IERS ITRF

Zero longitude

El Hierro, Canary Islands (Sp.)

Mercator Atlas 1611: $4^{\text {th }}$ Ed.

The Line of Demarcation

- Meridian chosen by Pope Alexander VI (1493) to divide America between Spain and Portugal
- Set precedent that European powers could divide new continents
- The line drawn ran north to south about 560 km west of the Canary islands.
- Portugal was allowed to claim land to the east of this line, and Spain to the west.
- The line was never surveyed and many historians suppose that it was near $48^{\circ} \mathrm{W}$ longitude.
- No nation was satisfied with this settlement, and a year later they mutually agreed by the Treaty of Tordesillas (signed in 1494) to shift the line 2,000 km (1,300 miles) to the west of the Cape Verde Islands.
- This later gave the Portuguese a claim to Brazil and the Philippines

Cape Verde/Azores meridian

Treaty of Tordesillas

Cassini: The Paris meridian

From: Atlas Universel des Cinq Parties du Monde, dressé par
Messrs. C.V. Monin \& A.R. Fremin, Gravé par Benard. Paris, chez Binet, 1836. $195 \times 250 \mathrm{~mm}$.

A Pario chee Binet. hue Aubry le Boucher No $3 f$

The Cassinis

- 1672 Jean Dominique Cassini, (Cassini I) Royal Astronomer of the Paris Observatory, began to consider new ways to produce more accurate maps through triangulation, to locate observatories
- Make first critical triangulations around the Paris observatory, establishing the Paris meridian
- With Jacques Cassini (Cassini II) produced the first accurate survey of an entire nation, in 1744
- In 1747 Louis XV asked Ceasar-Francois Cassini
(Cassini III) to create an even more precise national map of France, completed by his son Jacques Dominique Cassini (Cassini IV)
- 180 maps covering all of France at a scale of 1:86,400. These 180 'cartes de l'Academie' published from 1798 through 1812.

1744 Map of France based on triangulation surveys by Jacques Philippe

Maraldi and Cesar Francois Cassini de Thury.

Cassini Map of France 1798-1812

The Figure of the Earth

-1730s Académie des sciences debate of the shape of the earth
-French astronomer Jacques Cassini held to the view that the polar circumference was greater.
-Louis XV, the King of France and the Academy sent
 two expeditions to determine the answer

- One was sent to Lapland, under Swedish physicist Anders Celsius and French mathematician Pierre Maupertuis.
-The other mission was sent to Ecuador (Peru), at the Equator, led by Godin, included Bouguer and LaCondamine
-Previous accurate measurements had been taken in Paris by Cassini and others.

Charles Marie de la Condamine

J O URNAL
 D U

VOYAGE FAIT PAR ORDRE DU ROI,
A L'E'QUATEUR, SERVANT D'INTRODUCTION HISTORIQUE

D E S
TROIS PREMIERS DEGRE'S
DU ME'RIDIEN.
Par M. de la Condamine.

DE LIMPRIMERIE ROYALE.

Pierre-Louis Moreau de MAUPERTUIS (1698-1759)

LA FIGURE D E
 LA TERRE, $D E^{\prime} T E R M I N E^{\prime} E$

PAR LES OBSERVATIONS
De Meffeuts de Maupertuis, Clairaut, Camus,
le Monnter, de l'Académie Royale des Sciences, \& de M. l'Abbé OUthier, Correfpondant
de la meme Académie
Accompagnés de M. Celsives, Profeffeur d'Aftronomic à UpfaI,
FAITES PAR ORDRE DU ROY
AU CERCLE POLAIRE.
Par M. de Maupertuis.

A P A R I S,
DE L'IMPRIMERIE ROYALE M. DCCXXXVIII.

Maupertuis's Map

- River Tornio in modern Finland
- 14.3 km base line laid out on the ice

Measuring the Ellipsoid

- Maupertuis reported a meridian degree as $57,437.9$ toises (1 toise $=1.949 \mathrm{~m}$)
- Meridian degree at Paris was 57,060 toises
- Concluded Earth was flatter at poles
- Measures were erroneous but conclusions were correct
- Published as "La Figure de la Terre" (1738)

Back to geodesy

- Degree of earth's ellipsoidal distortion a critical scientific issue
- Resolved by Maupertuis' measure compared to Cassini's, reinforced by La Condamine's result
- But measurements continued
- E.g. Southward extension of the MasonDixon line an attempt to measure a degree in the Americas

Mason-Dixon line

Meridional arc measurements during the 18th and 19th centuries

Length of a degree (km)

111.49	1738	Maupertius - re- examined by Svanberg	Lapland	1.31 .08 N
111.23	1802	Roy \& Kater	England	52.35 .45 N
111.11	1790	Delambre \& Mecham	France	44.51 .2 N
111.03	1755	Ruscovich	Rome	42.59 .0 N
110.87	1750	Abb Lacaille	Cape of Good Hope	33.18 .30 S
110.66	1835	Everest	India	16.7 .22 N
110.64	1808	Lambton	India	2.32 .21 N
110.58	1735	 Bouguer	Peru	1.31 .08 N

Washington Meridian at N . Capitol St: old map of Washington Dc, March

1792 by Thackara and Vallance, Philadelphia, Geography and Map Division, Library of Congress.

Four meridians

See: https://www.youtube.com/watch?v=LVEDJEzzogq

Finally, 1898-1950!

Through the exact center of the clock room of the new Naval Observatory 3.8 km northwest of the White House, at $77^{\circ} 3^{\prime} 56.7^{\prime \prime} \mathrm{W}$ (1897) or $77^{\circ} 4^{\prime} 2.24^{\prime \prime W}$ (NAD 27) or $77^{\circ} 4^{\prime} 1.16^{\prime \prime} W$ (NAD 83).

Washington Meridians

Establishing an Arc

- Set up triangulation stations in visible locations
- Make observations of horizontal and vertical angles
- Lay out baseline on flat terrain, link to triangulation
- Complete with solar, lunar and moons-of-Saturn observations at arc ends

India Great Arcs

- East India Company dominates India from1757 and lasted until 1858, with a standing private army of 260,000
- 1784 Alexander Dalrymple suggested a triangulation along the eastern coast of India.
- Michael Topping was appointed Marine Surveyor in 1791, an advocate of triangulation
- 1799, Col. William Lambton proposes a plan for a Mathematical and Geographical Survey right across the subcontinent
- Survey starts10 April 1802, with the measurement of a 12.8 km base line on a flat plain near Madras

The Great Arc of India

- Initiative was the measurement of an arc of meridian (78 deg. E) from Tirunelveli (Tinnevelly), at the southern tip of India, to Banog, in the foothills of the Himalayas
- Also important for a base map of the continent, and for colonial rule

Tirunelveli to Banog

Great Trigonometrical Survey of India Ramsden Theodolite

William Lambton

Kolkata (Calcutta) Base Line

CALCUTTA BASE LINE
from a sketch by James Prinsep, Jany, 1832

Filling in the map

- 1815, Lambton measured another baseline near Bidar, at a station called Dumargidala
- 1818, George Everest joined Lambton
- 1822, Lambton continued the survey from Hyderabad towards Nagpur
- Lambton died on the road at Hinjunghat on 20 January 1823

Survey gets renamed

- After Governor general took control of survey, it was renamed the Great Trigonometric Survey
- After Lambton's death, Everest assumed control
- Tropic of Cancer reached in May 1824
- Everest completed the astronomical observations at Kalianpura in November 1824

Finishing the survey

- Longitudinal series of triangles (1120 km) completed July 1832
- Masonry towers 20-30 m high
- Ray tracing methods used for locating the stations
- Introduced the grid iron system of triangulation coverage
- Major baselines connected in February 1837
- When base lines were connected, positional error was only 183 mm.
- Great Trigonometrical survey completed in 1866
- Himalayan peaks included, Mt. Everest, K2

Up to the Himalaya (Kangchenjunga)

Conflicting goals and needs

- Geodetic measurement and national mapping needs often in conflict
- Almost all topographical and cadastral surveys in India were undertaken before the general triangulation could reach them
- Local surveys had anchored to inconsistent reference points
- British survey activities intended to be unified in 1878 by the formation of the Survey of India, of which the GTS became the Geodetic Branch
- 1820 Atlas of India at 1:253,440

1820 Atlas sheet index

Much study

US Surveying Bilby Towers

 April, 1931.

Triangulation and local surveys

Westchester Co. NY 1933)

United States Coast and Geodetic Survey, Primary Triangulation Between the Maryland and Georgia Base-Lines 1881

NAD27

Linking the systems: Meades Ranch

First series US Topo at 1:24,000

The Space Era

WGS72: Doppler shift from satellites

Dopplar Sabellite Grotion Stations Providing Data for wh8 72 Development.

Satellite triangulations

Tigure 39

Spy Satellites and geodesy

- The space era created geodetic problems, first noticed by Werner Von Braun in the V2 program
- Needed earth-centered ellipsoid from which to measure geoid differences
- Spy satellites had two missions: search and positioning.
- Maps were poor and included disinformation
- First US program to note issue was CORONA

Deflection of the vertical

GRAVIMETRIC DATUM ORIENTATION

CORONA 1958-72

Floyd Hough

- U.S. Army Geodesist dispatched to European theater in October 1944 with 18 men and 3 women
- "a nucleus of German geodesists and mathematicians" sent to US Occupation zone
- 90 tons of captured maps and equipment "German Materials"
- Included German-captured Soviet Czarist era records from the survey for the Trans-Siberian Railway
- Maps showed survey towers that could be found on CORONA imagery

Geodesy and WGS70

Early GPS

Later GPS

Summary

- Positioning by direct observation became increasingly accurate, eventually revealing the ellipsoid
- Cassinis in France improved mapping by triangulation, reaching a peak in India and the USA
- Colonial powers used meridians to divide the globe
- Issues of a prime meridian resolved by 1884
- Extraordinary measures to define the figure of the earth
- Major changes for the space era-earth centered ellipsoid
- Eventually GPS solves the positioning problem using atomic clocks and trilateration

